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1. Introduction

Ulam stability (also known as Hyers–Ulam or Ulam–Hyers stability) concerns the
following problem: how much does an approximate solution of an equation differ from a
solution to the equation? More information on this is provided in the next two sections.
Here, let us only mention that Ulam stability has become a very popular field of research,
and we refer the reader to [1–3] for information on the background and the methods
commonly used in it. One such method is that of the Banach limit, and in this paper, we
show how to increase its utility.

Let us recall that the notion of the Banach limit was motivated by the observation that
every convergent sequence of real numbers is bounded, but, unfortunately, the converse
statement is not true. Over the years, mathematicians have tried to extend the notion of the
limit to larger families and, preferably, to apply it to the space of all bounded sequences.
In the early twentieth century, the Lwów school of mathematics provided a tool (now
called the Banach limit) that made this possible. Namely, in the memorial book of the
first Congress of Polish Mathematicians (7–10 September 1927), Mazur [4] (p. 103) stated
the following:

Theorem 1 (S. Mazur). There exists a linear functional f on the space of all bounded sequences
such that:

(a) f ((an)n∈N) = f ((an+1)n∈N);
(b) f ((an)n∈N) ≥ 0, if an ≥ 0 for all n ∈ N;
(c) f ((1)n∈N) = 1.

Moreover, he noticed that this functional f is continuous and

f ((an)n∈N) = lim
n→∞

an

for every convergent sequence (an)n∈N. The proof of this result, based on the Hahn–Banach
theorem, was published in Banach’s monograph [5].

Thus, there exists a functional called the Banach limit and usually denoted by LIM,
which can be applied to the bounded real sequences as a substitute for the limit opera-
tion. The functional is linear, shift invariant and positive, but not unique (because of the
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application of the Hahn–Banach theorem in the proof). The lack of uniqueness means
that, generally, the Banach limit of a sequence is not defined unequivocally. However,
there are non-convergent sequences for which the Banach limit is uniquely determined
(such sequences are called almost convergent). For example, if an = (−1)n for n ∈ N, then
(an)n∈N + (an+1)n∈N = (0)n∈N and, therefore, we obtain

2LIM((an)n∈N) = LIM((an)n∈N) + LIM((an+1)n∈N)

= LIM((an)n∈N + (an+1)n∈N) = LIM((0)n∈N) = 0.

Thus, for any Banach limit, we have LIM((−1)n
n∈N) = 0. Generally we can show

that the Banach limit of a bounded periodic sequence is the average value of the period of
this sequence.

Further, the Banach limit is not a multiplicative functional. In fact, if as before
an = (−1)n for n ∈ N, then LIM((an)n∈N) = 0, and, consequently, we have

LIM((an)n∈N · (an+1)n∈N) = LIM((−1)n∈N)

= −1 6= 0 = 0 · 0 = LIM((an)n∈N) · LIM((an+1)n∈N).

In this article, we denote traditionally by `∞ the space of all bounded real sequences
(with the supremum norm); c means the space of all convergent real sequences, and LIM
stands for the Banach limit, that is for a linear functional defined on the space `∞ and
satisfying the following two conditions:

inf{an : n ∈ N} ≤ LIM
(
(an)n∈N

)
≤ sup{an : n ∈ N} (1)

and
LIM

(
(an+k)n∈N

)
= LIM

(
(an)n∈N

)
, (2)

for all (an)n∈N ∈ `∞ and k ∈ N.
It is not difficult to show that this definition is equivalent to that given in Theorem 1

(with f = LIM). Namely, first note that (a) follows from (2) (with k = 1) and (b) and (c)
result from (1). Conversely, by an easy induction, we can derive (2) from (a). Further,
assume that (b) and (c) are valid and take (cn)n∈N ∈ `∞. Write ι := inf{cn : n ∈ N} and
σ := sup{cn : n ∈ N}. Then cn − ι ≥ 0 and σ − cn ≥ 0 for each n ∈ N, whence by the
linearity of LIM, (b), and (c)

LIM
(
(cn)n∈N

)
− ι = LIM

(
(cn − ι)n∈N

)
≥ 0,

σ− LIM
(
(cn)n∈N

)
= LIM

(
(σ− cn)n∈N

)
≥ 0,

which implies that
ι ≤ LIM

(
(cn)n∈N

)
≤ σ.

Thus, we have shown that (b) and (c) yield (1).
Note also that from (1) and (2) we obtain

lim inf
n→∞

an ≤ LIM
(
(an)n∈N

)
≤ lim sup

n→∞
an, (an)n∈N ∈ `∞, (3)

and consequently
LIM((an)n∈N) = lim

n→∞
an, (an)n∈N ∈ c.

The Banach limit has found applications in various areas of mathematics. The classical
results in the theory of it were obtained in [6,7]. Looking at the Banach limit as an invariant
mean defined on a space of bounded sequences, i.e., bounded functions defined on a set
of natural numbers, we recommend reading the papers of Badora, Ger, Páles [8], and
Kania [9] for a generalization of the notion of the Banach limit to the case of vector-valued
sequences (the first instance of such a generalization can probably be found in [10]). Let us
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also mention here that in the vector case, there are Banach spaces with no Banach limits
(a typical example is c0, that is, the space of all null sequences [11]). Further information on
the Banach limit and its applications can be found in surveys [12–14].

In this work, we focus our attention on the stability of the Cauchy additive
functional equation

F(x + y) = F(x) + F(y) (4)

and the linear functional equation in a single variable

Φ( f (x)) = g(x)Φ(x) + h(x), (5)

where f , g, h are given functions and the function Φ is unknown.
Because Equation (4) is very well-known, we only refer the reader to monographs [2,15,16]

for further information on its solutions, applications, and stability. As for Equation (5), we
discuss it in more detail.

Continuous solutions of Equation (5) were intensively studied in the 1950s and 1960s,
and a summary of these investigations can be found in [17]. Further progress concerning
mainly monotonic, differentiable, and analytic solutions as well as of bounded variation
solutions of (5) was surveyed in [18]. To see the equation within dynamical context, one
can consult [19,20]. Let us mention some applications of the linear functional equations in
ergodic theory, probability theory (branching processes and doubly stochastic measures),
and differential equations, which were presented in [17,18]. Now, we pay attention to a
few important particular cases of Equation (5).

