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Abstract: Using normalized Hermite functions, we construct bases in the space of square inte-
grable functions on the unit circle (L2(C)) and in l2(Z), which are related to each other by means
of the Fourier transform and the discrete Fourier transform. These relations are unitary. The con-
struction of orthonormal bases requires the use of the Gramm–Schmidt method. On both spaces,
we have provided ladder operators with the same properties as the ladder operators for the one-
dimensional quantum oscillator. These operators are linear combinations of some multiplication-
and differentiation-like operators that, when applied to periodic functions, preserve periodicity.
Finally, we have constructed riggings for both L2(C) and l2(Z), so that all the mentioned operators
are continuous.

Keywords: Hermite functions; functions on the unit circle; Fourier transform; discrete Fourier
transform; ladder operators; rigged Hilbert spaces

1. Introduction

Hermite functions have been an important tool in the development of elementary
quantum mechanics as solutions of the quantum non-relativistic harmonic oscillator [1].
From a mathematical point of view, Hermite functions serve as an orthonormal basis
(complete orthonormal set) for the Hilbert space L2(R). They are products of Hermite
polynomials times and a Gaussian, so they are functions which are strongly localized near
the origin [2,3].

The Fourier transform is a unitary operator on L2(R). The Hermite functions are its
eigenfunctions and allow a division of L2(R) into four eigenspaces related to the cyclic
group C4. This division can be relevant in applications.

The one-dimensional Fourier transform and its inverse are automorphisms on the
Hilbert space L2(R), which preserve the Hilbert space norm, after the Plancherel theo-
rem [4]. This result can be extended to some other spaces of interest in physics such as the
space of infinitely differentiable functions converging to zero at the infinite faster than the
inverse of a polynomial and the space of tempered distributions. In both cases the Fourier
transform and the inverse Fourier transform are automorphisms, which are continuous
with the standard topologies defined in both spaces [4].

Loosely speaking, the Fourier series may be looked at as a particular case of a span of
square integrable functions on a finite interval [a, b] in terms of square integrable functions
on this interval and extended beyond by periodicity. One usually takes the interval [0, 2π]
or [−π, π]. Then, one may look at the Fourier series as mappings from the space of C∞

functions on the unit circle to discrete functions over the set of integers Z. This mapping is
invertible, which means that a sequence of complex numbers {an}n∈Z with the property
that ∑n∈Z |an|2 < ∞ uniquely fixes (almost elsewhere) a square integrable function on the
unit circle [5]. These numbers are obtained using a discrete-time Fourier transform [6] over

Symmetry 2021, 13, 853. https://doi.org/10.3390/sym13050853 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1947-7146
https://orcid.org/0000-0001-8860-990X
https://orcid.org/0000-0001-7772-9981
https://www.mdpi.com/article/10.3390/sym13050853?type=check_update&version=1
https://doi.org/10.3390/sym13050853
https://doi.org/10.3390/sym13050853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13050853
https://www.mdpi.com/journal/symmetry


Symmetry 2021, 13, 853 2 of 25

the original function, so that the Fourier series and discrete-time Fourier transforms may
be considered as operations inverse of each other.

In the present article, we construct a complete sequence of periodic functions using
the Hermite functions, which is a non-orthonormal basis on L2[−π, π] ≡ L2(C), where C is
the unit circle. Then, after the Gram–Schmidt procedure we obtain an orthonormal basis
formed by periodic functions. All functions on this orthonormal basis can be spanned into
a Fourier series with coefficients obtained from the Hermite functions. Vice-versa, these
coefficients are obtained via the discrete Fourier transform of the functions belonging to
the orthonormal basis.

We proceed to an equivalent construction on the space l2(Z) of square summable
complex sequences indexed by the set of integer numbers. Each term of the sequence is
given by the value on an integer of a given normalized Hermite function. Fourier series
and Fourier transform give the equivalence between both constructions, which induces a
unitary mapping between both spaces.

We also construct multiplication and differentiation operators on a subspace of L2(C)
that includes our complete sequence of periodic functions in a way that these operators
preserve periodicity. They play a similar role to that played by multiplication and derivation
operators in the description of the one-dimensional quantum harmonic oscillator. In
particular, they provide ladder operators for the complete sequence of periodic functions
analogous to the creation and annihilation operators for the quantum oscillator. We may
also construct a locally convex space of test functions, S, including the chosen complete
sequence of periodic functions, such that these operators are continuous on S. This
space, being dense in L2(C) with continuous injection, defines a rigged Hilbert space
S ⊂ L2(C) ⊂ S×, so that the operators can be continuously extended to the dual S×. A
similar construction is also possible for l2(Z).

The rigging of Hilbert spaces is necessary for the continuity of the relevant operators
that we introduce in this presentation and this includes the new ladder operators. The
formalism of rigged Hilbert spaces was introduced by Gelfand [7]. Although this is not
quite familiar to many theoretical physicists, it has acquired more and more importance in
the field of mathematical physics [8–13] and even in mathematics [14–20].

In a series of previous articles [21–25], we have discussed the relations between discrete
and continuous basis, algebras of operators, special functions and rigged Hilbert spaces
(also called Gelfand triplets). We have shown that all these concepts properly convive in the
framework of rigged Hilbert spaces and not on Hilbert spaces. The present paper fits also in
part within the same context, where our special functions are now series constructed from
Hermite functions. In addition, it can be shown that the structure of rigged Hilbert spaces
is suitable for the representation of our operators as an algebra of continuous operators
on the same domain, while on Hilbert space these operators are unbounded. Thus, we
create a representation with some formal and mathematical advantages derived from this
continuity on a common domain.

The organization of this paper is as follows: In Section 2, we study the behavior of the
Hermite functions under the Fourier transform. The well-defined parity of the Hermite
functions allows that the even/odd Hermite functions span the subspace of the even/odd
functions of L2(R). In a similar way, since the Hermite functions are eigenvectors of the
Fourier transform with eigenvalues the four roots of unity, L2(R) can be split in four
subspaces of functions, each one characterised by one eigenvalue of the Fourier transform
as an operator on L2(R). In Section 3, we introduce a set of functions defined in the unit
circle in terms of the Hermite functions. In Sections 4 and 5, we present some results with
the aim of given a unitary view that include different concepts such as Fourier transform,
Fourier series, discrete Fourier transform and Hermite functions. Later in Sections 6 and 7,
we define ladder operators and those others related to them and the equipations of Hilbert
spaces, or Gelfand triplets, or rigged Hilbert spaces on which these operators are well
defined as continuous operators. We finish the present article with concluding remarks
plus two Appendices. In Appendix A, we show two results which are important in the
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development of the material in Section 5. In Appendix B, we construct orthonormal systems
in L2(C) and l2(Z) via the Gramm–Schmidt process.

2. The Hermite Functions and the Fourier Transform

Let us consider the normalized Hermite functions in one-dimension, sometimes also
called the Gauss–Hermite functions [26–29]. As is well known, they have the follow-
ing form

ψn(x) :=
e−x2/2√
2n n!

√
π

Hn(x) , (1)

where Hn(x) are the Hermite polynomials, x ∈ R and n ∈ N, with N the set of non-negative
integers, 0, 1, 2, . . . . It is well-known that the Hermite functions form an orthonormal basis
in the Hilbert space of square integrable functions on the line, L2(R). In other words, they
verify the following orthonormality and completeness relations∫ ∞

−∞
ψn(x)ψm(x) dx = δnm ,

∞

∑
n=0

ψn(x)ψn(x′) = δ(x− x′) .
(2)

Observe that the completeness for the Hermite functions is given and labelled by the
natural numbers, so that n ∈ N, although the usual definition of the Parseval identity is a
sum on the set of integers. This is not a contradiction, so both the set of natural numbers N
(including the zero) and the set of integers Z are both infinite countable. One may associate
the even Hermite functions, ψ2n, to the positive integers and the odd Hermite functions,
ψ2n+1, to the set of negative integers.

