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Abstract: The jungle of experimental behaviors of spin-crossover materials contains a tremendous
number of unexpected behaviors, among which, the unsymmetrical hysteresis loops having different
shapes on heating and cooling, that we often encounter in literature. Excluding an extra effect of
crystallographic phase transitions, we study here these phenomena from the point of view of elastic
modeling and we demonstrate that a simple model accounting for the bond lengths misfits between
the high-spin and low-spin states is sufficient to describe the situation of unsymmetrical hysteresis
showing plateaus at the transition only on cooling or on heating branches. The idea behind this effect
relates to the existence of a discriminant elastic frustration in the lattice, which expresses only along
the high-spin to low-spin transition or in the opposite side. The obtained two-step transitions showed
characteristics of self-organization of the spin states under the form of stripes, which we explain as
an emergence process of antagonist directional elastic interactions inside the lattice. The analysis of
the spin state transformation inside the plateau on cooling in terms of two sublattices demonstrated
that the elastic-driven self-organization of the spin states is accompanied with a symmetry breaking.

Keywords: spin transition; first-order transitions; electro-elastic modeling; Monte Carlo simulations;
Ising-like model; unsymmetrical thermal hysteresis; spin crossover materials; symmetry breaking

1. Introduction

The spin-crossover transition (SCO) is a phenomenon that occurs in transition metal
coordination compounds based on Fe (II), Fe (III), Mn (II), Mn (III), Co (III), Cr (II) [1–5]
which change their spin state due to external stimuli such as a variation of temperature [6–8],
pressure [9–11], light irradiation [12–16], electrical or magnetic fields [17,18] etc. In the
literature, this phenomenon is most commonly studied on iron (II), with 3d6 electronic
configuration. From the point view of the ligand field theory [19], the central Fe(II) ion
surrounded by nitrogen atoms in an octahedral environment may have two spin configura-
tions, namely low-spin (LS) or high-spin (HS). According to the strength, strong or weak,
of the ligand field, compared to the electronic pairing energy of the electrons in the metal,
one can stabilize respectively, the LS or the HS electronic configuration. From this theory,
the change in the internal distribution of electrons inside the atomic orbitals of the central
metal causes the conversion from a paramagnetic high-spin (HS, e2

gt4
2g, S = 2) stable at

high temperature to a diamagnetic low-spin (LS, e0
gt6

2g, S = 0) which becomes the ground
state at low-temperature. In general, the transition from LS to HS is accompanied by an
increase of the Fe-N bond lengths between ~2.00 Å in the LS state and ~2.2 Å in the HS
state [20–22], leading to sudden expansion of the molecular volume, that is the volume of
the coordination sphere, by around 30% [22].

Historically, the thermally induced change of spin state was first observed by Cambi
and co-workers [23] in a spin transition compound based on iron (III) and has since been
extensively studied in iron (II) complexes. It was found that the change of spin state induced
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in the spin-crossover compounds by the temperature occurs when the difference in the
Gibb’s free energies between the two spin states involved is on the order of thermal energy,
kBT [24]. Indeed, when the temperature increases, the entropy (magnetic and vibrational)
of the HS state increases as a result of its nonzero spin value and its soft character, which
leads to its thermodynamic stabilization, while on lowering the temperature, the entropy
decreases and the diamagnetic LS state which has a rigid character is stabilized by the
ligand field which becomes stronger. Overall, the thermodynamic stabilization of these
two states is also due to the lattice distortion which accompanies the spin transition. On the
other hand, spin-crossover materials are known for their specific property of showing long-
lived photo-excited states at low-temperature, known as LIESST (Light-Induced Spin State
Trapping) effect, which is obtained after photoexcitation of the LS state with a particular
wavelength (usually green light) [25]. When trapped in this metastable state, the SCO
materials may return to their stable LS through a thermally-induced relaxation mechanism
subsequent to an increase of temperature.

In cooperative spin-crossover systems, these local volume expansions take place at
several points in the lattice and their interference cause a global volume expansion of the
whole lattice by ~3–5% [26] which also corresponds to the volume expansion of the unit cell.
This value is very small compared to the 30% of the volume expansion of the molecular
coordination sphere, which means that a large part of the molecular volume expansion is
absorbed inside the lattice in the form of reorientations of the ligands and local degrees of
freedom which do not affect the unit cell volume. Many experimental studies [27–32] were
devoted to this phenomenon, which appears in organometallic complexes, due to the rich
variety of collective thermodynamic behaviors such as: (i) gradual spin-transitions [33] of
independent SCO molecules, described by a simple Boltzmann distribution over all energy
levels involved in weak cooperative systems, (ii) first-order transitions [21] with large
thermal hysteresis, (iii) incomplete spin transitions with significant fractions of molecules
blocked in the HS state at low-temperature [34] (iv) as well as two-step or multi-step
transitions [35,36] which often express the existence of antagonist interactions inside the
lattice. Furthermore, several experimental investigations conducted in some spin-crossover
complexes have shown the presence of two-or multi-steps transition states which appeared
only on cooling or on heating leading to an unsymmetrical transition [37–40]. From the
chemistry point of view, the richness of these behaviors is obtained by several chemical
changes, like monitoring the nature, the size or the coordination mode of the ligand or
the anions, which affect the crystal packing as well as the mechanical strains, resulting
in huge changes of the macroscopic magnetic and mechanical properties of the bistable
molecular solids. Many models have been proposed to describe the thermal properties of
SCO materials. Some of them were based on classical thermodynamic approaches [41,42],
or continuum mechanics modeling where the interactions have considered in mean-field
approximation [43]. More recent models used first two-state Ising model to mimic the spin
transition, in which the interaction although elastic in nature was written under a form of
an exchange term [44,45]. The effect of the interaction between the spin state of the molecule
and the lattice was introduced latter by considering spin phonons interactions [46,47] or
vibronic approaches where the spin and local molecular distortion are coupled in a quantum
way [48]. Later, new type of models taking into account for the lattice volume change at
the transition appeared. They are called mechanoelastic [49–53], anharmonic [54,55] or
electro-elastic [56] and have been proposed, for some of them, to explain the experimental
observations of optical microscopy investigations [57] which showed that on single crystals,
the spin transition proceeds via a single domain nucleation which appears at the crystal
edge/corner and then propagates over the whole lattice, preventing any other nucleation
for opposite sides. In most of these elastic models, the spin-crossover molecules are
modeled as atoms with a stable LS state at low-temperature and a stable HS state at high-
temperature, coupled via harmonic or anharmonic springs whose elastic constant may
depend on the spin states of the connected spins [56]. In particular, the case of multi-
step conversion has attracted a lot of the attention due to the possible application of the
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materials showing this property for multi-byte information storage. From the theoretical
point of view, they are described using Ising-like models [44,45,56,58–62] combing short-
range antiferromagnetic-like interactions and long-range ferromagnetic ones; both of these
interactions are introduced in the phenomenological way.

The present theoretical work, based on the extension of our electro-elastic model to
investigate the case of unsymmetrical thermal hysteresis, focusses on the effect of the lattice
parameter misfit on the thermal and bistability properties of SCO solids. Thus, we here
consider the general case of the genuine electro-elastic model [58], and investigate the
effects of the lattice misfit parameter between LS and HS states on the thermal behavior
of the HS fraction and that of the average lattice bond lengths. The model is solved in
its general form, with elastic constants depending on the spin states of the linked SCO
sites. We observed that the tuning of the lattice parameters and elastic constants between
HS−HS, HS−LS and LS−LS configurations leads to a variety of thermal behaviors of the
HS fraction and average lattice parameters. Among them, hysteretic first-order transitions
are recovered [58], as well as the appearance of an intermediate plateau on cooling or on
heating with the presence of structural and spin state self-organizations in the plateau
regions. Moreover, unsymmetrical thermal hysteresis loops and incomplete transitions are
also obtained, which allows to propose a physical mechanism for the appearance of these
behaviors in the experiment.

The manuscript is organized as follows: in Section 2, introduces the presently used
electro-elastic model to describe spin-crossover materials and demonstrates its equivalence
with an Ising-like Hamiltonian including an infinite long-range interactions term. Section 3
is dedicated to the Monte Carlo resolution of the Hamiltonian, the presentation and the
discussion of the obtained results. In Section 4, we conclude and explore some extensions
of the current investigations.

2. The Model

The electro-elastic model describing the spin transition phenomenon is considered
here for a 2D square lattice of size, N × N, schematized in Figure 1, in which each site,
representing a SCO molecule, is associated with a fictitious spin state, Si = ±1, where
Si = +1 refers to the high-spin (HS) state and Si = −1 to the low-spin (LS) state. To take
into account for the local variation of the volume accompanying the spin change, the sites
are linked by harmonic springs [56], whose elastic constants and equilibrium distances
between the nearest neighbors (nn) and next-nearest neighbors (nnn) sites depend on their
connected spin states. The electro-elastic Hamiltonian of such system is given as [58]

H = ∑
i
(∆− kBT ln g)Si + ∑

(i,j)

A
(
Si, Sj

)
2

(rij − R0
(
Si, Sj

)
)

2
+ ∑

(i,k)

B(Si, Sk)

2
(dik − d0(Si, Sk))

2 (1)

The first term of Equation (1) represents the effective temperature–dependent energy
gap between the HS and LS states. It contains the ligand field energy contribution, ∆,
arising from the nitrogen atoms surrounding the SCO metal center, and the entropic
contribution, kBT ln g, originating from the electronic and vibrational degeneracy ratio,
g = gHS

gLS
, between the HS and LS states. The second and the third terms of (1) are the

elastic interaction energies between the nn and nnn of spin-crossover units, respectively.
Here, A and B are the corresponding elastic constants and, rij and dik are the instantaneous
distances, while, R0 and d0 are their associated equilibrium distances.
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𝑅0

𝐻𝐻+𝑅0
𝐿𝐿+2𝑅0

𝐻𝐿

4
, 𝜌1 =

𝑅0
𝐻𝐻−𝑅0

𝐿𝐿

4
=

𝛿𝑅

4
 and  𝜌2 =

𝑅0
𝐻𝐻+𝑅0

𝐿𝐿−2𝑅0
𝐻𝐿

4
 (2b) 

where, 𝛿𝑅 = 𝑅0
𝐻𝐻 − 𝑅0

𝐿𝐿, is the lattice misfit between the HS and LS phases. 
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Figure 1. Schematic view of the nn and nnn elastic interactions, adopted in the present investi-
gations of the 2D discrete electro-elastic model. The central node (i, j) is connected to four nn
and nnn sites. The sites are connected by springs and their instantaneous distances are written
r(i, j|i′, j′) = |

→
r (i′, j′)−→r (i, j)|, with the indexes (i′ = i, j′ = j± 1 and i′ = i± 1, j′ = j) for the

nn and (i′ = i± 1, j′ = j± 1) for the nnn.