Equation (5) with f (x) = x + 1, g(x) = x and h(x) = 0 leads to the gamma
functional equation

Φ(x + 1) = xΦ(x), (6)

which is useful in some characterizations of Euler’s gamma function. One of them, the fa-
mous Bohr–Mollerup theorem, states that Euler’s gamma function Γ : (0, ∞) → (0, ∞)
is the only solution of Equation (6) such that Φ(1) = 1 and log Φ is convex (see, for in-
stance, [17,18]). The history of various definitions and characterizations of this function
(including a few with the use of (6)), also in the complex case, can be found in [21].

The next considerably important, especially in dynamical systems, special case of (5)
is the cohomological equation

Φ( f (x)) = Φ(x) + h(x). (7)

Some results with its monotonic solutions are described in books [17,18], whereas results
with its smooth and analytic systems are reported in [20]. As for dynamical systems,
Equation (7) has applications, among others, in smoothness of invariant measures and
conjugacies, mixing properties of suspended flows and rigidity of group actions (see [22],
where some criteria for the existence and regularity of solutions of the cohomological
equation, under the general assumption that f is an accessible and partially hyperbolic
diffeomorphism of a compact manifold, are also given). In Lyubich’s survey [23], the
cohomological equation is considered from the point of view of functional analysis and
dynamical systems, but its role in other areas of mathematics is also mentioned.

Let us finally consider two more particular cases of (5), i.e., the Schröder
functional equation

Φ( f (x)) = sΦ(x) (8)

and the Abel functional equation

Φ( f (x)) = Φ(x) + 1. (9)

They both appeared at the very beginning of complex dynamics (see [24] for the details)
and have been studied in various settings since then. As a lot of information about
solutions (in several classes) as well as applications (in dynamical systems and ergodic
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theory, probability theory, differential equations, and iteration theory) of these equations
can be found, for instance, in monographs [17,18,20] and survey [19], we mention only
some recent papers on this topic.

In [25], Equations (8) and (9) were applied to study one-parameter semigroups of
holomorphic mappings, and in [26] to provide some criteria for the embeddability of an
analytic function into a semigroup of analytic self-maps of the open unit disk.

On the other hand, monotonic solutions of Equation (8) were studied in Banach
spaces in [27], whereas continuous and smooth solutions of this equation in the case of
normed spaces were investigated in [28]. The Schröder equation in several variables was
considered in [29–34], and its regularly varying solutions, among others, in [35]. Let us
mention the connections between Equation (8) and a special class of Volterra integral
Equation [36], invariant measures of some one-dimensional chaotic maps [37], median
stable distributions [38], and iteration theory [39].

As for the Abel equation, its complex solutions were studied in [40,41], whereas
in [42], Equation (9) was investigated from functional analytic and operator theoretical
point of view.

2. Ulam Stability of the Linear Equation in a Single Variable

In this section, X always denotes a nonempty set and f : X → X, g, h : X → R
are given functions with g(X) ⊂ (0, ∞), unless clearly stated otherwise. Moreover, R+

stands for the set of nonnegative reals. We denote also by f n, where n is a nonnega-
tive integer, the nth iterate of f , i.e., f 0 = id (the identity function) and f n+1 = f ◦ f n

(function composition).
The following definition depicts the type of the Ulam stability that we apply in

this paper.

Definition 1. Let n ∈ N, C ⊂ R+
Xn

and D ⊂ RX be nonempty, T : C → R+
X, and F1,F2 :

D → RXn
. We say that the equation

F1 ϕ(x1, . . . , xn) = F2 ϕ(x1, . . . , xn) (10)

is T—stable if for any ε ∈ C and ϕ0 ∈ D satisfying the inequality

d
(
F1 ϕ0(x1, . . . , xn),F2 ϕ0(x1, . . . , xn)

)
≤ ε(x1, . . . , xn), x1, . . . , xn ∈ X,

there exists a solution ϕ ∈ D of Equation (10) with

d
(

ϕ(x), ϕ0(x)
)
≤ T ε(x), x ∈ X.

If C consists of all constant functions from R+
Xn

, and all elements of the set T (C) are
also only constant functions, then the T—stability is usually called Hyers–Ulam (or Ulam–
Hyers) stability. More information on such stability can be found in monographs [1–3] and
surveys [43–45].

The first Ulam stability result for Equation (5) (written in a somewhat modified form)
was proved by Baker [46] with a fixed point technique based on the Banach contraction
principle. Some of its generalizations were published in [47] (Theorems 2.1 and 3.1) (for
a particular case of (5)) and improved further by Trif [48] (Theorem 2.1) (cf. [49–54] for
related results). Now, we recall Trif’s result, because we refer to it in this section.

Theorem 2 ([48] (Theorem 2.1)). Let V be a Banach space over F ∈ {R,C}, a : X → F,
χ : X → V and η : X → R+ be such that 0 6∈ a(X) and

ρ(x) :=
∞

∑
j=0

η( f j(x))

∏
j
k=0 |a( f k(x))|

< ∞, x ∈ X. (11)
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If ϕ : X → V satisfies the inequality

‖ϕ( f (x))− a(x)ϕ(x)− χ(x)‖ ≤ η(x), x ∈ X, (12)

then there is a unique solution ϕ̃ : X → V to the equation

ϕ̃( f (x)) = a(x)ϕ̃(x) + χ(x), x ∈ X, (13)

such that
‖ϕ(x)− ϕ̃(x)‖ ≤ ρ(x), x ∈ X. (14)

Let us mention here that some studies of condition (11) can be found in [52].
Next, note that in the case where V = R and F = R, inequality (12) may be rewritten as

− η(x) ≤ ϕ( f (x))− a(x)ϕ(x)− χ(x) ≤ η(x), x ∈ X. (15)

We show that in such case, an analogous result can be obtained with the Banach limit
technique also if a(X) ⊂ (0, ∞) and inequality (15) is replaced by

ξ(x) ≤ ϕ( f (x))− a(x)ϕ(x)− χ(x) ≤ η(x), x ∈ X (16)

with any function ξ : X → R such that ξ(x) ≤ η(x) for x ∈ X and the sequence(
ξ̂n(x)

)
n∈N, where

ξ̂n(x) :=
n−1

∑
j=0

ξ( f j(x))

∏
j
i=0 a( f i(x))

, n ∈ N, (17)

is bounded for x ∈ X.
Moreover, it is not necessary to assume that η has nonnegative values and, anal-

ogously as for ξ, condition (11) can be replaced by the boundedness of each sequence(
η̂n(x)

)
n∈N, where

η̂n(x) :=
n−1

∑
j=0

η( f j(x))

∏
j
i=0 a( f i(x))

, n ∈ N, (18)

which is a significantly weaker assumption for functions η that may take both negative
and positive values.