The Hermite functions (1) are eigenfunctions of the Fourier Transform (FT) in the
following sense [21,30]

FT[ψn(x), x, y] ≡ ψ̃n(y) :=
1√
2π

∫ ∞

−∞
eixy ψn(x) dx = inψn(y) , (3)

or more generally,

FT[ψn(ax + b), x, y] =
in

|a| e−iby/a ψn(y/a) , a 6= 0 , b ∈ R , (4)

This is the key issue of the present Section.
We define the action of the cyclic group of order two, C2 ≡ {I, P}, on the space of

the square integrable functions on the line L2(R), where I is the identity and P is the
reflection operator,

P f (x) = f (−x) , (5)

with P2 = I. Using the elements of C2, we can construct the following projectors

PE =
1
2
(I+ P) , PO =

1
2
(I− P) , (6)

that split L2(R) into two mutually orthogonal subspaces: the spaces of even and odd
functions L2

E(R) and L2
O(R), respectively,

L2(R) = L2
E(R)⊕ L2

O(R) . (7)

Even or odd Hermite functions ψn(x) are labeled by an even or odd index n, respec-
tively. This shows that

ψn(−x) = (−1)n ψn(x) , n ∈ N . (8)
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This property, together with the orthogonality of the Hermite functions on L2(R), suggests
the following notation

{ψn(x)}n∈N = {ψ2n(x)} ⊕ {ψ2n+1(x)} , (9)

where the analogy with (7) is obvious.
Next, let us use the property of the orthogonality (2) of the Hermite functions as well

as their defined parity (8), so as to obtain the following identities

∞

∑
n=0

ψn(x)ψn(y) =
∞

∑
n=0

ψ2n(x)ψ2n(y) +
∞

∑
n=0

ψ2n+1(x)ψ2n+1(y) = δ(x− y) ,

∞

∑
n=0

ψn(x)ψn(−y) =
∞

∑
n=0

ψ2n(x)ψ2n(−y) +
∞

∑
n=0

ψ2n+1(x)ψ2n+1(−y)

=
∞

∑
n=0

ψ2n(x)ψ2n(y)−
∞

∑
n=0

ψ2n+1(x)ψ2n+1(y) = δ(x + y) .

(10)

We easily find from the first and the third rows of (10) that

∑
n∈N

ψ2n(x)ψ2n(y) =
1
2
(δ(x− y) + δ(x + y)) ,

∑
n∈N

ψ2n+1(x)ψ2n+1(y) =
1
2
(δ(x− y)− δ(x + y)) .

(11)

Observe that the former and second expressions in (11) gives completeness in the space of
the even/odd functions, respectively.

The group C2 is a subgroup of C4, which is the cyclic group of the four roots of unity
{1, i,−1,−i}. This comes from two simple facts: the set of Hermite functions {ψn(x)} is a
basis in L2(R) and the Hermite functions are eigenfunctions of the Fourier Transform (3).
From the properties of the imaginary unit we easily obtain that

FT[ψ4n(x), x, y] = +1 ψ4n(y) , FT[ψ4n+1(x), x, y] = +i ψ4n+1(y) ,

FT[ψ4n+2(x), x, y] = −1 ψ4n+2(y) , FT[ψ4n+3(x), x, y] = −i ψ4n+3(y) .
(12)

Consequently, in analogy with (9), relations (12) yield to this identity having the form of
direct sums

{ψn(x)}n∈N = {ψ4n(x)} ⊕ {ψ4n+1(x)} ⊕ {ψ4n+2(x)} ⊕ {ψ4n+3(x)} . (13)

Clearly, the subspaces spanned by the Hermite functions {ψ4n+k(x)} with k = 0, 1, 2, 3 are
orthonormal to each other. However, we know that each set of Hermite functions given by
one of the values k = 0, 1, 2, 3 cannot fulfil the completeness relation. They satisfy instead

∑
n∈N

ψ4n(x)ψ4n(y) = +
1

2
√

2π
cos (xy) +

1
4
(δ(x− y) + δ(x + y)) ,

∑
n∈N

ψ4n+1(x)ψ4n+1(y) = +
1

2
√

2π
sin (xy) +

1
4
(δ(x− y)− δ(x + y)) ,

∑
n∈N

ψ4n+2(x)ψ4n+2(y) = − 1
2
√

2π
cos (xy) +

1
4
(δ(x− y) + δ(x + y)) ,

∑
n∈N

ψ4n+3(x)ψ4n+3(y) = − 1
2
√

2π
sin (xy) +

1
4
(δ(x− y)− δ(x + y)) .

(14)
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In order to prove relations (14), let us consider the following Fourier transform (see
notation in (3))

FT

[
N

∑
n=0

ψn(x)ψn(y), x, z

]
=

1√
2π

∫ ∞

−∞
eixz dx

(
N

∑
n=0

ψn(x)ψn(y)

)

=
N

∑
n=0

ψn(y)
1√
2π

∫ ∞

−∞
eixz ψn(x) dx =

N

∑
n=0

in ψn(y)ψn(z) .

(15)

Then, we recall that the second identity in (2) means that, when we endow the space of the
tempered distributions S′ with the weak topology where S is the Schwartz space, we have

N

∑
n=0

ψn(x)ψn(y)
N→∞−−−→ δ(x− y) .

The Fourier transform is weakly continuous on S′, hence we have

FT

[
N

∑
n=0

ψn(x)ψn(y), x, z

]
N→∞−−−→ FT[δ(x− y), x, z] =

eixy
√

2π
, (16)

and

FT

[
N

∑
n=0

ψn(x)ψn(y), x, z

]
N→∞−−−→

∞

∑
n=0

in ψn(x)ψn(y) . (17)

The uniqueness of the weak limit in S′ gives

∑
n∈N

in ψn(x)ψn(y) =
eixy
√

2π
. (18)

Obviously, (18) yields to

∑
n∈N

ψ4n(x)ψ4n(y)− ∑
n∈N

ψ4n+2(x)ψ4n+2(y)

+ ∑
n∈N

i ψ4n+1(x)ψ4n+1(y)− ∑
n∈N

i ψ4n+3(x)ψ4n+3(y) =
eixy
√

2π
.

(19)

After the transformation y→ −y, we use the parity property of Hermite functions given
in (8), so that (19) gives

∑
n∈N

ψ4n(x)ψ4n(y)− ∑
n∈N

ψ4n+2(x)ψ4n+2(y)

− ∑
n∈N

i ψ4n+1(x)ψ4n+1(y) + ∑
n∈N

i ψ4n+3(x)ψ4n+3(y) =
e−ixy
√

2π
.

(20)

Summing (19) and (20), we obtain

∑
n∈N

ψ4n(x)ψ4n(y)− ∑
n∈N

ψ4n+2(x)ψ4n+2(y) =
eixy + e−ixy

2
√

2π
=

1√
2π

cos (xy) . (21)

Subtracting (20) from (19), we obtain that

∑
n∈N

ψ4n+1(x)ψ4n+1(y)− ∑
n∈N

ψ4n+3(x)ψ4n+3(y) =
eixy − e−ixy

2i
√

2π
=

1√
2π

sin (xy) . (22)
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Let us go back to (8), which can be now rewritten as

∑
n∈N

ψ4n(x)ψ4n(y) + ∑
n∈N

ψ4n+2(x)ψ4n+2(y) =
1
2
(δ(x− y) + δ(x + y)) ,

∑
n∈N

ψ4n+1(x)ψ4n+1(y) + ∑
n∈N

ψ4n+3(x)ψ4n+3(y) =
1
2
(δ(x− y)− δ(x + y)) .

(23)

Finally, let us sum (21) with the first identity of (23). The result is

∑
n∈N

ψ4n(x)ψ4n(y) =
1

2
√

2π
cos (xy) +

1
4
(δ(x− y) + δ(x + y)) . (24)

This is the first identity in (14). The validity of the other three relations in (14) is proven
analogously. The proof is now complete.