2.1. Lattice Spacing and Elastic Constants

Let us denote by, RHH
0 , RLL

0 and RHL
0 , the equilibrium distances between the respective

nn HS−HS, LS− LS and HS− LS configurations. We then have R0(+1,+1) = RHH
0 ,

R0(−1,−1) = RLL
0 and R0(+1,−1) = RHL

0 . In the similar way, we consider different
rigidities for the LS and HS states, which leads to elastic constants between nn (resp., nnn)
atoms depending on their spin states. They will be written, AHH , AHL and ALL (resp.,
BHH , BHL and BLL) for the HS−HS, HS− LS and LS− LS configurations, respectively.

For simplicity reasons, and according to the 2D square topology of the lattice, the
equilibrium nnn distances in the three configurations are taken as dHH = RHH

√
2, dHL =

RHL
√

2 and dLL = RLL
√

2.
It is straightforward to prove that the general expressions of the nn and nnn equilib-

rium bond lengths, R0
(
Si, Sj

)
and d0(Si, Sk), and those of the elastic constants, A

(
Si, Sj

)
and B(Si, Sk) satisfying the previous constraints, can be written as function of the spin
states, Si and Sj under the following forms:

R0
(
Si, Sj

)
= ρ0 + ρ1

(
Si + Sj

)
+ ρ2SiSj, d0(Si, Sk) =

√
2R0(Si, Sk) (2a)

where:

ρ0 =
RHH

0 + RLL
0 + 2RHL

0
4

, ρ1 =
RHH

0 − RLL
0

4
=

δR
4

and ρ2 =
RHH

0 + RLL
0 − 2RHL

0
4

(2b)

where, δR = RHH
0 − RLL

0 , is the lattice misfit between the HS and LS phases.
Similarly, the nn (A) and nnn (B) elastic constants are written as follow:

A
(
Si, Sj

)
= A0 + A1

(
Si + Sj

)
+ A2SiSj, B(Si, Sk) = B0 + B1(Si + Sk) + B2SiSk (3a)

where, the parameters Ai(i = 0, 1, 2) and Bi(i = 0, 1, 2) write under the general form:

X0 =
XHH + XLL + 2XHL

4
, X1 =

XHH − XLL

4
=

δX
4

, X2 =
XHH + XLL − 2XHL

4
. (3b)

It is interesting to notice that in the general expressions (2a, 2b) of the nn equilib-
rium bond length, R0

(
Si, Sj

)
, ρ0 represents the average lattice parameter, which appears

as a center of mass between the average lattice spacing of the four spin configurations
(HH, HL, LH, LL) of the connected nn sites. On the other hand, ρ1, relates to the bond
length misfit between HS and LS states, and ρ2 stands for the gap between the lattice
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parameter of HL configuration and that of the average lattice parameter, RHH+RLL

2 , between
HS and LS phases.

Inserting the expressions of the lattice bond lengths (2a) and the elastic constants (3a)
in Hamiltonian (1), and after some simple algebra, it is easy to demonstrate that (1) can be
mapped in the form of the following Ising-like model,

H =
N

∑
i

hiSi + ∑
ij

Jnn
ij SiSj + ∑

ik
Jnnn
ik SiSk + ECohesion (4a)

where, ECohesion denotes the cohesion elastic energy of the lattice, whose expression is:
ECohesion = A0

2

nn
∑
ij

(
rij − ρ0

)2 − (2A1ρ1 + A2ρ2)
nn
∑
ij
(rij − ρ0) +

B0
2

nnn
∑
ik

(
dik − ρ0

√
2
)2

−(2B1ρ1
√

2 + B2ρ2
√

2)
nnn
∑
ik
(dik − ρ0

√
2) + C

(4b)

where, C = zN
2

(
((A0 + 2B0) + (A2 + 2B2))ρ

2
1 +

1
2 (A0 + 2B0)ρ

2
2 + 2(A1 + 2B1)ρ1ρ2

)
is a

constant contribution.
In Equation (4a), Jnn

ij and Jnnn
ik are the local nn and nnn exchange-like interactions, hi

is a local effective field. All these quantities include the contributions of nn and nnn elastic
interactions, and so they couple the spin states to the local distortions of the lattice. In
contrast, ECohesion expresses the pure elastic energy of the system which does not depend
on the spin states. This contribution is identified here as the cohesion energy.

The expressions of the effective nn and nnn local exchange-like parameters, Jnn
ij and

Jnnn
ik , are given in Equations (5a) and (5b). They show linear and quadratic contributions of

the lattice elastic field,

Jnn
ij = Jnn

0 + Jnn
1
(
rij − ρ0

)
+ Jnn

2
(
rij − ρ0

)2 (5a)

and,

Jnnn
ik = Jnnn

0 + Jnnn
1

(
dik − ρ0

√
2
)
+ Jnnn

2

(
dik − ρ0

√
2
)2

(5b)

where,

Jnn
0 = A0ρ2

1 + 2A1ρ1ρ2 + A2

(
ρ2

1 +
ρ2

2
2

)
, Jnn

1 = −(A0ρ2 + 2A1ρ1), Jnn
2 =

A2

2
(6a)

and
Jnnn
0 = 2B0ρ2

1 + 4B1ρ1ρ2 + B2

(
2ρ2

1 + ρ2
2

)
, Jnnn

1 = −
(

B0ρ2
√

2 + 2B1ρ1
√

2
)

, Jnnn
2 =

B2

2
. (6b)

Overall, one can conclude that the local exchange-like interactions, Jnn
ij and Jnnn

ik ,
contain constant short-range terms, Jnn

0 and Jnnn
0 , and long-range elastic contributions, Jnn

1 ,
Jnn
2 and Jnnn

1 , Jnnn
2 , recognized through their dependences on the lattice positions, whose

sign depends on several parameters, namely ρ2, rij, dik, and ρ0.
The local field-like term, hi, writes as follows,

hi = h0 + hnn
1

z
∑

j=1

(
rij − ρ0

)
+ hnn

2

z
∑

j=1

(
rij − ρ0

)2
+ hnnn

1

z
∑

k=1

(
dik − ρ0

√
2
)

+hnnn
2

z
∑

k=1

(
dik − ρ0

√
2
)2

,
(7a)

where,

h0 = (∆− kBT ln g) +
z
2
[(A0 + 2B0) + (A2 + 2B2)]ρ1ρ2 +

z
4
(A1 + 2B1)

(
4ρ2

1 + ρ2
2

)
, (7b)

hnn
1 = −[(A0 + A2)ρ1 + A1ρ2], hnn

2 =
A1

2
, (7c)
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hnnn
1 = −

[
(B0 + B2)ρ1

√
2 + B1ρ2

√
2
]
, hnnn

2 =
B1

2
. (7d)

Here, j (resp., k) runs over the nn (resp., nnn) of a given site i and z = 4 is the lattice
coordination number of the 2D square model considered in this study. Equations (7a)–
(7d) also show that the initial electronic ligand field, (∆− kBT ln g), acting on each site is
renormalized by the elastic contributions of the neighbors in a complex way whose signs
depend on the model parameters.

It is interesting to remark in the mapped Ising-like Hamiltonian (4a), the presence
of intrinsic frustration resulting from the exchange-like contributions, Jnn

ij and Jnnn
ik , along

the nn and nnn lattice parameters. This intrinsic elastic frustration is easily evidenced
in the special case, where the elastic constants are independent on the spin states, i.e.,
A1 = A2 = 0 and B1 = B2 = 0. Here, the nn and nnn exchange interactions become
Jnn
0 = Aρ2

1 and Jnnn
0 = 2Bρ2

1 and both of them are positive. In this case, the short-range
couplings Jnn

ij and Jnnn
ik , stabilize an antiferroelastic order in the lattice, while the local

effective field, hi, which contains a strong long-range ferro-type interaction (in particular
for ρ2 = 0 or RHL

0 = R), wants to impose a ferroelastic order. It results a situation of
elastic frustration in the lattice which is not produced by geometrical effects but rather
due to competing elastic interactions that may lead to special self-organization of the spin
states, driven by the lattice effects. On the other hand, it is quite well known that an Ising
model with antiferro-like nn and nnn interactions already leads to frustration due to the
antagonism of these two types of interactions [63–66].