The following generalization of the real scalar version of Theorem 2 is the main result
of this section.

Theorem 3. Assume that ξ, η : X → R are such that the sequences
(
ξ̂n(x)

)
n∈N and

(
η̂n(x)

)
n∈N

given by

ξ̂n(x) :=
n−1

∑
j=0

ξ( f j(x))

∏
j
i=0 g( f i(x))

, η̂n(x) :=
n−1

∑
j=0

η( f j(x))

∏
j
i=0 g( f i(x))

, n ∈ N, (19)

are bounded for every x ∈ X. Let ψ : X → R be a function fulfilling the inequalities

ξ(x) ≤ ψ( f (x))− g(x)ψ(x)− h(x) ≤ η(x), x ∈ X. (20)

Then, the sequence (an(x))n∈N, given by

an(x) =
ψ( f n(x))

∏n−1
i=0 g( f i(x))

−
n−1

∑
k=0

h( f k(x))

∏k
j=0 g( f j(x))

, n ∈ N,
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is bounded for each x ∈ X and the function Ψ : X → R, defined by

Ψ(x) = LIM

( ψ( f n(x))

∏n−1
i=0 g( f i(x))

−
n−1

∑
k=0

h( f k(x))

∏k
j=0 g( f j(x))

)
n∈N

, x ∈ X, (21)

is a solution of Equation (5) such that

ξ̂(x) := lim inf
k→∞

ξ̂k(x) ≤ Ψ(x)− ψ(x) ≤ lim sup
k→∞

η̂k(x) =: η̂(x), x ∈ X. (22)

Moreover, if

inf
n∈N

η̂( f n(x))− ξ̂( f n(x))

∏n−1
i=0 g( f i(x))

= 0, x ∈ X, (23)

then such Ψ is unique.

Proof. Clearly, (20) can be written as

ξ(x) + g(x)ψ(x) ≤ ψ( f (x))− h(x) ≤ η(x) + g(x)ψ(x), x ∈ X. (24)

Note that this is the case n = 1 of the following inequalities

ψ(x) + ξ̂n(x) ≤ ψ( f n(x))

∏n−1
i=0 g( f i(x))

−
n−1

∑
j=0

h( f j(x))

∏
j
i=0 g( f i(x))

≤ ψ(x) + η̂n(x), x ∈ X. (25)

We show by induction with respect to n that (25) holds for every n ∈ N. Thus, assume
that (25) is fulfilled for a given n ∈ N and replace x by f n(x) in (24). Then, for every x ∈ X,
we have

ξ( f n(x)) + g( f n(x))ψ( f n(x)) + h( f n(x)) ≤ ψ( f n+1(x))

≤ η( f n(x)) + g( f n(x))ψ( f n(x)) + h( f n(x)),

whence

ξ( f n(x))
∏n

i=0 g( f i(x))
+

ψ( f n(x))

∏n−1
i=0 g( f i(x))

+
h( f n(x))

∏n
i=0 g( f i(x))

≤ ψ( f n+1(x))
∏n

i=0 g( f i(x))

≤ η( f n(x))
∏n

i=0 g( f i(x))
+

ψ( f n(x))

∏n−1
i=0 g( f i(x))

+
h( f n(x))

∏n
i=0 g( f i(x))

. (26)

Next, by (26) and (25) written in the form

ψ(x) +
n−1

∑
j=0

ξ( f j(x))

∏
j
i=0 g( f i(x))

+
n−1

∑
j=0

h( f j(x))

∏
j
i=0 g( f i(x))

≤ ψ( f n(x))

∏n−1
i=0 g( f i(x))

≤ ψ(x) +
n−1

∑
j=0

η( f j(x))

∏
j
i=0 g( f i(x))

+
n−1

∑
j=0

h( f j(x))

∏
j
i=0 g( f i(x))

,
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we obtain

ξ( f n(x))
∏n

i=0 g( f i(x))
+ ψ(x) +

n−1

∑
j=0

ξ( f j(x))

∏
j
i=0 g( f i(x))

+
n−1

∑
j=0

h( f j(x))

∏
j
i=0 g( f i(x))

+
h( f n(x))

∏n
i=0 g( f i(x))

≤ ψ( f n+1(x))
∏n

i=0 g( f i(x))

≤ η( f n(x))
∏n

i=0 g( f i(x))
+ ψ(x) +

n−1

∑
j=0

η( f j(x))

∏
j
i=0 g( f i(x))

+
n−1

∑
j=0

h( f j(x))

∏
j
i=0 g( f i(x))

+
h( f n(x))

∏n
i=0 g( f i(x))

,

which means that

ψ(x) +
n

∑
j=0

ξ( f j(x))

∏
j
i=0 g( f i(x))

+
n

∑
j=0

h( f j(x))

∏
j
i=0 g( f i(x))

≤ ψ( f n+1(x))
∏n

i=0 g( f i(x))

≤ ψ(x) +
n

∑
j=0

η( f j(x))

∏
j
i=0 g( f i(x))

+
n

∑
j=0

h( f j(x))

∏
j
i=0 g( f i(x))

,

that is

ψ(x) + ξ̂n+1(x) ≤ ψ( f n+1(x))
∏n

i=0 g( f i(x))
−

n

∑
j=0

h( f j(x))

∏
j
i=0 g( f i(x))

≤ ψ(x) + η̂n+1(x)

for every x ∈ X. We thus conclude that the required inequalities also are valid for n + 1,
which completes the inductive proof.