Next, let us consider an arbitrary function f (x) in L2(R). It allows an expansion in
terms of the Hermite functions ψn(x) as

f (x) = ∑
n

fn ψn(x) , fn =
∫ +∞

−∞
dx f (x)ψn(x) . (25)

The even part of f (x), fE(x), allows an expansion in terms of even Hermite functions. Then,

fE(x) = ∑
n

f2nψ2n(x), f2n =
∫ +∞

−∞
dx f(x)ψ2n(x) (26)

and taking into account (9), we write fE(x) = f+1(x) + f−1(x) so that

f+1(x) = ∑
n

f4n ψ4n(x), f4n =
∫ +∞

−∞
dx f(x)ψ4n(x) ,

f−1(x) = ∑
n

f4n+2 ψ4n+2(x), f4n+2 =
∫ +∞

−∞
dx f(x)ψ4n+2(x) .

(27)

For the odd part, fO(x), we have

fO(x) = ∑
n

f2n+1ψ2n+1(x), f2n+1 =
∫ +∞

−∞
dx f(x)ψ2n+1(x) . (28)

In analogy with fE(x), let us split fO(x) as fO(x) = f+i(x) + f−i(x), where

f+i(x) = ∑
n

f4n+1 ψ4n+1(x), f4n+1 =
∫ +∞

−∞
dx f(x)ψ4n+1(x) ,

f−i(x) = ∑
n

f4n+3 ψ4n+3(x), f4n+3 =
∫ +∞

−∞
dx f(x)ψ4n+3(x) .

(29)

All the above results together show that any function f (x) in L2(R) can be split into
four parts

f (x) = f+1(x) + f+i(x) + f−1(x) + f−i(x) , (30)
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so that if g(x) := FT[ f (y), y, x],

f+1(x) = ∑ f4n ψ4n(x) =
1
4
( f (x) + f (−x) + g(x) + g(−x)) ,

f+i(x) = ∑ f4n+1 ψ4n+1(x) =
1
4
( f (x)− f (−x)− ig(x) + ig(−x)) ,

f−1(x) = ∑ f4n+2 ψ4n+2(x) =
1
4
( f (x) + f (−x)− g(x)− g(−x)) ,

f−i(x) = ∑ f4n+3 ψ4n+3(x) =
1
4
( f (x)− f (−x) + ig(x)− ig(−x)) .

(31)

Then, from (25) and the parity of the Hermite functions, it comes that the even part of f (x)
has the following form

fE(x) = f (x)+ f (−x)
2 = ∑

n∈N
f2n ψ2n(x)

= ∑
n∈N

f4n ψ4n(x) + ∑
n∈N

f4n+2 ψ4n+2(x) .
(32)

Next, using the continuity of the Fourier transform in L2(R) and taking into account (25),
we have

g(x) = FT[ f (y), y, x] =
1√
2π

∫ ∞

−∞
eixy f (y) dy

=
1√
2π

∫ ∞

−∞
eixy dy

(
∑

n∈N
fn ψn(y)

)

= ∑
n∈N

fn
1√
2π

∫ ∞

−∞
eixy ψn(y) dy

= ∑
n∈N

in fn ψn(x) .

(33)

Hence,

gE(x) =
g(x) + g(−x)

2
= ∑

n∈N
i2n f2n ψ2n(x)

= ∑
n∈N

f4n ψ4n(x)− ∑
n∈N

f4n+2 ψ4n+2(x) .
(34)

From (32) and (34), we obtain the first expression of (31). Similarly, we prove all the other
relations in (31). The projectors producing this splitting are

P+1 = 1
4 (1 + P)(1 + FT) , P+i =

1
4 (1− P)(1− i FT) ,

P−1 = 1
4 (1 + P)(1− FT) , P−i =

1
4 (1− P)(1 + i FT) .

(35)

They verify the following identities

P+1 + P+i + P−1 + P−i = I, PE = P+1 + P−1 , PO = P+i + P−i . (36)

All these projections are orthogonal and the corresponding splitting of the Hilbert space
L2(R) is given by

L2(R) = L2
E(R)⊕ L2

O(R) = L2
+1(R)⊕ L2

−1(R)⊕ L2
+i(R)⊕ L2

−i(R) . (37)

We conclude this part of the discussion here.
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3. Periodic Functions and Hermite Functions

As is well known and as we have mentioned before, the complete set of Hermite
functions, {ψn(x)}n∈N, forms an orthonormal basis on L2(R). Next, and using the Hermite
functions, we shall construct a countable set of periodic functions that will be a system of
generators of the space of square integrable functions on the unit circle.

The space L2(C) is the space of Lebesgue square integrable functions f (φ) : C 7−→ C.
The norm of the function f (φ) is given by the following relation

|| f (φ)||2 :=
1

2π

∫ π

−π
| f (φ)|2 dφ < ∞ . (38)

We intend to introduce a space of functions with given properties. Consider the
angular variable −π ≤ φ < π and define

Cn(φ) :=
+∞

∑
k=−∞

ψn(φ + 2kπ) , k ∈ Z , n = 0, 1, 2, . . . . (39)

The functions Cn(φ) are obviously periodic with period 2π

Cn(φ + 2π) =
∞

∑
k=−∞

ψn(φ + 2(k + 1)π) =
∞

∑
k=−∞

ψn(φ + 2kπ) = Cn(φ) . (40)

A first result about the convergence of the series defining Cn(φ) is given by the
following proposition.

Proposition 1. The series defining each of the Cn(φ) are absolutely convergent. Furthermore, each
Cn(φ) is bound on the interval −π ≤ φ < π and the square integrable on this interval.

Proof. Let us write (39) as

Cn(φ) = ψ0(φ) +
∞

∑
k=1

ψn(φ + 2kπ) +
−1

∑
k=−∞

ψn(φ + 2kπ) . (41)

The first term in the right hand side of (40) is bound by ψ0(φ) ≤ 2 , ∀φ ∈ [−π, π), as we
may check by using the Cramér inequality [31] (page 787, formula 22.14.17). Since both
series in (41) are similar, it is sufficient to analyze one of them, as the conclusions for the
other one would be the same. Let us consider the series with k ≥ 1. Then, we have to study
the convergence of the series∣∣∣∣∣ ∞

∑
k=1

ψn(φ + 2kπ)

∣∣∣∣∣ ≤ ∞

∑
k=1

∣∣ψn(φ + 2kπ)
∣∣ . (42)

From (1) we have that

ψn(φ + 2kπ) =
1

π1/4 2n/2
√

n!
e−(φ+2kπ)2/2 Hn(φ + 2kπ) , (43)

with φ + 2kπ ≥ 1 , ∀k = 1, 2, . . . . For any real value of x, Hn(x) is a real polynomial of
order n with the property that for |x| > 1 has the following upper bound∣∣Hn(x)

∣∣ ≤ 2n (n + 1)!
∣∣x∣∣n , (44)

which is a straightforward consequence of the know formula of the Hermite polynomials,
which states that

Hn(x) = n!
bn/2c

∑
m=0

(−1)m

m! (n− 2m)!
(2x)n−2m . (45)
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Consequently, since π1/4 2n/2
√

n! ≥ 1, ∀n ∈ N, we have from (43) and (44) an upper
bound for

∣∣ψn(φ + 2kπ)
∣∣

∣∣ψn(φ + 2kπ)
∣∣ ≤ 2n (n + 1)! e−(φ+2kπ)2/2 (φ + 2kπ)n

≤ 2n (n + 1)! e−(φ+2kπ)/2 (φ + 2kπ)n

≤ 2n (n + 1)! e−kπ [2(k + 1)π]n

≤ 2n (n + 1)! (2π)n eπ e−(k+1)π (k + 1)n

≤ (2π)2n eπ (n + 1)! e−(k+1) (k + 1)n .