For a better understanding of the role of the local interaction parameters on the possi-
ble emergence of self-organization of spin states, so as to predict in which conditions they
stabilize or destabilize the LS and HS phases, for the benefit of other spatially modulated
states, we perform in Section 3 MC simulations for several RHL

0 values. The latter are
varied between 1.0 and 1.2 nm, which are the values of the lattice spacing in LS and HS
states, respectively.

2.2. Model Parameters and Monte Carlo Procedure

In this study of the thermal properties of the spin crossover materials, we consider a 2D
square lattice of size N × N = 50× 50, with free boundary conditions in order to account
for the global lattice deformation arising from local volume expansions/contractions
consequent to spin flips. We assume for simplicity that the lattice deformations remain
inside the plane, and the simulations do not explicitly involve external pressure effects.

Table 1 summarizes the used values of the equilibrium lattice parameters and elastic
constants in the numerical simulations, except that of RHL

0 which is monitored along the
numerical investigations.

Table 1. Nearest neighbors (nn) and next-nearest neighbors (nnn) lattice parameters as well as elastic
constants values used in the simulations. The HS-LS bond length (RHL

0 ) is used here as a variable to
tune the thermodynamic properties.

Configurations HH HL LL

nn distance (nm) RHH
0 = 1.2 RHL

0
RLL

0 = 1.0

nnn distance (nm) RHH
0

√
2 RHL

0

√
2 RLL

0

√
2

nn elastic constants (×104 K/nm2) AHH = 0.9 AHL = 1.46 ALL = 2

nnn elastic constants (×104

K/nm2)
BHH = 1.1 BHL = BHH+BLL

2 = BHH BLL = BHH
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Considering the following expressions: R =
RHH

0 +RLL
0

2 for the average equilibrium
distance between HS and LS phases, δR = RHH

0 − RLL
0 , for the lattice misfit, the previous

ρ0, ρ1 and ρ2 parameters given in Equation (2b) can be written as,

ρ0 =
R + RHL

0
2

, ρ1 =
1
4

δR and ρ2 =
R− RHL

0
2

(8)

A schematic configuration of these different bond lengths is given in Figure 2.
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Figure 2. Schematic representation of the lattice equilibrium distances in the case, where RHL
0 > R,

which leads to, ρ2 < 0, resulting in antiferroelastic long-range interactions as clearly indicated by
Equation (4a).

The present work, is dedicated to the investigations of the thermal properties of the
electro-elastic 2D lattice by tuning the values of lattice spacing, RHL

0 , between RHH
0 and RLL

0 .
Three situations of RHL

0 values, will be studied. They correspond to (i) RHL
0 = R, which

means that the HS-LS configuration plays a neutral role with respect to the HS and LS ones;
(ii) RHL

0 located in the interval ]R, RHH
0
]

and (iii) RHL
0 located in the interval

[
RLL

0 , R[ .
For that, Monte Carlo technique running on spin and lattice position variables are

implemented in a sequential way. For both spin and lattice position degrees of freedom,
a Metropolis algorithm is implemented to drive the spin flips from Si to −Si and the
lattice displacements from the initial position

→
r i to

→
r i + δ

→
r i, where δ

→
r i is the elementary

displacement chosen in a random direction with a random amplitude ||δ→r i|| chosen so that
||δ→r i|| � RLL

0 , which is the smallest lattice parameter value used in the simulations. Here,
we used the value, ||δ→r i|| = 0.05 nm. In this problem, where each site, i, has two degrees
of freedom, Si and

→
r i, the following double MC procedure is performed. First, we call

randomly a site i and update its spin state following the Metropolis algorithm. Whatever
the result, accepted or rejected spin flip, we perform another MC process by displacing
each lattice position randomly in order to minimize the system’s elastic energy. We update
all lattice positions by MC several times (here 10 times) in order to reach the mechanical
equilibrium. Then, we call randomly another spin site and we repeat the procedure until
visiting all spin sites. When all spin sites have been visited once, we call this 1 MC step
(MCS). Thus, for a lattice of N × N (here 50× 50) sites, in 1 MCS, each lattice position is
updated 10× N2 times, which makes the procedure highly time consuming. Along the
simulation, and depending of the studied situation, the system is cooled down from 200
to 1 K and then warmed up until 200 K, or inversely. In this range of temperatures, the
HS fraction, nHS, the average bond length distance, < r >, as well as the spatial spin
and position configurations are recorded every 1 K after a waiting time corresponding to
5000 Monte Carlo steps in order to reach the thermodynamic equilibrium. Among these
5000 MC steps, 2000 MCS are used to evaluate the average quantities of interest. So at
the end of the process, and when the total elastic energy reaches its stationary state, we
perform all averages of physical quantities of interest. In all simulations, the ligand field
energy is maintained constant, ∆ = 450 K and the value of degeneracy ratio between
the HS and the LS states is taken as, g = 150 (ln g = 5). This effective degeneracy value
contains the electronic degeneracy 15 of the Fe2+ SCO complexes in the HS state to which
is included the intra-molecular vibrational entropy change at the transition as well as that
of the lattice. Taking g = 150 leads to an entropy change ∆S ∼ 40 J/K/Mol which is in
fair agreement with available experimental data [63,66]. As a consequence, the equilibrium
transition temperature, which corresponds to the temperature which zeros the effective
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ligand field is expected to be, T0
eq = ∆

kB ln g = 90 K, when the elastic constant are spin-states
independent [58]. In the present case, since all constants (nn and nnn) depend on the spin
state, the equilibrium transition temperature is obtained by putting h0 = 0 in Equation
(7b), which leads to T0

eq, only in the case where A1 = B1 = A2 = B2 = 0.

3. Results and Discussions

This section is devoted to the presentation of the thermodynamic properties of the
studied electro-elastic lattice. We will focus on the shape of the thermal hysteresis and
its dependence on the lattice parameter RHL

0 which is considered here as a variable.
The nucleation and growth mode of the spin states as well as spatial distribution or
self-organization along the thermal hysteresis will be analyzed. Two cases, correspond-
ing to two situations of elastic frustrations, will be considered according to RHL

0 values:
(i) RHL

0 ≥ R and (ii) RHL
0 ≤ R.

3.1. Case RHL
0 ≥ R: Thermal Dependence of the HS Fraction and the Average Lattice Bond Length

Figure 3a,b summarize the thermal-dependence of the HS fraction, nHS(T) =
(1+<si>)

2 ,

and the average nn bond length parameter of the lattice, < r > = 〈
√(

xj − xi
)2

+
(
yj − yi

)2〉,
for different values of RHL

0 ranging between RHH
0 and RLL

0 .
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Figure 3. Thermal evolution of the (a) high-spin fraction and (b) average bond length distance between nn for different
values of RHL

0 . According the value of RHL
0 , we notice the presence of usual first-order transition, an incomplete two-step

transition characterized by a transient intermediate state on the cooling branch and an incomplete transition with a residual
fraction of HS. Remark the displacement of the cooling curves towards the high temperatures between nHS = 1 and 0.8 and
the emergence of plateaus leading to a reverse displacement towards the low-temperature of the cooling branches (see
arrows on cooling).

Results of Figure 3a show, for RHL
0 = 1.1 and 1.11 nm, the presence of a first-order

transition between the HS (nHS = 1) and the LS (nHS = 0) states accompanied with
a thermal hysteresis. The origin of this thermal hysteresis is clearly due to the elastic
interactions acting between the spin states through local volume changes accompanying
the spin state switching. These changes of the local volumes deploy over the whole lattice
causing long-range effects.

When increasing the value of RHL
0 beyond, RHL

0 = 1.11 nm, an intermediate plateau
appears on cooling from HS to LS while it is absent on heating from LS to HS. For larger
values, 1.14 ≤ RHL

0 ≤ 1.2, an incomplete transition takes place on cooling due to the
stabilization of intermediate states, and the obtained plateau persists until 1 K, due to
the vanishing of thermal fluctuations, leading to a residual HS fraction whose amplitude
increases with RHL

0 value. In our simulations, where the MC waiting time is fixed over the
whole study, this behavior appears beyond the threshold value, RHL

0 = 1.14 nm.
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When inspecting Figure 3a, we remark that the cooling branches of the hysteresis are
shifted upward downward when we increase RHL

0 from 1.1 to 1.1336 and then split into two
branches with the appearance of a plateau. The upper one continue to shift upward while
the lower one shifts downward and disappears for RHL

0 situated in the interval 1.1336 and
1.14. Beyond this value, incomplete spin transitions are obtained because the temperature
at which the plateau region starts, reaches zero. Indeed, for RHL

0 = 1.14 nm, the HS fraction
do not totally convert at very low temperature and remain blocked at nHS = 0.55 leading
to a mixed phase where HS and LS states coexist.

As a result, on heating with the used MC kinetics, the system stays in the plateau
and follows a succession of metastable states before to reach the HS state at temperatures
(~70 K) well below those of the heating branches of the thermal hysteresis (~150 K). This
discontinuity in the change of the value of the heating branch of the thermal hysteresis
can be left by starting the “measurements” from the LS state. For that, one can prepare the
LS state from the intermediate plateau state at low-temperature by applying pressure [67]
which stabilizes the LS state or by light-irradiation through reverse-LIESST (Light-Induced-
Spin-State Trapping) effect [68].

In modeling, if one starts the simulation by warming and then cooling, we expect
the same results as those of Figure 3a,b for RHL

0 values ranging in the interval 1.0–1.1336,
while different trends are expected for RHL

0 ≥ 1.14 nm. Indeed, in this case, the heating
process from the LS state leads to an increasing upper transition temperature of the thermal
hysteresis (following the same behaviour as those of RHL

0 < 1.14), and then we recover
the “right” heating branch, T+, which is in the continuity of the other heating branches
obtained for RHL

0 < 1.14, as well indicated in the phase diagram T vs. RHL
0 of Figure 4.