According to (25) the sequence(
ψ( f n(x))

∏n−1
i=0 g( f i(x))

−
n−1

∑
k=0

h( f k(x))

∏k
j=0 g( f j(x))

)
n∈N

is bounded for every x ∈ X. This means that we can define a function Ψ : X → R by (21).
It is easily seen that (3) yields

lim inf
n→∞

(
ψ( f n(x))

∏n−1
i=0 g( f i(x))

−
n−1

∑
k=0

h( f k(x))

∏k
j=0 g( f j(x))

)
≤ Ψ(x)

≤ lim sup
n→∞

(
ψ( f n(x))

∏n−1
i=0 g( f i(x))

−
n−1

∑
k=0

h( f k(x))

∏k
j=0 g( f j(x))

)
, x ∈ X.

Hence, by (25), Ψ satisfies inequalities (22).
Next, (2) and the linearity of LIM imply that

Ψ( f (x)) = LIM

( ψ( f n+1(x))
∏n

i=1 g( f i(x))
−

n

∑
k=1

h( f k(x))

∏k
j=1 g( f j(x))

)
n∈N


= g(x)LIM

( ψ( f n+1(x))
∏n

i=0 g( f i(x))
−

n

∑
k=0

h( f k(x))

∏k
j=0 g( f j(x))

)
n∈N

+ h(x)

= g(x)Ψ(x) + h(x), x ∈ X.
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This means that Ψ fulfils Equation (5).
The uniqueness of Ψ remains to be demonstrated. To do this, assume that (23) holds,

and Ψ0 : X → R is such that

Ψ0( f (x)) = g(x)Ψ0(x) + h(x), x ∈ X (27)

and
ξ̂(x) ≤ Ψ0(x)− ψ(x) ≤ η̂(x), x ∈ X. (28)

Then

ξ̂(x)− η̂(x) ≤ Ψ0(x)−Ψ(x) = (Ψ0(x)− ψ(x)) + (ψ(x)−Ψ(x))

≤ η̂(x)− ξ̂(x), x ∈ X,

whence
|Ψ0(x)−Ψ(x)| ≤ η̂(x)− ξ̂(x), x ∈ X. (29)

We show by induction that, for each n ∈ N,

|Ψ0(x)−Ψ(x)| ≤ η̂( f n(x))− ξ̂( f n(x))

∏n−1
i=0 g( f i(x))

, x ∈ X. (30)

The case n = 1 is easy, because, then, in view of (29), (5) and (27) we have

g(x) |Ψ0(x)−Ψ(x)| = |Ψ0( f (x))−Ψ( f (x))| ≤ η̂( f (x))− ξ̂( f (x))

and consequently

|Ψ0(x)−Ψ(x)| ≤ η̂( f (x))− ξ̂( f (x))
g(x)

.

Now, assume that (30) holds for a fixed n ∈ N. Then, replacing x with f (x) in (30), in view
of (5) and (27), for each x ∈ X we obtain

g(x) |Ψ0(x)−Ψ(x)| = |Ψ0( f (x))−Ψ( f (x))| ≤ η̂( f n+1(x))− ξ̂( f n+1(x))

∏n−1
i=0 g( f i+1(x))

,

which implies that

|Ψ0(x)−Ψ(x)| ≤ η̂( f n+1(x))− ξ̂( f n+1(x))
∏n

i=0 g( f i(x))
, x ∈ X.

In this way we have shown that (30) holds for every n ∈ N0, whence using (23), we
conclude that Ψ0 = Ψ, which ends the proof.

Remark 1. Let the sequences
(
ξ̂n(x)

)
n∈N and

(
η̂n(x)

)
n∈N, given by (19), be convergent for each

x ∈ X. Then

ξ̂(x) :=
∞

∑
j=0

ξ( f j(x))

∏
j
i=0 g( f i(x))

, η̂(x) :=
∞

∑
j=0

η( f j(x))

∏
j
i=0 g( f i(x))

, x ∈ X,

and consequently

ξ̂( f n+1(x))
∏n

i=0 g( f i(x))
=

∞

∑
j=n+1

ξ( f j(x))

∏
j
i=0 g( f i(x))

,

η̂( f n+1(x))
∏n

i=0 g( f i(x))
=

∞

∑
j=n+1

η( f j(x))

∏
j
i=0 g( f i(x))
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for any x ∈ X and n ∈ N, which means that condition (23) is valid. Therefore, in such a case, we
have the uniqueness of Ψ in Theorem 3.

Theorem 3 yields the following simple observation:

Corollary 1. Let ε : X → R be such that the sequence
(
ε̂n(x)

)
n∈N given by

ε̂n(x) =
n−1

∑
j=0

ε( f j(x))

∏
j
i=0 g( f i(x))

, n ∈ N (31)

is bounded for every x ∈ X. If a function ψ : X → R satisfies the equation

ψ( f (x)) = g(x)ψ(x) + h(x) + ε(x), x ∈ X,

then there exists a unique solution Ψ : X → R of Equation (5) such that

lim inf
n→∞

ε̂n(x) ≤ Ψ(x)− ψ(x) ≤ lim sup
n→∞

ε̂n(x), x ∈ X.

Proof. It is sufficient to use Theorem 3 with ξ = η = ε.

The following remark shows that the assumption in Theorem 3 on the boundedness
of the sequences defined by (19) cannot be omitted.

Remark 2. Let X ⊂ R, f (x) = x and g(x) = 1 for x ∈ X, h(X) ⊂ R+ and h(x0) 6= 0
for an x0 ∈ X. Let, moreover, ξ(x) = −h(x) and η(x) = 0 for x ∈ X. Then, every function
ψ : X → R fulfils

ξ(x) ≤ ψ(x)− ψ(x)− h(x) ≤ η(x), x ∈ X,

but Ψ(x0) 6= Ψ(x0) + h(x0), which means that the set of solutions of the equation

Ψ(x) = Ψ(x) + h(x), x ∈ X

is empty. Note that in this case, for any n ∈ N and x ∈ X, we have

ξ̂n(x) = nξ(x), η̂n(x) = 0,

so the sequence
(
ξ̂n(x0)

)
n∈N is unbounded from below.