(46)

Hence, since n is fixed and after (46), the sum (42) converges if the following series

∞

∑
k=1

e−(k+1) (k + 1)n (47)

converges. This convergence is a simple exercise of analysis.
The conclusion is that the series in (41) with k ≥ 1 is absolutely convergent and hence

pointwise convergent. In particular, this means that the functions Cn are all Lebesgue
measurable, since they are the pointwise limit of measurable functions. Similarly, the same
property is valid for the series with k < −1 in (41). This shows the boundedness of Cn(φ)
on −π ≤ φ < π for n = 0, 1, 2, . . . , which, along with its measurability in the Lebesgue
sense, shows that the functions Cn(φ) are square integrable in the considered interval.

Proposition 1 has an important consequence. We have shown that, for each n ∈ N,
the function Cn(φ) has an upper bound. The constant function that equals to this upper
bound in the interval [−π, π) is square integrable, so that by using the Lebesgue dominated
convergence theorem [32] we have that

∫ π

−π
eimφ dφ

∞

∑
k=−∞

ψn(φ + 2kπ) =
∞

∑
k=−∞

∫ π

−π
eimφ ψn(φ + 2kπ) dφ . (48)

We also have that

FT[Cn(x), x, y] =
∞

∑
k=−∞

FT[ψn(x + 2kπ), x, y] . (49)

Finally, we may mention another interesting fact: the functions {Cn(φ)}n∈N span
L2[−π, π). This means that the subspace of all finite linear combinations of these functions
is dense in L2[−π, π). The proof will be given later.

One of the objectives of the present article is to find some relations between functions
that are of use in Fourier analysis. We shall discuss this idea along the next Section.

4. Fourier Transform on the Circle

After the general formula for the Fourier Transform given in (4), we obtain that

FT[ψn(x + a) + ψn(x− a), x, y] = FT[ψn(x + a), x, y] + FT[ψn(x− a), x, y]

= 2in cos (ay)ψn(y) , a ∈ R.
(50)

Furthermore, the Inverse Fourier Transform (IFT) gives the following relation

IFT[2 cos (ay)ψn(y), x] = (−i)n(ψn(x + a) + ψn(x− a)) . (51)
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For the special case a = 2π, Equations (50) and (51) give, respectively,

IFT[ψn(x + 2π) + ψn(x− 2π), x, y] = 2in cos (2πy)ψn(y) ,

IFT[2 cos 2πy ψn(y), y, x] = (−i)n(ψn(x + 2π) + ψn(x− 2π)) .
(52)

We may extend the previous formulae for a finite sum of Hermite functions, so that

FT

[
+m

∑
k=−m

ψn(x + ka), x, y

]
= in

(
1 + 2

m

∑
k=1

cos(kay)

)
ψn(y)

= in Dm(ay)ψn(y) ,

FT

[
+m

∑
k=−m

ψn(x + 2πk), x, y

]
= in Dm(2πy)ψn(y) ,

(53)

where Dm(ay) is the Dirichlet kernel [33], i.e.,

Dm(ay) =
m

∑
k=−m

ei k a y =
sin[(m + 1/2) a y]

sin[(1/2) a y]
. (54)

At this step, let us introduce the following sequence of functions depending on the
natural parameter m

Cn(x; m) :=
+m

∑
k=−m

ψn(x + 2πk) (55)

so that Cn(x) = lim
m→∞

Cn(x; m). The second equation in (53) may be rewritten as

FT[Cn(x; m), y] = in Dm(2πy)ψ(n, y) . (56)

From (48), we conclude that

FT[Cn(x), y] = in
(

lim
m→∞

Dm(2πy)
)

ψn(y) , (57)

where

lim
m→∞

Dm(ay) =
2π

a

+∞

∑
m=−∞

δ

(
y− 2π

a
m
)
= X

(
y

2π/a

)
. (58)

In particular, for a = 2π (58) looks like

lim
m→∞

Dm(2πy) =
+∞

∑
m=−∞

δ(y−m) ≡X(y) . (59)

The infinite sum X is called the Dirac comb [34–36]

XL(y) =
+∞

∑
m=−∞

δ(y−mL) =
1
L

+∞

∑
m=−∞

δ(y/L−m) =
1
L
X(y/L) .

It converges in the weak sense as a distribution on the space, D, of all Schwartz functions
with compact support on R endowed with the strict inductive limit topology. For the
properties of the Fourier transform we can write that

FT[Cn(x), y] = in X(y)ψn(y) . (60)
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As is well known, the Dirac Comb is autoconjugate under Fourier transform. This is
evident because

FT
[

sin[(k + 1/2)y]
sin[(1/2)y]

, x
]

=
√

2π
+k

∑
m=−k

δ(x−m) ,

FT

[
+k

∑
m=−k

δ(x−m), y

]
=

1√
2π

sin[(k + 1/2)y
sin[(1/2)y]

,

(61)

and both the Dirichlet kernel and the r.h.s. of the first expression go to the Dirac Comb for
k→ ∞.

Moreover, the functions {Cn(φ)}n∈N can be split first into even and odd and then into
four subspaces. Indeed

{Cn(φ)}n∈N = {C2n(φ)} ⊕ {C2n+1(φ)} ,

= {C4n(x)} ⊕ {C4n+1(φ)} ⊕ {C4n+2(φ)} ⊕ {C4n+3(φ)} .
(62)

5. A Discretized Fourier Transform

To begin with, let us compare the space L2(C), also denoted as L2[−π, π), with the
space l2(Z). As is well known, an orthonormal basis on L2(C) is {(2π)−1 eimφ}m∈Z, hence

f (φ) =
1

2π ∑
m∈Z

fn e−imφ , f ∈ L2(C) , (63)

where the sum converges in the sense of the norm (38) (for continuous functions f (φ) the
series also converge pointwise [37]). The properties of orthonormal bases in Hilbert spaces
show that

∑
m∈Z

∣∣ fm
∣∣2 = 2π

∣∣∣∣ f (φ)∣∣∣∣2 . (64)

We call to the complex numbers fm (m ∈ Z) the components of f .
The Hilbert space l2(Z) is a space of sequences of complex numbers A ≡ {am}m∈Z

such that ∣∣∣∣A∣∣∣∣2 := ∑
m∈Z

∣∣am
∣∣2 < ∞ . (65)

This is a Hilbert space with a scalar product given by

(A, B) :=
1

2π ∑
m∈Z

a∗m bm , (66)

where the star denotes complex conjugation.
An orthonormal basis for l2(Z) is given by the sequences that have all their compo-

nents equal to zero except for one which is equal to one. Let us call {Bm}m∈Z on this basis,
where each of the Bm represents each one of these series. Any F ∈ l2(Z) with components
F ≡ { fm}m∈Z may be written as

F =
1

2π ∑
m∈Z

fm Bm , with ∑
m∈Z

∣∣ fm
∣∣2 = 2π

∣∣∣∣F∣∣∣∣2 < ∞ . (67)

We readily see that there exists a correspondence between L2(C) and l2(Z). This
correspondence relates any f (φ) ∈ L2(C) as in (63) with F′ = F/2π as in (67) with the
same sequence { fm}m∈Z. This correspondence, f (φ) 7−→ F, is clearly linear, one to one
and so on. In addition,

∣∣∣∣ f (φ)∣∣∣∣ = ∣∣∣∣F∣∣∣∣, which shows that it is, in addition, unitary (in fact
any pair of infinite dimensional separable Hilbert spaces are unitarily equivalent in the
sense that one may construct one, in fact infinite, unitary mappings from one to the other).
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Equation (63) gives the Fourier series span for f (φ) ∈ L2(C). From this point of view, we
may say that the Fourier series is a unitary mapping, F , from L2(C) onto l2(Z). It admits
an inverse, F−1, from l2(Z) onto L2(C), which is also unitary and is sometimes called the
discrete Fourier transform [6].

We intend to offer a homogeneous version of concepts that are often introduced as
separated. They are the Fourier transform, Fourier series, and discrete Fourier transform
on one side and the Hermite functions on the other.