In contrast, when the system reaches the HS state, the cooling branch will be the same
as that already represented in Figure 3a,b for the HS fraction and the average nn bond
length, respectively.
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Figure 4. Phase diagram showing the transition temperatures versus, RHL
0 , ranging in the interval

1.09–1.21. T+ and T− are the transition temperatures of the heating and cooling branches. On increas-
ing RHL

0 , the lower branch of the thermal hysteresis, T− splits, for RHL
0 ' 1.12, into two branches

with inflexion points T−1 and T−2 . While, T−1 depicts an increasing behavior with RHL
0 , T−2 falls down

around, RHL
0 ' 1.14, beyond which the system stays quenched in a metastable state, leading to an

incomplete spin transition. For, RHL
0 ≥ 1.12, the system depicts self-organized spin states.

Now we turn to the explanation of the global shift of the thermal hysteresis for
increasing RHL

0 values. To understand quantitatively this point, one has to consider the
energy barrier that faces a spin state during the spin flip and to express it as a function
of RHL

0 . However, a qualitative approach provides a first explanation. Starting from the
HS state, whose lattice parameter is RHH

0 and cooling down, the appearance of a LS state
changes the equilibrium lattice parameter to RHL

0 . If RHL
0 increases towards RHH

0 , then
the transition from HS to LS will take place at lower temperature, because the “distance”



Symmetry 2021, 13, 828 10 of 29

RHH
0 -RLL

0 decreases. On the other hand, starting from LS with lattice spacing equal RLL
0 ,

the increase of RHL
0 will increase the “distance” RHL

0 -RLL
0 which will result in an increase of

the LS to HS transition temperature. Overall, the total thermal hysteresis shifts to higher
temperature regions, as found in Figure 3a,b. In the following section, we will discuss these
behaviors observed in relation with elastic properties.

3.1.1. Long Range Effect in the Competition between Ferro- and Antiferro-Elastic
Interactions on the Thermal Dependence of the HS Transition and Generation of
Elastic Frustration

To discuss quantitatively the behavior of the thermal dependence of the HS fraction
and the average distance parameter observed in the previous section, we focus on the
signs of the various interaction parameters involved in the effective Ising-like Hamiltonian
(4a). According to RHL

0 values, the exchange-like interaction terms Jnn
ij and Jnnn

ik , as well as
the local effective field contribution, hi, combine short- and long-range interactions which
can be ferroelastic or antiferroelastic. So the, competition between local ferroelastic and
antiferroelastic interactions can be generated by monitoring RHL

0 variable. It is therefore
expected that the thermal behavior of the HS fraction will be affected by this parameter, by

stabilizing elastically new phases that would never appear for RHL
0 = R =

RHH
0 +RLL

0
2 .

Let us start with the case, RHL
0 = R = 1.1 nm, for which the parameter, ρ2 =

R−RHL
0

2 ,
is systematically equal to zero which means that the local exchange-like interactions, Jnn

ij
and Jnnn

ik , do not depend on the atomic positions. Consequently, these two parameters will
do not include any long- range effect in this case. In contrast, the ligand field term, hi, does
contain long-range interaction terms. Thus, in this case, nn and nnn short-range antiferroe-
lastic interactions are identified in local exchange-like interaction terms, which induces an
intrinsic frustration in the system. During the thermal transition, we notice a competition
between short-range antiferroelastic interactions arising from the exchange-like interaction
and long-range ferroelastic interactions resulting from the effective field-like contribution,
hi. However, the strength of these short-range antiferroelastic interactions in this case is
very weak, and consequently the thermal dependence of the HS fraction is mainly governed
by the effective field-like interaction, hi, which combines an effective ligand field energy,
h0 = (∆− kBT ln g) + z(A1 + 2B1)ρ

2
1 competing with the additional long-ranged elastic

field energy [see Equation (7a)]. The obtained thermal-dependence of the HS fraction and
lattice parameter are given in Figure 5(a1,b1). They show wide thermal hysteresis centered

around the equilibrium transition temperature Teq = T0
eq −

z|A1|ρ2
1

kB ln g < 90 K. Here, the de-
generacy of the HS spin state combined with the local field-like interactions, hi, constitute
the driving force of the spin transition when the HS-LS equilibrium bond length, RHL

0 is
chosen in the middle between RHH

0 and RLL
0 , leading to hysteretic first-order transition

when the strength of the elastic interactions, (A + 2B)
(

RHH
0 − RLL

0
)2

> T0
eq. On the other

hand, the width of the thermal hysteresis also depends on
(

RHH
0 − RLL

0
)2.

When we inspect the spatial mode of the nucleation of the spin states (Figure 5(c1))
we remark that the LS (resp., HS) states on cooling (resp., heating) grow from the corners in
a single domain fashion and then coalesce at the center of the lattice. This behavior is very
different from that of the usual Ising model which shows multi-droplet nucleation with
ramified spin structures. The present behavior is attributed to the existence of long-range
elastic interactions between the spin states, deployed as through the strain field which
prevents the nucleation from other sites thanks to the internal pressure produced by the
converted phase.

For RHL
0 > R, ρ2 becomes negative and the antiferroelastic long-range interactions in

the effective exchange-like interactions, Jnn
ij and Jnnn

ik , and their values will increase with

RHL
0 and will participate in the thermal behavior of the HS fraction. As we have already

seen, for RHL
0 = 1.1 nm, the strength of these antiferroelastic long-range interactions is

null, while for RHL
0 = 1.11 nm, it becomes different from zero but its contribution in the

thermal behavior of the HS fraction and average lattice parameter is hardly seen (compare



Symmetry 2021, 13, 828 11 of 29

Figure 5(a1,b1) and Figure 5(a2,b2)) since the shape of the thermal hysteresis remains
almost unchanged. Despite of the absence of any indication on nHS(T) and < r >(T), the
analysis of the spatiotemporal behavior of the HS fraction along the spin transitions shows
important differences compared to the case RHL

0 = 1.1. Indeed, the comparison between
Figure 5(c1,c2) shows clear differences in the spatial organization of the spin states at the
transition. Although, HS stripes appear on cooling in both cases, the latter are more dense
in the case RHL

0 = 1.11, which stabilizes this configuration. It is then expected to observe
an enhancement of this type of self-organization by increasing, RHL

0 . This point will be
discussed in the next section.
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Figure 5. Thermal-dependence of the (a1,a2) HS fraction, nHS, and (b1,b2) average nn bond length, < r > with selected snapshots (c1,c2) on
the hysteresis loops for RHL

0 = 1.1 (TA = 200 K, TB = 40 K, TC = 36 K, TD = 35 K, TE = 1 K, TF = 117 K, TG = 123 K, TH = 125 K)

and 1.11 nm (TA = 200 K, TB = 36 K, TC = 29 K, TD = 28 K, TE = 1 K, TF = 112 K, TG = 119 K, TH = 121 K), showing different spa-
tiotemporal features of the spin transition on cooling. For, RHL

0 = 1.1, the spin transition proceeds through compact LS domains
starting from the corners, while for RHL

0 = 1.11, ramified and entangled 1D HS/LS strings appeared during the HS to LS transition.

For the values, RHL
0 = 1.12, 1.123, (Figure 3a,b) the thermal evolution of the HS

fraction does show a shift of the thermal hysteresis to higher temperature regions, as
already mentioned, but without any signature of plateau. The latter appears beyond the
threshold value RHL

0 ∼ 1.126 nm where the lower branch of the thermal hysteresis exhibits
two gradual transitions between the HS state and the intermediate state at T−1 = 54 K and
then to the LS state at T−2 = 37 K. When we increase RHL

0 the plateau width is enhanced
which pushes the temperature T−1 to higher temperature regions and T−2 to lower values.
At RHL

0 = 1.1336 nm, T−2 reaches 0 and one gets an incomplete spin transition. In this
region well self-organized structures are expected as we will see in the next section.

3.1.2. Spatial Organization of the Spin States in the Course of the Spin Transition

The thermal evolution of the HS fraction and average lattice parameter are discussed
here for the case R ≤ RHL

0 ≤ RHH
0 including the spatial organization of the spin states.

Figure 5(a1) depicts the case RHL
0 = R, where we do not expect any self-organization

since the average lattice parameter of the HS-LS configuration does not favor neither the HS-
HS nor the LS-LS configuration. In this case, usually the expected transition temperature is
T0

eq = ∆
kB ln g = 90 K, and it is situated in the middle of the thermal hysteresis [58]. However,

in the present study the elastic constants (A and B) depend on the spin states, which results
in a different expression of Teq which depends on A and B. As a consequence, the transition
temperature is shifted with respect to T0

eq, which is no more in the middle of the thermal
hysteresis. However, if one takes A1 = A2 = B1 = B2 = 0 [See Equation (3a)], we recover
the behaviors of Ref. [58].

As it clearly appears in the snapshots of Figure 5(c1,c2), for RHL
0 = 1.1 and 1.11 nm,

the spin transition along the cooling (resp., heating) branch starts from the four corners
following the usual scenario of nucleation and propagation of single domains of the stable
LS (resp., HS) phase inside the metastable HS (resp., LS) state. After the formation of
homogeneous LS domains at the corners, inhomogeneous “multidroplets” nucleation
grows around the interfaces. This phenomenon is ascribed to a macroscopic nucleation [69]
and is attributed to the propagation of the ferroelastic stresses that prevent nucleation from
the center due the high elastic energy cost. Although snapshots Figure 5(c1,c2) are very
similar, one can remark that there are some significant differences in the organization of the
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spin states on cooling where the HS strings appear more clearly in Figure 5(c2) for which
RHL

0 = 1.11.