We can argue analogously with h(X) ⊂ (−∞, 0], η(x) = −h(x) and ξ(x) = 0 for x ∈ X.
Then the sequence

(
η̂n(x0)

)
n∈N is unbounded from above.

The following two remarks provide examples of very simple applications of Theorem 3.

Remark 3. Let X = [1, ∞), p, q ∈ R+, p ≤ q, α, β ∈ (1, ∞), αq < β, c, d, δ ∈ (0, ∞), c ≤ d.
Let f (x) = αx, g(x) = β, ξ(x) = cxp and η(x) = dxq + δ for x ∈ X. Then, for any n ∈ N and
x ∈ X,

ξ̂n(x) =
n−1

∑
j=0

ξ( f j(x))

∏
j
i=0 g( f i(x))

= c
n−1

∑
j=0

(αjx)p

βj+1 =
c
β

n−1

∑
j=0

αpjxp

βj ,

η̂n(x) =
n−1

∑
j=0

η( f j(x))

∏
j
i=0 g( f i(x))

=
1
β

n−1

∑
j=0

dαqjxq + δ

βj ,

which means that

lim
n→∞

ξ̂n(x) =
cxp

β− αp , lim
n→∞

η̂n(x) =
dxq

β− αq +
δ

β− 1
, x ∈ X.
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Hence, by Theorem 3, for every function ψ : X → R fulfilling

cxp ≤ ψ(αx)− βψ(x)− h(x) ≤ dxq + δ, x ∈ X (32)

there exists a solution Ψ : X → R of the equation

Ψ(αx) = βΨ(x) + h(x)

such that

ξ̂(x) =
cxp

β− αp ≤ Ψ(x)− ψ(x) ≤ η̂(x) =
dxq

β− αq +
δ

β− 1
, x ∈ X.

Furthermore, by Remark 1, such Ψ is unique.
Note that if, for instance, p < q and β = αq, then (32) holds with ψ(x) ≡ xq and every

function h satisfying the inequality

−cxp ≥ h(x) ≥ −dxq − δ, x ∈ X.

Remark 4. Let m ∈ N be odd, X = R, α ∈ (1, ∞) and d, δ ∈ (0, ∞). Let f (x) = −αmx,
g(x) = α, ξ(x) = d m

√
x and η(x) = d m

√
x + δ for x ∈ X. Then, for any n ∈ N and x ∈ X,

ξ̂n(x) =
n−1

∑
j=0

ξ( f j(x))

∏
j
i=0 g( f i(x))

= d
n−1

∑
j=0

(−α)j m
√

x
αj+1

= d
n−1

∑
j=0

(−1)j m
√

x
α

= d
(1 + (−1)n−1) m

√
x

2α
,

η̂n(x) =
n−1

∑
j=0

η( f j(x))

∏
j
i=0 g( f i(x))

=
n−1

∑
j=0

d(−α)j m
√

x + δ

αj+1

= d
(1 + (−1)n−1) m

√
x

2α
+

n−1

∑
j=0

δ

αj+1 ,

whence, by Theorem 3, for every function ψ : X → R fulfilling

d m
√

x ≤ ψ(−αmx)− αψ(x)− h(x) ≤ d m
√

x + δ, x ∈ X, (33)

there exists a solution Ψ : X → R of the equation

Ψ(−αmx) = αΨ(x) + h(x)

such that

ξ̂(x) ≤ Ψ(x)− ψ(x) ≤ η̂(x), x ∈ X, (34)

where

ξ̂(x) =


0 if x ≥ 0;

d m
√

x
α

if x < 0;
η̂(x) =


d m
√

x
α

+
δ

α− 1
if x ≥ 0;

δ

α− 1
if x < 0.

Furthermore,

η̂( f n(x))− ξ̂( f n(x))

∏n−1
i=0 |g( f i(x))|

=
(d(−α)n m

√
x

α
+

δ

α− 1

) 1
αn , x ≥ 0, n ∈ N,
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η̂( f n(x))− ξ̂( f n(x))

∏n−1
i=0 |g( f i(x))|

=
( δ

α− 1
− d(−α)n m

√
x

α

) 1
αn , x < 0, n ∈ N,

whence, unfortunately, (23) does not hold, which means that we cannot deduce the uniqueness of Ψ
from Theorem 3 and we do not know if such Ψ is unique in this situation.

It is easily seen that analogous reasonings are valid if f (x) = m
√
−α x, g(x) = α, ξ(x) = dxm

and η(x) = dxm + δ for x ∈ X.

3. Ulam Stability of the Cauchy Equation

In this section, we consider the stability of the Cauchy functional equation

f (x + y) = f (x) + f (y). (35)

The first stability result for this equation was published by Hyers [55] in answer to a
question of Ulam (cf. [56]). A few years later Aoki [57] extended Hyers’ theorem in the
following way (the Aoki result with p = 0 gives the Hyers outcome).

Theorem 4. Let E1 and E2 be real normed spaces, E2 be complete, ε ≥ 0, p ∈ [0, 1) and f : E1 →
E2 be a mapping with

‖ f (x + y)− f (x)− f (y)‖ ≤ ε(‖x‖p + ‖y‖p), x, y ∈ E1. (36)

Then, there is a unique additive (i.e., satisfying Equation (35)) mapping T : E1 → E2 such that

‖ f (x)− T(x)‖ ≤ 2ε

2− 2p ‖x‖
p, x ∈ E1. (37)

Nearly thirty years later, Rassias [58] independently published a result resembling
that of Aoki, but for linear mappings. Next, he noticed that a similar reasoning (as for
Theorem 4) also works for p < 0, and Gajda [59] proved an analogous result for p > 1, at
the same time providing an example that for p = 1, it is not possible.

In 1994, Găvruta [60] published a generalization of the Aoki and Rassias results
replacing (36) with a more general inequality

‖ f (x + y)− f (x)− f (y)‖ ≤ ϕ(x, y). (38)

Namely, he proved the following.

Theorem 5. Assume that (H,+) is an abelian group, V is a Banach space, and φ : H2 → [0, ∞) fulfils

φ̃(x, y) :=
1
2

∞

∑
n=0

2−nφ(2nx, 2ny) < ∞, x, y ∈ H.