The first step is to construct a set of sequences in l2(Z) using the Hermite functions
ψn(x). For each n ∈ N, let us define the following sequence indexed by the set of integer
numbers Z

χn := {ψn(m)}m∈Z . (68)

Our next result has not been proven so far. Its proof requires the previous demonstra-
tion of a couple of results displayed in Appendix A (Propositions A1 and A2).

Since the functions Cn(φ) are in L2[−π, π), they admit a span in terms of the orthonor-
mal basis in L2[−π, π) as commented upon at the beginning of the present Section (see
Equation (63)). Thus, we can write

Cn(φ) =
1√
2π

∞

∑
m=−∞

cm
n e−imφ , (69)

with
cm

n =
1√
2π

∫ π

−π
eimφ Cn(φ) dφ . (70)

The continuity of the functions Cn(φ) on [−π, π) guarantees the pointwise convergence
of (69) [37]. In addition, since all Cn(φ) are periodic with period 2π, (69) is valid for all real
numbers of φ. We recall that each of the Hermite functions ψn(x) are eigenfunctions of
the Fourier Transform with eigenvalue in. Let us use this idea in (70) in order to find an
explicit expression of the coefficients cm

n in terms of the values of the Hermite functions at
the integers. Using the definition (39) of the Cn(φ) in (70), we obtain

cm
n =

1√
2π

∫ π

−π
eimφ dφ

[
∞

∑
k=−∞

ψn(φ + 2kπ)

]

=
1√
2π

∞

∑
k=−∞

∫ π

−π
eimφ ψn(φ + 2kπ) dφ

=
1√
2π

∞

∑
k=−∞

∫ π+2kπ

−π+2kπ
eims ψn(s) ds

=
1√
2π

∫ ∞

−∞
eims ψn(s) ds = in ψn(m) .

(71)

The second identity in (71) makes use of the Lebesgue-dominated convergence theorem [32]
in order to interchange the integral and the series as anticipated in (15). We have also used
the change of variable s = φ + 2kπ and eimφ = eim(φ+2kπ) = eims. This shows that (69)
and (70) can be written, respectively, as

Cn(φ) =
in
√

2π

∞

∑
m=−∞

ψn(m) e−imφ (72)

and

ψn(m) =
(−i)n
√

2π

∫ π

−π
Cn(φ) eimφ dφ . (73)

After (72) and (73), we may obtain a relation between the functions Cn(φ) and the series χn
defined in (68) as

Cn(φ) ≡ in χn . (74)
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Thus, (72) and (73) provide a one to one relation between the functions Cn(φ), as defined
in (39) and the sequences χn given in (68).

Observe that the definition (39) of Cn(φ) allows us to write (72) as

∞

∑
m=−∞

[
ψn(φ + 2mπ)− in

√
2π

ψn(m) e−imφ

]
= 0 , n = 0, 1, 2, . . . . (75)

So far, we have discussed the relation between a system of generators in L2[−π, π) ≡
L2(C) given by {Cn(φ)}n∈N and a set of series {χn}n∈N in l2(Z). These systems of genera-
tors do not form orthonormal bases on L2(C) and l2(Z), respectively.

6. Relevant Operators Acting on L2(C) and on l2(Z)
We want to discuss some of the properties of the functions {Cn(φ)} in relation with

its behavior under different operators. Here, we introduce a set of operators on L2(C) and
on l2(Z) similar to the operators acting on the quantum harmonic oscillator. In particular,
we have creation and annihilation and number operators that act on the chosen basis as
expected. In addition, we have some other operators which play the role of multiplication
by the variable and differentiation, with the expected relation with the ladder operators. In
the present context, the definitions of these operators has to be done on a particular form.
As also happens in relation to the harmonic oscillator, these operators are not bound on
the Hilbert spaces they act on and have different domains. Nevertheless, we may equip
these Hilbert spaces with a dual pair of locally convex spaces, so that these operators be
continuous. This construction will be done in the next Section.

The possibility of introducing multiplication and differentiation operators on the circle
has been previously considered and noticed that serious inconsistencies emerge when we
try to extend these operators to the circle on its most natural form [38–45]. In particular, the
need for boundary conditions for the wave functions of the form ϕ(0) = eiak ϕ(0) produce
an ambiguity on the definition of the derivation operator, which now has to depend on
the parameter k. In the formalism we introduced in the sequel, which in part has been
based on the Weil–Brezin–Zak transformation [39,46,47], we try to avoid some of these
inconveniences [38–40].

6.1. Multiplication and Derivation Operators on L2(C)
Let us give some definitions such as multiplication and derivation operators within

our context.

6.1.1. Multiplication Operator

For the multiplication operator Φ, we have to discard the apparently most natural
definition that, for any f (φ), it would have been Φ f (φ) = φ f (φ). Since f (φ) is a function
on the circle that should be extended by periodicity to the real line, this definition is not
appropriate as it does not provide a periodic function. Let us define the operator Φ by
means of its action on each of the functions of the sequence {Cn(φ)} and, then, extend it by
linearity. Therefore, Φ would be defined on a dense set of the closed subspace spanned by
the vectors of the sequence {Cn(φ)}. Our definition is

ΦCn(φ) :=
∞

∑
k=−∞

(φ + 2kπ)ψn(φ + 2kπ) , (76)

which is indeed periodic with period 2π. We may extend this definition for any real
a ≥ 1 as

Φa Cn(φ) :=
∞

∑
k=−∞

(φ + 2kπ)a ψn(φ + 2kπ) , (77)

since the series in the r.h.s. in (77) are absolutely convergent.
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We want to study some properties of the operator Φ. We begin with the following
property valid for Hermite polynomials

xHn(x) =
1
2

Hn+1(x) + n Hn−1(x) . (78)

Using this property in (76), we obtain

ΦCn(φ) =
∞

∑
k=−∞

(φ + 2kπ) Hn(φ + 2kπ) e−(φ+2kπ)2/2

=
1
2

∞

∑
k=−∞

Hn+1(φ + 2kπ) e−(φ+2kπ)2/2

+n
∞

∑
k=−∞

Hn−1(φ + 2kπ) e−(φ+2kπ)2/2

=
1
2
Cn+1(φ) + nCn−1(φ) .

(79)

Note that ΦC0(φ) ∝ C1(φ).

6.1.2. Derivative Operator

Next, let us define the derivative operator Dφ on the subspace of all linear combina-
tions of the functions {Cn(φ)}n∈N. Clearly, we just need to define the action Dφ on each of
these functions. To begin with, let us write

Dφ Cn(φ) :=
∞

∑
k=−∞

d ψn(φ + 2kπ)

d (φ + 2kπ)
, n = 0, 1, 2, . . . . (80)

From the properties of the Hermite functions, we may obtain two different expressions,
although equivalent, for the derivative of a Hermite function, which are

ψ′n(x) =
√

2n ψn−1(x)− x ψn(x) ,

ψ′n(x) = x ψn(x) +
√

2(n + 1)ψn+1(x) .
(81)

Let us use the first expression of (80) in (81). The result is

Dφ Cn(φ) = −
∞

∑
k=−∞

{(φ + 2kπ)ψn(φ + 2kπ)−
√

2n ψn−1(φ + 2kπ)}

= −ΦCn(φ) +
√

2nCn−1(φ) ,

(82)

where the last identity on (82) comes from the absolute convergence of the series involved
and the definition of Φ. Next, using the second expression of (81), we have

Dφ Cn(φ) =
∞

∑
k=−∞

{(φ + 2kπ)ψn(φ + 2kπ) +
√

2(n + 1)ψn+1(φ + 2kπ)}

= ΦCn(φ) +
√

2(n + 1)Cn+1(φ) .

(83)

We may use either one of the equivalent relations (82) or (83) as the definition of the
operator Dφ.