On the Stabilization of the Intermediate Plateau on Cooling

The stabilization of an intermediate on cooling is depicted below in Figure 6(a1–a3)
where we represent the thermal hysteresis of HS fraction, nHS, and in Figure 6(b1–b3) the
average bond length, < r > for RHL

0 = 1.126, 1.13, and 1.1336 nm with their associated
selected snapshots Figure 6(c1)–(c3).
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Figure 6. Thermal-dependance of the (a1–a3) HS fractions, nHS, (b1–b3) average nn bond lengths, < r >, and selected snapshots (c1–c3) on
the hysteresis loops for RHL

0 = 1.126 (TA = 200 K, TB = 58 K, TC = 49 K, TD = 36 K, TE = 1 K, TF = 121 K, TG = 130 K, TH = 132 K),
RHL

0 = 1.13 (TA = 200 K, TB = 62 K, TC = 49 K, TD = 36 K, TE = 28 K, TF = 1 K, TG = 121 K, TH = 131 K, TI = 133 K), and RHL
0 =

1.1336 (TA = 200 K, TB = 68 K, TC = 47 K, TD = 27 K, TE = 12 K, TF = 1 K, TG = 123 K, TH = 134 K, TI = 136 K) nm. Remark the
labyrinth formation in the plateau region on cooling with the increase of the density of entangled HS/LS strings for nHS = 0.6 (points
C) with increasing RHL

0 .
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For all parameter values, RHL
0 = 1.126, 1.13, and 1.1336 nm, the nucleation on heating

occurs as macroscopic single HS domains starting from the corners and propagating to-
wards the center of the lattice. This transformation is accompanied with a significant lattice
deformation. This is the usual domain propagation already reported in previous elastic
models devoted to SCO phenomenon. In contrast, on cooling, an emergence of a plateau
region, with self-organized spin state structure (labyrinths), takes place. These structures,
observed for all above mentioned RHL

0 values are formed through long entangled and
ramified HS and LS strings. These self-organizations of the spin states are induced by the
elastic-field and are clearly attributed to the competition between long-range ferroelastic
interactions [field-like term of Equation (7a)] and antiferro-elastic frustrated short-range
interactions emerging from the contribution of the parameter, ρ2 (< 0) which appears in
the local effective exchange-like interactions, Jnn

ij and Jnnn
ik , given in Equations (5a) and (6a).

The occurrence of the plateau at the transition clearly results from the presence of
antagonist ferro- and antiferro-elastic interactions which produce an inhomogeneous
internal pressure between the SCO sites. This effect combines with the lattice shape [70,71]
to produce consecutively 1D HS patterns and 1D LS strings.

From the value RHL
0 = 1.14 (Figure 3), the LS state is no more “stable” at 0 K, within the

MC kinetic used in the simulations, and a residual HS fraction appears at low temperature,
as illustrated in Figure 3a. This behavior may have a kinetic origin, since all simulations
have been launched from the HS state where all distance are set equal to RHH

0 . However,
this tendency clearly confirms that increasing RHL

0 stabilizes the HS-LS configurations
leading to large plateaus on cooling. Interestingly, we do not obtain any plateau on
heating for R ≤ RHL

0 ≤ RHH
0 , which then leads to non-symmetric hysteresis (plateau on

cooling and sharp transition on heating). This type of behavior was frequently observed in
experiment [37–40], but was never reproduced or modeled. So, here we bring a possible
explanation of this unusual behavior, based on the existence of an elastic frustration due to
lattice parameter misfit, which manifests itself only during the transformation from HS to
LS, while it is silent in the opposite process.

Let us now discuss the self-organization of the spin states in the plateau regions of
Figure 6(c1–c3). In all these figures, we first remark in panels B of all snapshots that, on
cooling, the nucleation of the LS state starts from everywhere in the center of the lattice
for weak LS concentrations. A brief inspection of the snapshots B indicates that for weak
LS concentration, the LS sites prefer to have HS sites as nn, which means that the system
maximizes the numbers of HS-LS bonds. This behavior can be understood from the point
of view of elastic energy. Here, we simply consider a system with uniform elastic constants
for simplicity.

When starting from the HS state, the spin flip of a HS site to LS costs the elastic energy
4(A + 2B)

(
RHH

0 − RHL
0
)2 which decreases as RHL

0 gest closer to RHH
0 .

Let us now increase the number of LS sites, and take for example 2 LS sites in the
lattice. We have three possible configurations: (i) they can be far from each other, (ii) also
they can be nn or (iii) nnn sites. If the two LS sites are isolated then the total energy is just
the double of that of one isolated LS site: 8(A + 2B)

(
RHH

0 − RHL
0
)2. On the other hand, if

the two sites are nn, the total elastic energy is 8× 2B
(

RHH
0 − RHL

0
)2

+ 6A
(

RHH
0 − RHL

0
)2

+

A
(

RHH
0 − RLL

0
)2. And, finally if the two LS sites are nnn, the elastic energy cost before relax-

ation is 8A
(

RHH
0 − RHL

0
)2

+ 2B× 6
(

RHH
0 − RHL

0
)2

+ 2B
(

RHH
0 − RLL

0
)2. Since the quantity

RHH
0 − RLL

0 is always bigger than RHH
0 − RHL

0 , it is clear that for weak LS concentrations,
the system will prefer isolated LS species. Thus a simple numerical evaluation of these
energies within the model parameter values used in the simulations gives, 1290 K for the
isolated LS site and 1962 K (resp., 1977 K) for the configuration of two nn (resp., nnn)
LS sites.

However, as soon as the concentration of LS species increases (panels C) small LS
clusters will appear. According to the previous calculations, the energies (Enn and Ennn)
of LS clusters made of two nn and nnn LS sites are such as, Enn – Ennn = ( 4B – 2A)
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[(
RHH

0 − RHL
0
)2 − (RHH

0 −RLL
0 )

2

2

]
< 0. Consequently, the system prefers to grow LS nano-

strings surrounded by 2 HS nn. This, forces the HS phase to self-organize under the form
of ramified stripes.

Evidence of Symmetry Breaking

We could calculate the number of nn HS sites belonging to stripes by scanning the
lattice along x− (resp., y−) direction and counting all HS sites having two HS nn along
the horizontal (resp., vertical) direction and two nn LS along the vertical (resp., horizontal)
one. So doing, we determine the size distribution of the chains as well as their density.
We see in all cooling snapshot panels of Figure 6 that due to the system compactness, the
density of HS chains among the total HS fraction, is maximum when the HS phase becomes
minority, as in all panels E where also the average chain length becomes maximum. To
confirm this behavior we plot in Figure 7 the temperature-dependence of the density of HS
chains (whatever their length) along with the HS fraction, nHS.
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RHL

0 = 1.1336 along with the HS fraction, nHS (black line) curve for cooling and heating regimes.

To characterize this specific behavior, where minority species HS (resp., LS) tend to
self-organize into chains. We first remark that every HS (resp., LS) site belonging to a HS
(resp., LS) chain (except those at the extremities) has two HS and two LS nearest neighbors
and two HS neighbors. If we denote by σ the sum of neighboring spins of the HS (resp.,
LS) central site in question, then every HS (resp., LS) site belonging to HS (resp., LS) chain
fulfills the condition, σ = 0, for its surrounding spins, except as said, for sites located at the
extremities of the chain. Then, we evaluate numerically the quantities,

N+
σ=0 = ∑N

i
(1 + Si)

2
δσi ,0 and N−σ=0 = ∑N

i
(1− Si)

2
δσi ,0 (9)

which represents the respective numbers of HS and LS sites that fulfill the condition σ = 0.
Here, δσ,0 is the Kronecher delta function, while σi is the sum of nearest neighbors spins
(σi = ∑j Sj) of site i.

Moreover, we determine, at each temperature, the densities of HS (resp., LS) sites
belonging to HS (resp., LS) chains, defined as,

n+
σ=0 =

N+
σ=0

N+
and n−σ=0 =

N−σ=0
N−

. (10)
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In Equation (10), N+ (resp., N−) is the number of bulky SCO molecules or sites in the
HS (resp., LS) state. It is worth noticing that when all HS (resp., LS) atoms belong to HS
(resp., LS) chains, the quantity, n+

σ=0 (resp. n−σ=0), becomes equal to 1.
To furthermore enhance the relevance of these results, we introduced an additional

constraint on the occupation of HS-HS and LS-LS pairs in the lattice. To do so, we calculate
the respective quantities,

N++ =
1
2 ∑N

i,j

[
(1 + Si)

(
1 + Sj

)
4

]
and N−− =

1
2 ∑N

i,j

[
(1− Si)

(
1− Sj

)
4

]
(11)

of HS-HS and LS-LS pairs in the lattice. Their respective corresponding densities (or
probabilities) are simply obtained as, n++ = N++

zN
2

and n−− = N−−
zN
2

, where zN/2 is the

total number of pairs in the lattice. Here again, when all HS (resp., LS) sites belong to HS
(resp., LS) chains, we expect the following relation, n++ = n+

2 −
1

zN
2

(resp., n−− = n−
2 −

1
zN
2

)

and therefore, for large chains one may consider, n++ ' n+
2 (resp., n−− ' n−

2 ). Thus, the
quantities,

(
n++ − n+

2
)

(resp.,
(
n−− − n−

2
)
) allow to evaluate the probability for the HS

(resp., LS) sites to not belong to HS (resp., LS) chains.
Figure 7 summarizes the density, D+ = n+