If f : H → V satisfies (38) for any x, y ∈ H, then there is a unique additive h : H → V with
‖ f (x)− h(x)‖ ≤ φ̃(x, x) for each x ∈ H.

We should also mention here that a result more general than Theorem 5 was obtained
much earlier in [61].

We refer the reader to [1–3,62] for further information concerning the stability of
Equation (35). Various pieces of information on solutions to this equation can be found
in [15,16].

Below, using the Banach limit approach, similarly as in the previous section, we prove
a generalization of Theorem 5, but only for functions taking real values. We use in it the
notion of a square symmetric groupoid.

Let us recall that a groupoid (G, ?) is square symmetric if

x2 ? y2 = (x ? y)2, x, y ∈ G, (39)
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where x2 := x ? x (cf. Remark 5 and [63]). In some situations, for the sake of simplicity
of notation (as in the subsequent theorem), it is convenient to denote the operation in the
groupoid by the symbol + (without assuming its commutativity), and then condition (39)
can be rewritten as

2x + 2y = 2(x + y), x, y ∈ G, (40)

where 2x := x + x. It is easy to prove by induction that

2nx + 2ny = 2n(x + y), x, y ∈ G, n ∈ N0, (41)

where 20x := x, 2n+1x := 2(2nx + 2nx) for x ∈ G and n ∈ N0.

Theorem 6. Let (G,+) be a square symmetric groupoid, D ⊂ G be nonempty, 2D := {2x : x ∈
D} ⊂ D, A, B : D2 → R be such that

lim inf
n→∞

B(2nx, 2ny)
2n = 0, lim sup

n→∞

A(2nx, 2ny)
2n = 0, x, y ∈ D, (42)

and the sequences (An(x))n∈N and (Bn(x))n∈N, where

An(x) =
n−1

∑
j=0

A(2jx, 2jx)
2j+1 , Bn(x) =

n−1

∑
j=0

B(2jx, 2jx)
2j+1 , n ∈ N, x ∈ D, (43)

be bounded for every x ∈ D. If ψ : D → R satisfies

B(x, y) ≤ ψ(x + y)− ψ(y)− ψ(x) ≤ A(x, y), x, y ∈ D, x + y ∈ D, (44)

then the sequence
(
an(x)

)
n∈N, where

an(x) :=
ψ(2nx)

2n , n ∈ N, x ∈ D, (45)

is bounded for every x ∈ D and the function Ψ : D → R, given by

Ψ(x) := LIM
(
(an(x))n∈N

)
, x ∈ D, (46)

is a solution of the conditional Cauchy functional equation

Ψ(x + y) = Ψ(x) + Ψ(y), x, y ∈ D, x + y ∈ D, (47)

with

β(x) := lim inf
k→∞

Bk(x) ≤ Ψ(x)− ψ(x) ≤ lim sup
k→∞

Ak(x) =: α(x), x ∈ D. (48)

Moreover, if

inf
n∈N

α(2nx)− β(2nx)
2n = 0, x ∈ D, (49)

then Ψ : D → R is the unique solution to (47) such that (48) is valid.

Proof. Taking x = y in (44), we get

B(x, x) ≤ ψ(2x)− 2ψ(x) ≤ A(x, x), x ∈ D. (50)

According to Theorem 3 with X = D, ξ(x) = B(x, x), η(x) = A(x, x), f (x) ≡ 2x, g(x) ≡ 2
and h(x) ≡ 0, the sequence

(
an(x)

)
n∈N defined by (45) is bounded for every x ∈ D, and

the function Ψ : D → R, given by (46), fulfils inequalities (48).
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Note that

Ψ(x + y)−Ψ(y)−Ψ(x) = LIM
(
(an(x + y)− an(y)− an(x))n∈N

)
,

x, y ∈ D, x + y ∈ D, (51)

and according to (44) and (41) we have

B(2nx, 2ny)
2n ≤ an(x + y)− an(y)− an(x)

=
ψ(2n(x + y))

2n − ψ(2ny)
2n − ψ(2nx)

2n

=
ψ(2nx + 2ny)

2n − ψ(2ny)
2n − ψ(2nx)

2n

≤ A(2nx, 2ny)
2n , x, y ∈ D, x + y ∈ D, n ∈ N. (52)

Hence, on account of (3),

lim inf
n→∞

B(2nx, 2ny)
2n ≤ Ψ(x + y)−Ψ(y)−Ψ(x) ≤ lim sup

n→∞

A(2nx, 2ny)
2n ,

x, y ∈ D, x + y ∈ D, (53)

whence (42) implies that

Ψ(x + y)−Ψ(y)−Ψ(x) = 0, x, y ∈ D, x + y ∈ D. (54)

The uniqueness of Ψ remains to be demonstrated. To this end, assume that Ψ1, Ψ2 :
D → R are such that

Ψi(x + y) = Ψi(x) + Ψi(y), x, y ∈ D, x + y ∈ D, i = 1, 2, (55)

and

β(x) := lim inf
k→∞

Bk(x) ≤ Ψi(x)− ψ(x)

≤ lim sup
k→∞

Ak(x) =: α(x), x ∈ D, i = 1, 2. (56)

Then
β(x)− α(x) ≤ Ψ1(x)−Ψ2(x) ≤ α(x)− β(x), x ∈ D, (57)

which means that
|Ψ1(x)−Ψ2(x)| ≤ α(x)− β(x), x ∈ D. (58)

Next, note that (55) gives

Ψi(2nx) = 2nΨi(x), x ∈ D, i = 1, 2, n ∈ N, (59)

where, replacing x by 2nx in (58), we get

|Ψ1(x)−Ψ2(x)| ≤ α(2nx)− β(2nx)
2n , x ∈ D, n ∈ N, (60)

which in view of (49) yields Ψ1 = Ψ2. This completes the proof.