6.2. Ladder Operators

Let us define ladder operators on the subspace of linear combinations of the elements
of {Cn(φ)} as follows

A+
φ Cn(φ) :=

√
n + 1Cn+1(φ) , A−φ Cn(φ) :=

√
nCn−1(φ) . (84)
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From (82)–(84), we obviously have that

A+
φ =

1√
2
(Dφ −Φ) , A−φ =

1√
2
(Dφ + Φ) , (85)

so that
Φ =

1√
2
(A−φ − A+

φ ) , Dφ =
1√
2
(A−φ + A+

φ ) . (86)

Exactly as with the quantum harmonic oscillator, we may define the following
number operator

Nφ := A+
φ A−φ , so that Nφ Cn(φ) = nCn(φ) , n = 0, 1, 2, . . . . (87)

It is also obvious that
1
2
(Φ2 − D2

φ) = Nφ +
1
2

. (88)

This completes the analogy with the quantum harmonic oscillator. All these operators
admit closed extensions and are unbound.

6.3. Operators on l2(Z)
In the previous two subsections we have been concerned with functions in and

operators on subspaces of L2(C). Now, let us find the equivalent objects in l2(Z).
Using the canonical orthonormal basis {Bm}m∈Z of l2(Z) defined in Section 5, we can

write after (68)

χn =
∞

∑
m=−∞

ψn(m)Bm , ∀n ∈ N . (89)

We define the following operators on the set of the vectors {χn}n∈N and then extend them
by linearity to the subspace of their linear combinations

M χn = M
∞

∑
m=−∞

ψn(m)Bm :=
∞

∑
m=−∞

m ψn(m)Bm ,

Ma χn :=
∞

∑
m=−∞

ma ψn(m)Bm ,
(90)

a being any real number greater than or equal to 1. Expressions (90) are well defined and
belong to l2(Z). In fact, after (67) and some analysis, we conclude that

∞

∑
m=−∞

|mα ψn(m)|2 ≤ 22n ((n + 1)!)2
∞

∑
m=−∞

e−m2
m2(n+a) < ∞ . (91)

In addition, we may also define a formal derivative on the space of finite linear
combinations of the {χn} as follows

D χn :=
∞

∑
m=−∞

ψ′(m)Bm , ψ′(m) :=
d

dx
ψ(x)

∣∣∣∣
x=m

. (92)

Choosing the first expression in (81) and taking into account (91), we have

D χn =
∞

∑
m=−∞

{
√

2n ψn−1(m)−m ψn(m)}Bm

=
√

2n
∞

∑
m=−∞

ψn−1(m)Bm −
∞

∑
m=−∞

m ψn(m)Bm

=
√

2n χn−1 −M χn ,

(93)



Symmetry 2021, 13, 853 16 of 25

where the first identity in (93) makes sense because {Bm} is an orthonormal basis. Analo-
gously, using the second row in (82), we have

D χn =
∞

∑
m=−∞

{m ψn(m) +
√

2(n + 1)ψn+1(m)}Bm

=
∞

∑
m=−∞

m ψn(m)Bm +
√

2(n + 1)
∞

∑
m=−∞

ψn+1(m)Bm

= M χn +
√

2(n + 1) χn+1 .

(94)

Both Equations (93) and (94) show independently that D is well defined in the space of
finite linear combinations of vectors {χn} and, therefore, (92) makes sense. In addition, if
we define on the same space the creation, B+, and annihilation, B−, operators as

B+χn :=
√

n + 1 χn+1 , B− χn :=
√

n χn−1 , (95)

we have the following relations

B+ =

√
2

2
(M− D) , B− =

√
2

2
(M + D) , (96)

and

M =

√
2

2
(B+ + B−) , D =

√
2

2
(B− − B+) . (97)

Formulas (95)–(97) are equivalent to (84)–(86), respectively. Then, we may define the
corresponding number operator as

NZ := B+ B− , (98)

which on the considered systems of generators gives

NZ χn = n χn . (99)

These expressions give a harmonic oscillator like equation

1
2
(M2 − D2) χn = (NZ + 1/2) χn . (100)

Equations (99) and (100) are valid for all n = 0, 1, 2, . . . . Again, these operators are closable
and unbound.

7. On the Continuity of the Relevant Operators

Let us go back to the sequence of functions {Cn(φ)}. These functions are linearly
independent after Proposition A2 (Appendix A). Thus, the functions in the sequence
{Cn(φ)} are linearly independent. Then, we may consider the linear space G spanned by
them and introduce on it a new scalar product defined as 〈Cn|Cm〉 = δnm, where δnm is the
Kronecker delta. This scalar product is now extended to the whole G by linearity to the
right and anti-linearity to the left. The resulting pre-Hilbert space may then be completed
so as to obtain a Hilbert space that we shall denote asH. Next, let us define the space S of
all functions

f (φ) =
∞

∑
n=0

an Cn(φ) ∈ H , an ∈ C (101)

with the following property

∣∣∣∣ f (φ)∣∣∣∣2p :=
∞

∑
n=0

∣∣an
∣∣2 (n + 1)2p < ∞ , p = 0, 1, 2, . . . . (102)
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Clearly, S is isomorphic algebraic and topologically to the Schwartz space S of all C∞(R)
functions that go to zero at infinity faster than the inverse of any polynomial, see [2], as
the topology on S is given by the countable set of norms (102). The triplet S ⊂ H ⊂ S×,
where S× is the dual space of S endowed with the weak topology corresponding to the
dual pair {S,S×} [48] is a rigged Hilbert space or Gelfand triplet.

The operators Φ, Dφ, and A±φ are continuous linear operators on S and the same
property holds for the algebra spanned by these operators. For instance, let us pick
f (φ) ∈ S (101). Then, using (79), we have

∣∣∣∣Φ f (φ)
∣∣∣∣

p =
1
2

∣∣∣∣∣∣∣∣ ∞

∑
n=0

an Cn+1(φ)

∣∣∣∣∣∣∣∣
p
+

∣∣∣∣∣∣∣∣ ∞

∑
n=0

an nCn−1(φ)

∣∣∣∣∣∣∣∣
p

≤ 1
2

√
∞

∑
n=0
|an|2 (n + 1)2p +

√
∞

∑
n=1
|an|2 n (n + 1)2p

≤ 1
2

√
∞

∑
n=0
|an|2 (n + 1)2p +

√
∞

∑
n=0
|an|2 (n + 1)2(p+1)

=
1
2

∣∣∣∣ f (φ)∣∣∣∣p + ∣∣∣∣ f (φ)|∣∣∣∣p+1 .

(103)

This proves that ΦS ⊂ S with continuity. From here, it is obvious that the same property
holds for Φm, with m = 0, 1, 2, . . . . The proof for the same property concerning Dφ comes
from (83) and for A±φ from (84).

From these results, it is clear that all the operators in the algebra spanned by Φ, Dφ

and A±φ are continuous on S, including the number operator Nφ. Then, observe that A±φ
are the formal adjoint of each other. From (94), we see that Dφ is formally symmetric and
that the formal adjoint of Φ is −Φ. Let B be an arbitrary densely defined operator on the
Hilbert space and B† its adjoint. Assume that B† leaves S invariant, which means that
B† f ∈ S for any f ∈ S. Then, using the duality formula

〈B† f |G〉 = 〈 f |BG〉 , f ∈ S , G ∈ S× , (104)

one shows that B may be extended as a linear operator to the dual S×. In addition, if B†

is continuous on S, so is B on S× with the weak topology on S×. Therefore, the algebra
spanned by the operators Φ, Dφ, and A±φ may be extended to the dual S× and these
extensions are continuous with the weak topology on the dual.