σ=0 × n++ (resp., D− = n−σ=0 × n−−) of HS
and LS sites fulfilling both conditions (9) and (11). We see in Figure 7, that on heating, and
in agreement with the snapshots of Figure 6(c3), the lattice does not show any significant
amount of HS chains around the transition temperature, T = 125 K. In contrast, in the
cooling process, the density D+ (red curve) shows a very characteristic behavior, since
it becomes maximum around the entire plateau region and falls down in other regions.
Indeed, it suddenly increases below 75 K until 50 K, due to the increase of the LS fraction,
which induces the appearance of HS-LS species. As a result, the quantity N+ decreases
(that is the number of HS molecules) while N+

σ=0 raises up due to the transformation of HS

sites to LS sites. Consequently, n+
σ=0 =

N+
σ=0

N+ is a strongly increasing function in this region.
On the other hand, n++ decreases below 75 K, following the trend of the HS fraction (black
curve). Overall, the density, D+, is mainly driven by the change of N+

σ=0, to which it is
slaved, and therefore increases in the temperature range 75–50 K and reaches a maximum
value, equal to n+

2 , around 25 K. Below 15 K, n+
σ=0 becomes equal to 1, and n++—which

drastically decreases—controls the behavior of the density D+.
The density, D−, of LS sites belonging to LS chains, represented by the blue curve in

Figure 7, shows very similar behavior as that of D+. However, we remark two different
aspects: (i) D− starts to increase at a lower temperature ( T ∼ 60 K), because in the region 75
K–60 K, the system grows an antiferro-like phase (see panel B of Figure 6(c3)). Below 60 K,
the HS state is already self-organized in the form of stripes, which forces the emergence
of inclusions of LS stripes. Here, in all this region D− is driven by the change of n−σ=0,
which reaches its maximum value around T = 25 K. Then, below 15 K, the stripped LS
inclusions grow up and form LS compact domains, which causes the increase of n−−
(whose maximum value is equal to 1) and vanishing of n−σ=0. Overall, D− also decreases in
this second part of the plateau.

On the other hand, to demonstrate the occurrence of a symmetry breaking-like be-
havior in the plateau region, we divided the lattice into alternate horizontal and vertical
A and B sublattices to which we associate the respective couples of HS fractions order
parameters (nx

A, nx
B) and (ny

A, ny
B). Thus, for a total HS fraction, nHS = 0.5, and perfectly

ordered horizontal (resp., vertical) alternate HS, LS chains, one expects the values nx
A = 1

and nx
B = 0 (resp. ny

A = 1, ny
B = 0) and ny

A = ny
B = 0.5 (resp. nx

A = nx
B = 0.5). Figure 8,

displays the thermal dependence of the order parameters associated with sublattices A, B,
together with the total HS fraction. While in the HS and LS phases the sublattices A and B
are equivalent, we clearly see the occurrence of a bifurcation around the plateau region,
with the presence of partially-ordered phase, where ny

A and ny
B departure from the curve

of the HS fraction. This behavior is a signature of the existence of symmetry breaking. To
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well emphasize this character, we plotted in the inset of Figure 8, the thermal behavior of(
ny

A − nHS + 0.5
)

and
(

ny
B − nHS + 0.5

)
around the plateau region, which shows clearly

features of symmetry breaking, through the equivalence of the two sublattices on both
sides of the plateau region. The main reasons for obtaining a partial order is here attributed
to “kinetic character” of the plateau region, in which the derivative ∂nHS

∂T is different from
zero, which means that the obtained structures do not have a long lifetime.
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(

ny
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)
vs. temperature, showing the occurrence of a symmetry breaking around the

plateau region.

Next, we investigate the kinetic nature of the obtained plateaus in the simulations, by
performing isothermal MC simulations at T = 27 K for RHL

0 = 1.1336, corresponding to
point D of Figure 6(c3). For that, we performed several runs of MC simulations, relaxing
the spin states and the lattice positions by starting from the HS state (all spins equal to +1
and all bond lengths equal to RHH

0 ). The obtained results at T = 27 K are first summarized
in Figure 9a which displays the temporal evolution of the HS fraction, nHS = n+ (blue
curve) and the two points nn correlation q = n+− + n−+ (red curve) along the relaxation
process. First of all, we see that the system switches from HS to a full LS state, which
means that at 27 K, the LS state is the stable phase. In addition, the shape of both relaxation
curves depicts the existence of three regimes along the transition process, with the presence
of a clear plateau (between points B and E) and finally a sigmoidal relaxation to the LS
state. The first rapid regime, between points A and B on the HS and HS-LS fraction curves,
corresponds to the relaxation from the unstable HS state to the “metastable” intermediate
state (the plateau). During this regime the HS fraction switches from 1 to ∼ 0.6, while
the parameter q behaves in an explosive way and almost reaches its maximum value in
a very short time, indicating that this first regime is mainly controlled by the short-range
correlations. Then follows a slow relaxation regime from this states towards a plateau
regime for both order parameters. This intermediate regime is found for other relaxations
performed at different temperatures, as displayed in Figure 9b. This transient phase shows
a very characteristic self-organization of the spin states under the form of interpenetrated
stripes. This fact is supported by the corresponding snapshots of Figure 9c depicting the
spins organization along the relaxation process. The self-organization concerns first the LS
phase and starts around nHS ∼ 0.6 leading to highly ordered small LS chains completely
surrounded by HS sites. The fact that these configurations are less disordered than those of
Figure 6(c3) is due to low value of temperature (27 K) at which they are formed, and for
which less fluctuations perturb the system, in comparison with those of Figure 6(c3).
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Figure 9. (a) Isothermal relaxations from the unstable HS state at fixed temperature T = 27 K for the order parameters
nHS(t) = n+(t) (blue curve) and q(t) = q = n+−(t) + n−+(t) (red curve) showing the existence of three regimes along the
relaxation process, (b) at several fixed temperature values, T = 10, 20, 27, 30, 40 and 50 K, located in the plateau region of
Figure 6(c3). All curves show two-regimes along the relaxation process to the LS state, which is identified as the true stable
state of the system. The existence of a plateau in the relaxation process indicates the reminiscence of the thermally-induced
two-step transition of Figure 6(a3). (c) Corresponding snapshots showing the occurrence of pattern formation along the
relaxation in the plateau regime for T = 27 K, confirming the strong attractor character of the self-organized stripped
patterns of Figure 6(c3). The model parameter values are the same as those of Figure 6.

Finally, to check the strong attractor nature of this striped self-organized state, we have
performed several MC simulations of relaxation from HS to LS at different temperatures,
situated in the interval 10–50 K, in the plateau region. For all of them, we recorded
the temporal evolution of the number of N+ sites and Q = (N+− + N−+) sites, whose
corresponding probabilities, nHS = n+(t) =

N+(t)
N and q(t) = Q(t)

zN/2 are considered here as
the relevant system’s order parameters. Then we plotted in Figure 10 the system’s behavior
in the phase space (nHS(t), q(t)). It is remarkable that all these flow diagrams lead to the
same trajectory of the system in its phase space, leading to a single universal behavior,
indicating that all these relaxations go through similar self-organized structures.
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Figure 10. Flow diagrams in the 2-macrovariable phase space (nHS, q), obtained from the relaxation
of the HS fraction (Figure 9a,b) from a full HS spin state at different temperatures located in the
plateau region of Figure 6(a3), corresponding to RHL

0 = 1.1336. The curves show a perfect matching,
except for the curve at T = 10 K. Comparison to the equilibrium trajectory (red line) which depicts
q(T) vs. nHS(T), where T is the temperature, during its phase transition on cooling (Figure 6(a3)),
showing a perfect overlapping, indicating that during the temporal relaxation from HS to LS, the
system follows the local equilibrium path. The black dashed line depicts the expected system’s
behavior for a random distribution of HS-LS species, or in mean-field approach, obeying to the
equation n+− = n+(1− n+). The letters S, M and U stand for Stable, Metastable and Unstable states.
See text for more explanations.

Moreover, we reported in Figure 10 by the red curve the equilibrium path (nHS(T), q(T)),
obtained from the thermal-dependence of the cooling branch of Figure 6(a3). We see that
except the case T = 10 K, which departures in the first regime, all other curves of the flow
diagram (nHS(t), q(t)) started form the HS state at different temperatures clearly overlap
and match with that of the thermal transition. This means that during the relaxation, the
systems follows adiabatically the local equilibrium behavior, thus confirming again the
strong attractor of the striped configuration.

On the other hand, if one considers a random distribution (or mean-field) of the spin
states, then the simple relation connecting n+(t) and n+−(t) is n+− = n+(1− n+). In
the phase space, (nHS, q) this leads to the parabola given by the black dashed line in
Figure 10 which undoubtedly results in a different trajectory. A meticulous inspection
of the mean-field curve shows that the latter matches quite well with that of the various
system’s trajectories obtained with MC simulations. The agreement is quite good in the
region nHS ∈ [1, 0.85], which corresponds to low values of LS fractions, which means that
in this region the LS species appear randomly in the lattice. However, beyond this point,
one sees clearly the presence of a departure between the two sets of curves due to the
existence of short-range correlations between the LS species which start to self-organize in
the form of strings. This disagreement persists and becomes more and more evident as the
relaxation process advances. It reaches a maximum in the plateau region, corresponding to
interval values nHS ∈ [0.2, 0.6], where the system self-organizes.