Remark 5. Clearly, every commutative semigroup is a square symmetric groupoid. If c, d, e ∈ R
and x ⊕ y = cx + dy + e for x, y ∈ R, then it is easy to check that (R,⊕) is another simple
example of such a groupoid, which in general (depending on c and d) is neither commutative nor
associative.
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Arguing analogously as above, we obtain a complementary version of Theorem 6.
Before we state it, let us recall that we say that a groupoid (G,+) is uniquely divisible
by 2 provided for every y ∈ G there exists a unique x ∈ G with x + x = y; we denote
such x by 2−1y and define recurrently 2−n−1y := 2−1(2−ny) for n ∈ N. Note also that the
square symmetric groupoid mentioned in Remark 5 is uniquely divisible by 2 if and only if
c + d 6= 0.

Theorem 7. Let (G,+) be a square symmetric groupoid, uniquely divisible by 2; D ⊂ G be
nonempty; and 2−1D := {2−1x : x ∈ D} ⊂ D, A, B : D2 → R be such that

lim inf
n→∞

2nB(2−nx, 2−ny) = 0, lim sup
n→∞

2n A(2−nx, 2−ny) = 0,

x, y ∈ D, (61)

and the sequences (An(x))n∈N and (Bn(x))n∈N, where

An(x) =
n−1

∑
j=0

2j A(2−j−1x, 2−j−1x), Bn(x) =
n−1

∑
j=0

2jB(2−j−1x, 2−j−1x),

n ∈ N, x ∈ D, (62)

be bounded for every x ∈ D. If ψ : D → R satisfies (44), then the sequence
(
an(x)

)
n∈N, where

an(x) := 2nψ(2−nx), n ∈ N, x ∈ D, (63)

is bounded for every x ∈ D and the function Ψ : D → R, given by (46), is a solution of
Equation (47) satisfying the inequalities

β(x) := lim inf
k→∞

Bk(x) ≤ ψ(x)−Ψ(x) ≤ lim sup
k→∞

Ak(x) =: α(x), x ∈ D. (64)

Moreover, if
inf
n∈N

2n(α(2−nx)− β(2−nx)
)
= 0, x ∈ D, (65)

then Ψ : D → R is the unique solution to (47) such that (64) is valid.

Proof. As we have mentioned, the proof is very analogous to the proof of Theorem 6,
but for the convenience of the readers, we provide some details of it.

Replacing x and y in (44) by 2−1x, we obtain

B(2−1x, 2−1x) ≤ ψ(x)− 2ψ(2−1x) (66)

≤ A(2−1x, 2−1x), x ∈ D,

which can be rewritten as

−1
2

A(2−1x, 2−1x) ≤ ψ(2−1x)− 1
2

ψ(x)

≤ −1
2

B(2−1x, 2−1x), x ∈ D.

According to Theorem 3 with X = D,

ξ(x) = −1
2

A(2−1x, 2−1x), η(x) = −1
2

B(2−1x, 2−1x), x ∈ D,

f (x) = 2−1x, g(x) ≡ 1
2 and h(x) ≡ 0, the sequence

(
an(x)

)
n∈N defined by (63) is bounded

for every x ∈ D and the function Ψ : D → R, given by (46), fulfils the inequalities
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lim inf
k→∞

(−Ak(x)) ≤ Ψ(x)− ψ(x) ≤ lim sup
k→∞

(−Bk(x)), x ∈ D, (67)

which implies (64).
Next, note that (51) holds, and, according to (44), we obtain

2nB(2−nx, 2−ny) ≤ an(x + y)− an(y)− an(x) (68)

= 2nψ(2−n(x + y))− 2nψ(2−ny)− 2nψ(2−nx)

≤ 2n A(2−nx, 2−ny), n ∈ N, x, y ∈ D, x + y ∈ D.

Hence

lim inf
n→∞

2nB(2−nx, 2−ny) ≤ Ψ(x + y)−Ψ(y)−Ψ(x)

≤ lim sup
n→∞

2n A(2−nx, 2−ny), x, y ∈ D, x + y ∈ D,

and (61) now shows that (54) is valid.
The uniqueness of Ψ remains to be proved. To do this, let us suppose that Ψ1, Ψ2 :

D → R are solutions of Equation (47) such that (48) holds.
Then, we obtain (57) and, consequently, (58). Now, replacing x by 2−nx in (58), we

see that
|Ψ1(x)−Ψ2(x)| ≤ 2n(α(2−nx)− β(2−nx)

)
, x ∈ D, n ∈ N, (69)

whence (65) implies that Ψ1 = Ψ2.

Remark 6. Let (G,+) be a groupoid, D ⊂ G be nonempty and c, ρ1, ρ2 ∈ R, ρ1 < ρ2. Let
ψ(x) = d(x) + h(x) + c for x ∈ D, where h : D → R fulfils Equation (47), and d : D → R be
such that d(D) ⊂ [ρ1, ρ2]. Then

ρ1 − 2ρ2 − c ≤ ψ(x + y)− ψ(y)− ψ(x) = d(x + y)− d(y)− d(x)− c (70)

≤ ρ2 − 2ρ1 − c, x, y ∈ D, x + y ∈ D

and
ψ(x)− h(x) ∈ [ρ1 + c, ρ2 + c], x ∈ D. (71)

Thus, we can see that families of functions considered in Theorems 6 and 7 are very large.
Clearly, numerous other more sophisticated examples can be easily found.

Theorems 6 and 7 yield the following generalization of Theorem 4.

Theorem 8. Let E1 be a real normed space, E0 := E1 \ {0}, ε ≥ 0, χ, ρ, p ∈ R, p 6= 1, χ ≤ ρ
and f : E1 → R be a mapping with

χ(‖x‖p + ‖y‖p) ≤ f (x + y)− f (x)− f (y) ≤ ρ(‖x‖p + ‖y‖p), x, y ∈ E0. (72)

Then, there is a unique additive mapping T : E1 → R such that, in the case p < 1,

χ

1− 2p−1 ‖x‖
p ≤ T(x)− f (x) ≤ ρ

1− 2p−1 ‖x‖
p, x ∈ E0, (73)

and, in the case p > 1,

χ

2p−1 − 1
‖x‖p ≤ f (x)− T(x) ≤ ρ

2p−1 − 1
‖x‖p, x ∈ E0. (74)

Moreover, if f is continuous at a point, then T is continuous.
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Proof. It is easy to check that, according to Theorems 6 and 7 (if p < 1, then we use
Theorem 6; if p > 1, then Theorem 7 is applied), with G = E1, D = E0, ψ = f|E0

and
A(x, y) = χ(‖x‖p + ‖y‖p), B(x, y) = ρ(‖x‖p + ‖y‖p) for x, y ∈ E0, there exists a unique
solution Ψ : E0 → R to Equation (47), satisfying inequalities (48) ((64), respectively).