However, the above discussion, notwithstanding its simplicity, relies on unnatural
Hilbert metrics and is somehow artificial. On the other hand, the use of the natural scalar
product on L2(C) may require of the introduction of a more artificial test space that we
shall denote with D. In order to construct D, let us consider the linear space of all finite
linear combinations of functions Cn(φ)

N

∑
n=0

fn Cn(φ) , fn ∈ C , N = 0, 1, 2, . . . . (105)

On this linear space, we define the following set of seminorms (indeed norms), pk(−)

pk

(
N

∑
n=0

fn Cn(φ)

)
:=

N

∑
n=0
| fn| bn ((n + 1)!)k , bn := eπ (2π)2n . (106)
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The resulting locally convex space needs not be complete, although it is always possible to
complete it with respect to the locally convex topology generated by the semi-norms (106).
We call D to this completion. Note that∣∣∣∣∣

∣∣∣∣∣ N

∑
n=0

fn Cn(φ)

∣∣∣∣∣
∣∣∣∣∣ ≤ N

∑
n=0
| fn| ||Cn(φ)|| =

N

∑
n=0
| fn|

√
∞

∑
m=−∞

|ψn(m)|2 , (107)

where the identity in (107) is a consequence of (A16) and (A17). Then, combining inequal-
ities ∑∞

m=−∞ e−m2
m2n ≤ c(n + 1)! 2n+1 first and then (A6) , we obtain that the last term

in (107) is smaller or equal to

N

∑
n=0
| fn| 2n (n + 1)!

√
c (n + 1) ≤

√
c

N

∑
n=0
| fn| bn ((n + 1)!)2

=
√

c p2

(
N

∑
n=0

fn Cn(φ)

)
.

(108)

This chain of inequalities shows that the canonical identity i : D 7−→ L2(C) is continuous,
so that

D ⊂ L2(C) ⊂ D× , (109)

is a rigged Hilbert space, or Gelfand triplet. The dual space D× is endowed with any
topology compatible with duality (strong, weak, McKey).

Now, proving the continuity of the operators defined in Sections 6.1 and 6.2 on D is
rather trivial. For instance, take A+

φ as defined in (84). Obviously,

A+
φ

N

∑
n=0

fn Cn(φ) =
N

∑
n=0

fn
√

n + 1Cn+1(φ)

= f0 C1(φ) + f1
√

2C2(φ) + · · ·+ fn
√

n + 1Cn+1(φ) .

(110)

Hence,

pk

(
A+

φ

N

∑
n=0

fn Cn(φ)

)
= | f0| b1

√
1 [(1 + 1)]k + · · ·+ | fn| bn+1

√
n + 1 ((n + 1))k . (111)

Then,

bn+1 = eπ (2π)2n+2 = bn(2π)2 , ((n + 1)!)k = (n + 1)k(n!)k ≤ (n!)k+1 , (112)

so that

pk

(
A+

φ

N

∑
n=0

fn Cn(φ)

)
≤ (2π)2 pk+2

(
N

∑
n=0

fn Cn(φ)

)
, (113)

which proves, both, that A+
φ D ⊂ D and that A+

φ are continuous on D. Similar proofs apply
to the other operators in (76) and (77).

Analogous results can be obtained when dealing with the operators defined in
Section 6.3.

8. Concluding Remarks

We investigated the role of Hermite functions in Harmonic analysis in connection
with Fourier analysis. We showed that Hermite functions permit the construction of a
complete set of periodic functions defined in the unit circle that span L2(C). Using the
Gramm–Schmidt procedure, we readily obtain an orthonormal basis for L2(C) out of
these functions.
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At the same time, and using the normalized Hermite functions, we constructed a
system of generators in l2(Z), the space of square summable complex sequences indexed
by the integer numbers. We showed that the use of Fourier series and Fourier transform
relates both systems of generators, in L2(C) and l2(Z) in a very natural way, defining a
unitary transformation between these two spaces.

On the subspace of L2(C), including a complete set of periodic functions, we defined
a multiplication and a derivation operator that preserve periodicity in both cases. These
operators generate creation and annihilation operators for the defined complete set of
periodic functions, which behave just as creation and annihilation operators for the har-
monic oscillator. Similar operators with identical properties are defined for l2(Z). We
have constructed rigged Hilbert spaces supporting these operators on which they are
continuous operators.
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Appendix A. Determinants of Hermite Polynomials

In Appendix A, we shall prove some results relevant for the development of Section 5.

Proposition A1. The following two determinants are different from zero∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(−m) . . . H0(0) . . . H0(m)

H1(−m) . . . H1(0) . . . H1(m)

. . . . . . . . . . . . . . .

H2m(−m) . . . H2m(0) . . . H2m(m)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(0) H0(1) . . . H0(m)

H1(0) H1(1) . . . H1(m)

. . . . . . . . . . . .

Hm(0) Hm(1) . . . Hm(m)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A1)

where Hn(k) is the Hermite polynomial Hn(x) evaluated at the integer point k and m ∈ N.

Proof. Let us prove that the second determinant is different from zero. The proof of this
property for the first determinant is similar.

We proceed by induction on the dimension m of the determinant. Since we know
explicit expressions for the low order Hermite polynomials, we easily conclude that the
determinant on the right hand side of (A1) is different from zero for m = 0, 1, 2, 3, 4. Let us
assume that this property is true for m = 0, 1, 2, . . . , n. Take m = n + 1 and assume that the
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property is not correct, i.e., that the determinant vanishes. Then, it must be a linear relation
between the rows of the type (let us use column notation)

Hn+1(0)
Hn+1(1)

...
Hn+1(n)

Hn+1(n + 1)

 = λ0


Hn(0)
Hn(1)

...
Hn(n)

Hn(n + 1)

+ λ1


Hn−1(0)
Hn−1(1)

...
Hn−1(n)

Hn−1(n + 1)+

+

· · ·+ λn


H0(0)
H0(1)

...
H0(n)

H0(n + 1)

 .

(A2)

Those vectors on the right hand side of (A2) are linearly independent, since by the hypoth-
esis of induction the vectors formed by their first n components are linearly independent.
Therefore, the set of coefficients λ0, λ2, . . . , λn must be uniquely determined.

Now, let us consider the relation between the Hermite polynomials given by

Hn+1(x) = 2x Hn(x)− 2n Hn−1(x) , (A3)

and let us use this relation in the last row of (A2), so that

Hn+1(n + 1) = 2(n + 1) Hn(n + 1)− 2n Hn−1(n + 1) , (A4)

which implies that λ0 = 2(n + 1), λ1 = −2n and λ2 = · · · = λn = 0. Let us use again (A3)
in (A4). Hence,

Hn+1(n + 1) = [4(n + 1)2 − 2n] Hn−1(n + 1)− 2(n− 1) Hn−2(n + 1) , (A5)

so that λ0 = 0, λ1 = 4(n + 1)2− 2n and λ2 = −2(n− 1), which is an obvious contradiction.
Thus, a relation like (A2) is not possible and, therefore, the second determinant in (A1)
cannot vanish.

We could also have completed the proof by observing the first component. If n is
even, then, Hn+1(0) = 0 and Hn−1(0) = 0. Since λ2 = · · · = λ0 = 0, this implies that
λ0 = 0, a contradiction. If n were odd, an easy calculation shows that λ1 = n, which is
again contradictory with the result obtained with the last row in (A2).

Proposition A2. The sequences χn = {ψn(m)}m∈Z, with ψn(x) the Hermite functions (1), for
any n ∈ N are in l2(Z). They are linearly independent and span l2(Z).

Proof. We need to show that, for each value of n, χn := ∑ ψn(m)Bm is a vector in l2(Z).
By the properties of Hilbert spaces, this is equivalent to saying that

∞

∑
m=−∞

|ψn(m)|2 < ∞ . (A6)

Following the machinery and arguments in the proof of Proposition 1 (Section 3), we
find that

∞

∑
m=−∞

|ψn(m)|2 ≤ 2n (n + 1) (n + 1)!
∞

∑
m=−∞

e−m2
m2n . (A7)

The last series in (A7) is convergent for any value of n. Therefore, the sequences χn are in
the Hilbert space l2(Z) for all n = 0, 1, 2, . . . .