In the second part of these investigations, we check the robustness of the attractor
found in Figure 10. For that, we prepare the system at T = 27 K in different initial spin
configurations, corresponding to different values of n+−(t = 0) and n+(t = 0), with bond
length distances equal to those of HS and we relax it from these states to the LS state.
Several situations were considered, like mixed phases of HS and LS domains with for each
situation, Monte Carlo simulations are performed on both spin states and positions until
reaching the unique stable LS state (n+ = 0, n+− = 0). Again, as summarized in Figure 11,
we found that whatever the chosen initial state in the phase space, all trajectories converge
to the system’s trajectory with a full HS initial state (black curve) which was already found
(in Figure 10) that it matches that of the local equilibrium path. It is worth emphasizing
the remarkable feature of trajectories of Figure 11, which occur in two steps: (i) first, the
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system reaches the “parabola”, with a short range parameter (n+−) which sizably varies
compared to n+ which adapts to the constraints, (ii) and then it reaches the nearest attractor
by joining the parabolic path. At this stage, the correlation parameter (n+−) and the HS
faction, n+, simultaneously vary. In addition, below n+ = 0.6, a remarkable linear relation
is established between n+ and n+−, which means that the evolution of the local probability
density n+− follows adiabatically the long-range parameter n+.
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Figure 11. Flow diagram depicting the kinetic behavior of the system at 27 K in the phase space
of macro-variables (nHS(t), q(t)) for isothermal relaxations initiated from various initial points,
corresponding to different spin configurations. The trajectories have a single attractor, S, and all of
them tend to join the local equilibrium curve (black line).

Incomplete Spin Transition

In the extreme case where RHL
0 = RHH

0 = 1.2 (Figure 12) a very high plateau of the HS
fraction, is obtained on cooling, from the HS state. Figure 12a shows that in the plateau
region, the HS fraction reaches the value, nHS = 0.7, while the corresponding average
bond length (Figure 12b) remains unchanged, < r > ' 1.2 nm, overall the temperature’s
interval of the study. It is interesting to notice that the analysis of the distribution of
unit cell configurations (H4, H3L1, H2L2, H1L3, L4), whose histogram is presented in the
inset of Figure 12b, indicates that at low temperature, 80% of the unit-cells contain 3HS
lattices and 1 LS lattice, and almost 20% of the remaining unit cells contain 2HS and 2LS
atoms. According to these macroscopic information, the HS fraction nHS can be evaluated
to 0.8 × 3

4 + 0.2 × 1
2 which gives exactly, nHS = 0.7, in excellent agreement with data

of Figure 12a.
It is worth mentioning that starting the simulation from the LS state leads (see inset of

Figure 12a) to observe a “stable” LS state over a wide temperature range and subsequent
sharp LS to HS transition on heating at ∼ 180 K, accompanied with a formation of single
domains (not shown here), propagating from the corner towards the center, without any
self-organization of the spin states.

The analysis of the associated snapshots (self-organization) has shown here a different
type of self-organization, made of alternate HS strings and antiferro-like strings in both
directions. In a perfectly ordered case, this structure leads to nHS = 3/4, which is quite
close to the value nHS = 0.7, found in the simulations, indicating the existence of 5% of
additional LS species which also aggregates in the form of 1D clusters as, we can see in
panel E of snapshots of Figure 12c.
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Figure 12. Thermal-dependence of (a) HS fraction and (b) average lattice bond length for RHL
0 = RHH

0 = 1.2 nm.
Bottom: (c) selected snapshots (TA = 200 K, TB = 120 K, TC = 81 K, TD = 45 K, TE = 0 K) of the corresponding lattice
organization on cooling. Red and blue dots represent HS and LS sites, respectively. Remark the coexistence of two-types of
sublattices, characterized by alternate ferro HS and antiferro HS-LS strings in snapshots D and E (plateau region), which is
the signature of symmetry breaking.

Analysis of the Snapshots: Evidence of Self-Organization and Symmetry Breaking

The corresponding snapshots giving the spatial distribution of the spin states along
this process are summarized in Figure 12c. They clearly evidence the existence of a
self-organization of the spin states on cooling, when approaching the incomplete state
at low-temperature of HS fraction, nHS = 3/4. In the simulations, we found that for
RHL

0 ≥ 1.14, the snapshots show the presence of strings in the x and y directions containing
alternate ferro and anti-ferro phases mixed with small LS domains, forming a macroscopic
labyrinth structure. This spatial organization of the spin states is accompanied by slight
deformations of the lattice which vanishes when the equilibrium distance parameter, RHL

0 ,
becomes close to RHH

0 . When we look into the details of the macroscopic distribution, we
remark that these alternate F and AF strings tend to form special configurations of the
unit cells. For RHL

0 = 1.14 for example (not shown here) we noticed the presence of a big
domain of unit cells H2L2 and H3L. When we increase the value of RHL

0 the proportion of
the configuration H2L2 decreases while those of H3L increases. Thus, for RHL

0 = 1.2, the
configuration of the unit cell H3L (∼ 70%) representing 3/4 of the fraction of the HS clearly
dominate in the lattice, as we see in the distribution curve of the unit cell configurations
depicted in the inset of Figure 12b. Here again, and similarly to Figure 8 for RHL

0 = 1.1336,
when we consider two sublattices A and B related to these alternate ferro and antiferro
chains along x and y directions (snapshots E), one clearly evidences the presence of a
symmetry breaking.

Residual HS Fraction

To understand the origin of the residual HS fraction appearing at low-temperature, we
perform MC simulations at 0 K, using the equilibrium HS− LS distance parameter, RHL

0 ,
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as a control parameter. We also perform analytical investigations on the energy barriers
between the HS and LS in order to explain the behavior of the obtained MC data. The
simulations as realized as follows: we initially prepare the lattice in the HS state from both
spin and bond lengths distances (Si = 1 ∀ i = 1, N and rij = RHH

0 ). Then MC simulations
on the spin and lattice degrees of freedom are realized by varying RHL

0 values, in the range
1 to 1.2 nm, with steps ∆RHL

0 ≈ 0.01. For each RHL
0 value, we realize 3000 Monte Carlo

steps to reach the equilibrium followed with 2000 MCS for the statistics, from which we
calculate the average HS fraction and nn lattice bond length, minimizing the total energy
of the lattice. The results are summarized in Figure 13a,b.
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HS− LS distance parameter, RHL
0 , obtained by the Monte Carlo simulations. The inserts depict the power law dependence

of the residual HS fraction and average nn distance between 1.1 to 1.2 nm.

Figure 13a,b show that when we change RHL
0 values from 1.0 nm (that of LS state) to

1.1 nm, with intervals of 0.01 nm. At each RHL
0 value, we realize 3000 Monte Carlo steps to

reach the equilibrium and 2000 MCS for averaging. The residual fraction of the HS state
decreases from the maximum value, nHS(T = 0 K) = 1 to reach nHS(T = 0 K) = 0 for
RHL

0 = 1.095 with a singularity. In the same interval, the average nn bond length decreases
following a similar trend as that of nHS and reaches the value, < r >0 = 1, confirming
that system switches from HS to LS as a function of RHL

0 . The HS fraction (resp., average
nn bond lengths) stays equal to 0 (resp., 1.0) in the interval 1.095 < RHL

0 < 1.134 and
starts to increase again in a singular way to reach the value, nHS = 0.7 and < r >0 ' 1.2
for RHL

0 = 1.2 as we found in Figure 12a,b. The insets of Figure 13a,b show that in the
region 1 < RHL

0 < 1.2, both HS fraction and lattice parameter follow a power-law function,
A
(

RHL
0 − R∗

)α as a function of RHL
0 , as clearly confirmed by the linear behavior of ln(nHS)

and ln(< r >0).

3.2. Case RHL
0 ≤ R: Appearance of an Intermediate Plateau on Heating Only

Now, we investigate the situation where the equilibrium distance RHL
0 decreases

towards RLL
0 . To facilitate the elastic relaxation of the lattice, we start the simulations

from the LS state by fixing all spin states to Si = −1 and all nn bond lengths distances
equal to RLL

0 . Then, we monitor RHL
0 values in the range 1–1.1 nm, corresponding to

the interval
[

RLL
0 , RHH

0 +RLL
0

2

]
. The obtained results of the thermal-dependence of the

HS fraction are summarized in Figure 14(a1,a2) for RHL
0 = 1.0 and 1.09 nm, respec-

tively. Their corresponding thermal-dependence of the average nn bonds are presented
in Figure 14(b1,b2).



Symmetry 2021, 13, 828 24 of 29Symmetry 2021, 13, x FOR PEER REVIEW 25 of 31 
 

 

  

 

  

Symmetry 2021, 13, x FOR PEER REVIEW 26 of 31 
 

 

 

Figure 14. Thermal-dependence of the (a1,a2) HS fraction, (b1,b2) average distance parameter and (c1,c2) selected snap-

shots for the equilibrium HS-LS distance parameter, 𝑅0
𝐻𝐿 < �̅�. Note the open hysteresis cycle with a plateau on heating 

when 𝑅0
𝐻𝐿 is close to 𝑅0

𝐿𝐿. 

Let us first consider the case where 𝑅0
𝐻𝐿 = 1.0, for which Figure 14a1 shows that on 

heating from LS state, the HS fraction stays equal to zero (LS state) until, 𝑇~60 K. Beyond 

this value, the HS fraction increases slowly indicating the occurrence of a plateau region. 