Define T : E1 → R by T(x) = Ψ(x) for x ∈ E0 and T(0) = 0. First, note that (48) ((64)
respectively) is actually (73) ((74) respectively).

We are now able to prove that T is additive. In view of the definition of T, it is enough
to show that T(−x) = −T(x) for x ∈ E0. To do this, fix an x ∈ E0. Then

T(x) = Ψ(x) = Ψ(2x− x) = Ψ(2x) + Ψ(−x) = 2Ψ(x) + Ψ(−x) = 2T(x) + T(−x),

whence T(−x) = −T(x), as required.
The uniqueness of T follows from the uniqueness of Ψ and the fact that T(0) = 0 for

every additive function T : E1 → R.
Finally, suppose that f is continuous at a point. Then, (73) ((74) respectively) implies

that T is bounded on a neighborhood of that point. It is well-known that this yields the
continuity of T (see, e.g., [15,16]).

Remark 7. Note that (72) gives

| f (x + y)− f (x)− f (y)| ≤ ρ0(‖x‖p + ‖y‖p), x, y ∈ E0, (75)

where ρ0 := max{|ρ|, |χ|}. Thus, if p < 0, then every function f : E1 → R satisfying (72) has
to be additive (see, e.g., ([62] Theorem 3.5)), i.e., f (x + y) − f (x) − f (y) = 0 for x, y ∈ E1.
This means that functions f : E1 → R satisfying (72) with p < 0 exist only if ρχ ≤ 0 and they
are additive.
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4. Mazur, S. O metodach sumowalności. In Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego. In Proceedings of

the First Congress of Polish Mathematicians, Lwów, Poland, 7–10 September 1927; Uniwersytet Jagielloński: Kraków, Poland,
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18. Kuczma, M.; Choczewski, B.; Ger, R. Iterative Functional Equations; Cambridge University Press: Cambridge, UK, 1990.
19. Baron, K.; Jarczyk, W. Recent results on functional equations in a single variable, perspectives and open problems. Aequationes

Math. 2001, 61, 1–48. [CrossRef]
20. Belitskii, G.; Tkachenko, V. One-Dimensional Functional Equations; Birkhäuser: Basel, Switzerland, 2003.
21. Pérez-Marco, R. On the definition of Euler Gamma function. arXiv 2020, arXiv:2001.04445.
22. Wilkinson, A. The cohomological equation for partially hyperbolic diffeomorphisms. Astérisque 2013, 358, 75–165.
23. Lyubich, Y.I. The cohomological equations in nonsmooth categories. Banach Cent. Publ. 2017, 112, 221–272. [CrossRef]
24. Alexander, D.S. A History of Complex Dynamics. From Schröder to Fatou and Julia; Vieweg: Braunschweig, Germany, 1994.
25. Shoikhet, D. Linearizing models of Koenigs type and the asymptotic behavior of one-parameter semigroups. J. Math. Sci. 2008,

153, 629–648. [CrossRef]
26. Elin, M.; Goryainov, V.; Reich, S.; Shoikhet, D. Fractional iteration and functional equations for functions analytic in the unit disk.

Comput. Methods Funct. Theory 2002, 2, 353–366. [CrossRef]
27. Walorski, J. On monotonic solutions of the Schröder equation in Banach spaces. Aequ. Math. 2006, 72, 1–9. [CrossRef]
28. Walorski, J. On continuous and smooth solutions of the Schröder equation in normed spaces. Integral Equ. Oper. Theory 2008, 60,

597–600. [CrossRef]
29. Bisi, C.; Gentili, G. Schröder equation in several variables and composition operators. Atti Accad. Naz. Lincei Rend. Lincei Mat.

Appl. 2006, 17, 125–134. [CrossRef]
30. Bracci, F.; Gentili, G. Solving the Schröder equation at the boundary in several variables. Mich. Math. J. 2005, 53, 337–356.

[CrossRef]
31. Bridges, R.A. A solution to Schröder’s equation in several variables. J. Funct. Anal. 2016, 270, 3137–3172. [CrossRef]
32. Cowen, C.C.; MacCluer, B.D. Schroeder’s equation in several variables. Taiwan. J. Math. 2003, 7, 129–154. [CrossRef]
33. Enoch, R.D. Formal power series solutions of Schröder’s equation. Aequ. Math. 2007, 74, 26–61. [CrossRef]
34. Zdun, M.C. On the Schröder equation and iterative sequences of Cr diffeomorphisms in RN space. Aequ. Math. 2013, 85, 1–15.

[CrossRef]
35. Farzadfard, H. Practical tests for the Schröder equation to have a regularly varying solution. J. Math. Anal. Appl. 2019, 477,

734–746. [CrossRef]
36. Małolepszy, T. Nonlinear Volterra integral equations and the Schröder functional equation. Nonlinear Anal. 2011, 74, 424–432.

[CrossRef]
37. Luévano, J.-R.; Piña, E. The Schröder functional equation and its relation to the invariant measures of chaotic maps. J. Phys. A

2008, 41, 265101. [CrossRef]
38. Bassett, G. Review of median stable distributions and Schröder’s equation. J. Econom. 2019, 213, 289–295. [CrossRef]
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42. Bonet, J.; Domański, P. Abel’s functional equation and eigenvalues of composition operators on spaces of real analytic functions.

Integral Equ. Oper. Theory 2015, 81, 455–482. [CrossRef]
43. Forti, G.L. Hyers-Ulam stability of functional equations in several variables. Aequ. Math. 1995, 50, 143–190. [CrossRef]
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52. Brzdęk, J.; Popa, D.; Xu, B. Remarks on stability and nonstability of the linear functional equation of the first order. Appl. Math.

Comput. 2014, 238, 141–148.
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