Symmetry 2021, 13, 853 21 of 25

To prove that the sequences are linearly independent, let us consider an arbitrary finite
linear combination (by a standard definition in linear algebra, all linear combinations are
finite) of the form

0 =
N

∑
n=0

an χn =
∞

∑
m=−∞

{
N

∑
n=0

an ψn(m)

}
Bm . (A8)

Since {Bm}m∈Z is an orthonormal basis in l2(Z) the change in the order in (A8) is legitimate
as well as that the

p

∑
n=0

an ψn(m) = 0 , (A9)

expression that must be valid for m = 0,±1,±2, . . . . If we choose m = 0, 1, 2, . . . , n, (A9)
gives a linear homogeneous system of p + 1 equations with p + 1 indeterminates, which
are a0, a1, . . . , ap. The determinant of the coefficients of this system is given by∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ0(0) ψ0(1) . . . ψ0(p)

ψ1(0) ψ1(1) . . . ψ1(p)

. . . . . . . . . . . .

ψp(0) ψp(1) . . . ψp(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(0) e1/2 H0(1) . . . ep2/2 H0(p)

H1(0) e1/2 H1(1) . . . ep2/2 H1(p)

. . . . . . . . . . . .

Hp(0) e1/2 Hp(1) . . . ep2/2 Hp(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A10)

This determinant is different from zero if and only if the second determinant in (A1) is
non-vanishing, which is true due to Proposition A1. Therefore, we have that a0 = a1 =
· · · = ap = 0 and the {χn}n∈N are linearly independent.

Next, let us show that the set of sequences {χn}n∈N spans l2(Z). We know that this
happens if and only if for all n ∈ N, we have [5]

〈χn|ϕ〉 = 0 =⇒ ϕ = 0 , (A11)

for any ϕ in a dense subspace of l2(Z). As a dense subspace, we choose the space of all
finite linear combinations of elements of the basis {Bm}. These vectors are of the form

ϕp :=
p

∑
m=−p

am Bm , (A12)

where p is an arbitrary non-negative integer and the coefficients am are arbitrary. Let us
assume that, for all χn, the scalar product 〈χn|ϕp〉 = 0. We have that

0 = 〈χn|ϕp〉 =
p

∑
m=−p

am〈χn|Bm〉 =
p

∑
m=−p

am ψn(m) , ∀n ∈ N . (A13)

This gives an infinite sequence of algebraic equations with 2p + 1 indeterminates am, with
m = −p,−p + 1 . . . , p. The first 2p + 1 equations of this infinite system are

a−p ψ0(−p) + . . . . . . + ap ψ0(p) = 0 ,

a−p ψ1(−p) + . . . . . . + ap ψ1(p) = 0 ,

. . . . . . . . . . . . . . . . . .

a−p ψ2p(−p) + . . . . . . + aN ψ2p(p) = 0 .

(A14)

Since the values of the Hermite functions, ψm(x), at the integers are given data, this
specified set of linear equations with constant coefficients will have a solution different
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from zero if and only if the determinant of the coefficients vanishes. This determinant is
given in our case by∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ0(−p) . . . ψ0(0) . . . ψ0(p)

ψ1(−p) . . . ψ1(0) . . . ψ1(p)

. . . . . . . . . . . . . . .

ψ2p(−p) . . . ψ2p(0) . . . ψ2p(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−
p2
2 H0(−p) . . . H0(0) . . . e

p2
2 , H0(p)

e−
p2
2 H1(−p) . . . H1(0) . . . e

p2
2 H1(p)

. . . . . . . . . . . . . . .

e−
p2
2 H2p(−p) . . . H2p(0) . . . e

p2
2 H2p(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A15)

This second determinant is just the determinant in (A1) as all the exponentials cancel out.
Then, and due to Proposition A1, the determinant is non-vanishing and consequently, the
indeterminates a−p = · · · = a0 = · · · = ap = 0, so that ϕn ≡ 0 and the set {χn}n∈N is
complete in l2(Z).

Appendix B. Orthonormal Systems in L2(C) and l2(Z)
In order to construct an orthonormal basis in L2(C) after the set of functions {Cn(φ)},

we first evaluate the scalar product on L2(C) of two of these functions

〈Cn|Cm〉 =
1

2π

∫ π

−π
C∗n(φ)Cm(φ) dφ

=

(
1

2π

)2 ∫ π

−π
dφ

∞

∑
k=−∞

∞

∑
j=−∞

(−i)n im ψ∗n(k)ψm(j) e−i(−k+j)φ

=
1

2π

∞

∑
k=−∞

∞

∑
j=−∞

δk,j im−n ψ∗n(k)ψm(j)

=
1

2π

∞

∑
j=−∞

im−n ψ∗n(j)ψm(j) = im−n (χn, χm) ,

(A16)

where (χn, χm) is the scalar product in l2(Z) of the sequences χn and χm defined in (68).
Due to parity properties for Hermite polynomials, the last series in (A16) vanishes if one of
the indices n or m is even and the other odd. This shows that

〈Cn|Cm〉 =

 0 if n is odd and m even or vice versa,

6= 0 , otherwise
. (A17)

Note that after (A16) ∣∣∣∣Cn
∣∣∣∣2 = 〈Cn|Cn〉 =

∞

∑
m=−∞

∣∣ψn(m)
∣∣2 . (A18)

Now, we are in the position of using the system {Cn(φ)} to construct an orthonormal
system in L2(C). To do it, we need the Gramm–Schmidt process [49] (see, for instance,
Ref. [50] for a Gramm–Schmidt algorithm in order to use computer techniques). The
resulting orthonormal system would be an orthonormal basis for L2(C) as a consequence
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of Proposition A1 (see Appendix A). As is well known from the set {Cn(φ)}, we can obtain
firstly a set of orthogonal functions {Dn(φ)} where

D0 := C0 , Dn := Cn −
n−1

∑
k=0

〈Cn|Dk〉
〈Dk|Dk〉

Dk . (A19)

However, taking into account (A18), we can rewrite the relations (A19) as follows distin-
guishing between even and odd subindices of the functions, i.e.,

D0 := C0 , D2n := C2n −
n−1

∑
k=0

〈C2n|D2k〉
〈D2k|D2k〉

D2k ,

D1 := C1 , D2n+1 := C2n+1 −
n−1

∑
k=0

〈C2n+1|D2k+1〉
〈D2k+1|D2k+1〉

D2k+1 .

(A20)

Let us denote as Ĉn(φ) the normalized functions

Ĉn(φ) :=
Dn

〈Dn|Dn〉
. (A21)

Due to the properties of the Gramm–Schmidt process, the set of functions {Ĉn(φ)}n∈N
forms an orthonormal system in L2(C).

Analogously, and using Formulae (74) and (A20), we may construct new sequences,
{ζn}, in l2(Z) defined as

ζ0 := χ0 , ζn := χn −
n−1

∑
k=0

(χn, ζk)

(ζk, ζk)
ζk , (A22)

as well as the normalized series

χ̂n :=
ζn

〈ζn|ζn〉
, n ∈ N . (A23)

Series (A23) gives an orthonormal system in l2(Z). We denote the components of the χ̂n
as χ̂n = {ψ̂n(m)}m∈Z. After relations (74), (A20) and (A22), it is easy to show that (72)
and (73) yield, respectively,

Ĉn(φ) =
in
√

2π

∞

∑
m=−∞

ψ̂n(m) e−imφ , (A24)

and

ψ̂n(m) =
(−i)n
√

2π

∫ π

−π
Ĉn(φ) eimφ dφ . (A25)

Thus, we have a partial isometry U between L2(C) and l2(Z) given for any f (φ) ∈ L2(C)
in the closed subspace spanned by the {Ĉn(φ)} by

f (φ) =
∞

∑
n=0

f̂n Ĉn(φ) ;
∣∣∣∣ĉn

∣∣∣∣2 =
∞

∑
n=0

∣∣ f̂n
∣∣2 , U f (φ) =

∞

∑
n=0

fn χ̂n . (A26)

After Proposition A1 (Appendix A), we conclude that U is a unitary mapping between
L2(C) and l2(Z).
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