This plateau persists until 𝑇 ∼ 180 K. It is worth mentioning that in all this region, the 

average bond length, < 𝑟 > (see Figure 14b1) stays almost constant, due to the choice, 

𝑅0
𝐻𝐿 = 𝑅0

𝐿𝐿. Indeed, in all this thermal interval, the switching of LS sites mainly produces 

HS-LS pairs and only few HS-HS pairs, as well indicated in the inset of Figure 14a1 show-

ing the thermal dependence of the occupancy of pair probabilities. Here, the HS-HS pair 

probability remains negligible until 100 K, while that of HS-LS pairs start to increase be-

yond 60 K, in phase with the HS fraction. This explains the delay in the thermal behavior 

of < 𝑟 > compared to that of 𝑛𝐻𝑆, which is also displayed in the inset of Figure 14b1, re-

porting the system “trajectory” in its phase space (𝑛𝐻𝑆, < 𝑟 >), where we can identify the 

existence of two regimes in the LS to HS transition. Figure 14b1 indicates that beyond  𝑇 =

180 K, the average bond length suddenly increases to reach 1.2 nm and the HS fraction 

similarly shows a sharp increase. This behavior is fully consistent with the thermal-de-

pendence of HS-HS pairs. On cooling from the HS state, the system stays trapped in the 

HS state due to the large elastic energy barrier resulting from the creation of a LS site 

inside the HS phase. Indeed, the total energy barrier is given by Δ𝐸 = 4(𝐴0
𝐻𝐿 +

2𝐵0
𝐻𝐿)(𝑅0

𝐻𝐿 − 𝑅0
𝐻𝐻)2 = 4(𝐴0

𝐻𝐿 + 2𝐵0
𝐻𝐿)𝛿𝑅

2 which is maximum. As clearly evidenced in the 

snapshots, in all plateau region, the spin state transformation is accompanied with a neg-

ligible lattice distortion. 

In the corresponding snapshots, we see clearly that, in the plateau region, the HS 

transformation starts from the center under the form of multi-droplets or small HS clus-

ters, which rapidly transform to labyrinth networks (snapshots C and D) which subsist 

over all the plateau region, before to disappear when the system reaches the HS state. 

Incidentally, it is interesting to notice that the transition from the plateau to the final HS 

state starts from the corner as evidenced in snapshot D. 

When we increase the value of 𝑅0
𝐻𝐿, the plateau disappears progressively due to the 

long-range nature of the local field interactions. For the case, 𝑅0
𝐻𝐿 = 1.09, the nucleation 

starts from the corners (snapshot B) and the transformation is accompanied with a strong 

lattice deformation (snapshot C). 

Figure 14. Thermal-dependence of the (a1,a2) HS fraction, (b1,b2) average distance parameter and (c1,c2) selected snapshots
for the equilibrium HS-LS distance parameter, RHL

0 < R. Note the open hysteresis cycle with a plateau on heating when
RHL

0 is close to RLL
0 .
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Let us first consider the case where RHL
0 = 1.0, for which Figure 14(a1) shows that

on heating from LS state, the HS fraction stays equal to zero (LS state) until, T ∼ 60 K.
Beyond this value, the HS fraction increases slowly indicating the occurrence of a plateau
region. This plateau persists until T ∼ 180 K. It is worth mentioning that in all this
region, the average bond length, < r > (see Figure 14(b1)) stays almost constant, due
to the choice, RHL

0 = RLL
0 . Indeed, in all this thermal interval, the switching of LS sites

mainly produces HS-LS pairs and only few HS-HS pairs, as well indicated in the inset
of Figure 14(a1) showing the thermal dependence of the occupancy of pair probabilities.
Here, the HS-HS pair probability remains negligible until 100 K, while that of HS-LS
pairs start to increase beyond 60 K, in phase with the HS fraction. This explains the
delay in the thermal behavior of < r > compared to that of nHS, which is also displayed
in the inset of Figure 14(b1), reporting the system “trajectory” in its phase space (nHS,
< r >), where we can identify the existence of two regimes in the LS to HS transition.
Figure 14(b1) indicates that beyond T = 180 K, the average bond length suddenly increases
to reach 1.2 nm and the HS fraction similarly shows a sharp increase. This behavior is fully
consistent with the thermal-dependence of HS-HS pairs. On cooling from the HS state,
the system stays trapped in the HS state due to the large elastic energy barrier resulting
from the creation of a LS site inside the HS phase. Indeed, the total energy barrier is
given by ∆E = 4

(
AHL

0 + 2BHL
0
)(

RHL
0 − RHH

0
)2

= 4
(

AHL
0 + 2BHL

0
)
δ2

R which is maximum.
As clearly evidenced in the snapshots, in all plateau region, the spin state transformation is
accompanied with a negligible lattice distortion.

In the corresponding snapshots, we see clearly that, in the plateau region, the HS
transformation starts from the center under the form of multi-droplets or small HS clusters,
which rapidly transform to labyrinth networks (snapshots C and D) which subsist over all
the plateau region, before to disappear when the system reaches the HS state. Incidentally,
it is interesting to notice that the transition from the plateau to the final HS state starts from
the corner as evidenced in snapshot D.

When we increase the value of RHL
0 , the plateau disappears progressively due to the

long-range nature of the local field interactions. For the case, RHL
0 = 1.09, the nucleation

starts from the corners (snapshot B) and the transformation is accompanied with a strong
lattice deformation (snapshot C).

On the other hand, on cooling from HS state, the lattice remains blocked in the HS
state ( nHS(0 K) ∼ 1) for RHL

0 = 1.0, except for RHL
0 = 1.09 where an emerging HS to LS

transformation starts from the corners (see snapshots H and I) leading to ( nHS(0 K) ∼ 0.9)
but the temperature is already too low, and the transformation cannot continue due to
the MC kinetics. The analytical calculations of the energy barrier when the system goes
from HS to LS at T = 50 K for RHL

0 = 1.0 gives ∆EHS→LS (T = 50 K) ∼ 5.5 103K which is
higher than the electronic energy gain −2∆ = −900 K corresponding to spin flip from HS
to LS at low-temperature.

4. Conclusions

In conclusion, we have investigated the physical conditions allowing the emergence
of unsymmetrical thermal hysteresis in spin-crossover materials, using a simple elastic
model including the interactions between the molecules’ spin states and the lattice. The
model developed here is based on the general genuine electro-elastic model designed for
2D square lattices for which nn and nnn and equilibrium distances and elastic constants
parameters depend on the spin states of the connected sites. The interaction between the
sites goes through the local volume changes accompanying the spin state changes between
LS and HS. This volume change naturally produces competing short- (antiferro) and long-
range ferroelastic interactions, which may lead in particular situations to the emergence of
self-organization of the spin state, driven by the structure. In most of the previous studies,
the equilibrium distance (denoted, RHL

0 ) between a HS and a LS nearest-neighbors is simply

taken as equal to the average distance (R =
RHH

0 +RLL
0

2 ) between the equilibrium distances
of HS-HS (RHH

0 ) and LS-LS (RLL
0 ) configurations. Here, we demonstrate that by tuning the
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value of RHL
0 between these two quantities leads to unexpected results. Indeed, while for,

RHL
0 = R =

RHH
0 +RLL

0
2 , usual symmetric thermal hysteresis with widths depending on the

misfit ∆R = RHH
0 − RLL

0 are recovered. In contrast, when RHL
0 becomes smaller or bigger

than, R, asymmetrical thermal hysteresis, with a plateau only in one branch, emerge from
the simulations. It is interesting to notice that in most of the models developed for SCO
materials, when a plateau appears on heating, another plateau also exists on cooling, while
here we could discriminate between both processes thanks to an adapted elastic frustration
that plays only on cooling or on heating. Indeed, tuning the lattice bond length for the
HS-LS configuration, generates a selective antiferro-elastic interaction which acts on the
LS to HS transition when RHL

0 < R or on the HS to LS transition when, RHL
0 > R. This

effect was possible, because this model considers that the instantaneous distance between
two SCO sites (Si, Sj) does not depend only of the sum (Si+Sj) of the connected fictitious
spins but also on their product through the relation, R0

(
Si, Sj

)
= ρ0 + ρ1

(
Si + Sj

)
+ ρ2SiSj,

where the factor, ρ2 =
R−RHL

0
2 , changes its sign from both sides of R.

The analysis of the spin states configurations of the lattice along the cooling and
heating of the same thermal hysteresis branches showed different type of nucleation
and growth modes related to the different of shapes of the two branches. Thus in the
case of RHL

0 < R, the thermal hysteresis branch on cooling, which does not display
any plateau, shows a single domain nucleation process starting from the corners. In
contrast, the nucleation of the HS phase on heating shows a very different behavior: the
HS domains appears everywhere in the lattice as large domains surrounded by ramified
and interpenetrated LS strings, forming closed loops. A similar behavior is also observed
in the cooling branch for, RHL

0 > R. The asymmetrical character of the thermal hysteresis
is then much deeper than the simple fact of different shapes of the heating and cooling
branches of the curves of the HS fraction but also concerns the difference of microscopic
organization of the spin states and their interactions along these two branches belonging
to the same thermal hysteresis. Indeed, this organization in the form of ramified stripes
has been largely discussed in the case of RHL

0 = 1.1336, which showed a wide plateau
on cooling. The analysis of the lattice into alternate 1D horizontal and vertical A and B
sublattices (stripes) with their own order parameters demonstrated the occurrence of a
symmetry breaking in this region. Indeed, while sublattices A and B are equivalent in HS
and LS phases, their order parameters clearly show a bifurcation in the plateau region,
with the presence of partially-ordered phase. In addition, the calculations of the probability
density for a site to belong to a chain has shown that in the plateau region, minority species
tend to be in a chain. Finally, the study of the time and temperature-dependences of
the relevant parameter q = n+− + n−+ and its behavior in the flow diagram highlights
the strong attractor nature of the striped configuration as well as the “local equilibrium”
character of the low-temperature HS to LS relaxation processes. Overall, these facts are
interesting from the fundamental point of view since the energy landscape of the system
depends on the transformation pathway, which leads to bistable materials having different
physical properties according to the branch of the hysteresis, which is visited.
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