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Abstract: The ideal Stirling cycle describes a specific way to operate an equilibrium Stirling engine.
This cycle consists of two isothermal and two isochoric strokes. For non-equilibrium Stirling engines,
which may feature various irreversibilities and whose dynamics is characterized by a set of coupled
ordinary differential equations, a control strategy that is based on the ideal cycle will not necessarily
yield the best performance—for example, it will not generally lead to maximum power. In this paper,
we present a method to optimize the engine’s piston paths for different objectives; in particular,
power and efficiency. Here, the focus is on an indirect iterative gradient algorithm that we use to solve
the cyclic optimal control problem. The cyclic optimal control problem leads to a Hamiltonian system
that features a symmetry between its state and costate subproblems. The symmetry manifests itself
in the existence of mutually related attractive and repulsive limit cycles. Our algorithm exploits these
limit cycles to solve the state and costate problems with periodic boundary conditions. A description
of the algorithm is provided and it is explained how the control can be embedded in the system
dynamics. Moreover, the optimization results obtained for an exemplary Stirling engine model
are discussed. For this Stirling engine model, a comparison of the optimized piston paths against
harmonic piston paths shows significant gains in both power and efficiency. At the maximum power
point, the relative power gain due to the power-optimal control is ca. 28%, whereas the relative
efficiency gain due to the efficiency-optimal control at the maximum efficiency point is ca. 10%.

Keywords: cyclic optimal control; finite time thermodynamics; endoreversible thermodynamics;
Stirling; optimization

1. Introduction

Stirling engines are closed-cycle regenerative heat engines that harness a temperature
difference between two external heat baths. At the cost of taking entropy from the hot heat
bath and disposing it to the cold heat bath, they generate mechanical work. This means that
Stirling engines are very flexible regarding the possible technical representations of those
two heat baths. Therefore, they can be applied in various scenarios. Some current example
applications are power generation from burnable industrial waste gases [1], domestic
combined heat and power generation [2], electro-thermal energy storage systems for re-
newable energies as an alternative to lithium-ion batteries [3], and low-maintenance power
generation in remote regions with harsh climatic conditions [4], among others. If prop-
erly designed, Stirling engines can achieve high efficiency, durability, low-maintenance,
and low-noise operation. Hence, they are considered to be one good candidate technology
for enhancing the sustainability of power systems.

One certain ideal representation of the thermodynamic cycle performed in Stirling
engines is commonly referred to as the ideal Stirling cycle. It consists of four distinct strokes
(processes) that an enclosed working gas cyclically performs:

1. Isothermal compression at TExL
2. Isochoric regenerative heating to TExH
3. Isothermal expansion at TExH
4. Isochoric regenerative cooling to TExL
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where TExH and TExL are the temperatures of the hot and cold heat bath, respectively.
If those four ideal processes are repeated in the prescribed order, the cycle represents
an ideal heat engine, operating with Carnot efficiency ηC = 1− TExL/TExH. In the two
regenerative processes 4 and 2, heat needs to be stored and provided at a range of temper-
atures. The combined process is called regeneration, and is accomplished with help of a
multi-temperature heat storage, referred to as a regenerator.

In real Stirling engines, the working gas is typically contained in two working spaces.
One of them, the hot working space, is in thermal contact with the hot heat bath. The
other one, the cold working space, is in thermal contact with the cold heat bath. The two
working spaces’ volumes can be changed by moving pistons. As a result of those pistons’
movements, the working spaces exchange working gas through the regenerator, which is
often implemented as a porous metal structure.

In contrast to the ideal Stirling cycle, in real Stirling engines, the four above-described
strokes can typically not be clearly distinguished. This is due to several reasons. First of all,
the engine’s piston movements (piston paths) usually do not exactly reproduce the two
isochoric strokes. Moreover, the regenerator, as well as the hot and cold working spaces,
have non-zero dead volumes. The most important reason, however, is connected to the fact
that real engines are supposed to produce a finite amount of work in finite time, which
is in contrast to the assumptions of equilibrium thermodynamics, and thus to the ideal
Stirling cycle. Consequently, in real Stirling engines, various inevitable loss phenomena
occur, for example, finite heat transfer between the working gas and the external heat baths
or the regenerator matrix, pressure drop across the regenerator, and heat leaks through
the engine’s internal components.

Correspondingly, real Stirling engines are non-equilibrium devices. Hence, piston
paths aiming to emulate the ideal Stirling cycle’s four strokes would not necessarily yield
best performance. The question of what piston paths yield best performance, for example,
optimal net power, constitutes a cyclic optimal control problem.

In this paper we present an algorithm that can be used to solve such cyclic optimal
control problems. It is an indirect iterative gradient algorithm and based on Optimal
Control Theory. The algorithm starts with prescribing initial control functions determining
the piston paths. These control functions are then gradually modified over the course of
the iterations so as to gradually improve an objective and approach the optimal control.
To determine the gradual shifts in every iteration, not only does the system of ordinary
differential equations, describing the thermodynamics of the Stirling engine, need to be
solved, but also a conjugate system of differential equations. For the efficient practical
feasibility of this task, low numerical effort of the utilized thermodynamic model is crucial.
In detailed models of Stirling engines, significant numerical effort is usually connected to
the description of the regenerator. Therefore, here we will apply a Stirling engine model
with a reduced-order endoreversible regenerator model that provides a proper tradeoff
between accuracy and numerical effort for optimal control problems.

As indicated above, the core discrepancy between the ideal Stirling cycle and a real Stir-
ling engine is that, in the former, all processes are quasi-static, and hence reversible, whereas
the latter is required to produce a finite amount of work in finite time. Therefore, real Stir-
ling engines are non-equilibrium devices that could by no means achieve the performance
measures of the ideal cycle, such as Carnot efficiency. A non-equilibrium thermodynamics
field that studies how constraints on time and rate influence the performance of such
devices is Finite-Time Thermodynamics (FTT) [5,6]. FTT typically approaches this and
related questions with variational principles and global—rather than local—descriptions
of the irreversible systems considered [5].

Endoreversible Thermodynamics [7–11] can be regarded as a subfield of FTT that
intends to provide a toolbox of model building blocks from which an FTT model can
be constructed in a comprehensible way. The emphasis is placed on including the main
loss phenomena, while keeping the model structure clear and minimizing mathematical
complexity and numerical effort. The basic approach is to decompose the considered



Symmetry 2021, 13, 873 3 of 15

thermodynamic system into a network of reversible subsystems that are connected with
each other through (ir)reversible interactions. That is, in its endoreversible representa-
tion, the original system’s irreversibilities are captured by the interactions, whereas for
the reversible subsystems the known relations from equilibrium thermodynamics hold.

In the past, various endoreversible systems have been subject to investigations in-
volving control optimizations. In particular, for heat engines, the piston trajectories can
be optimized for objectives, such as power or efficiency. For example, such studies have
been carried out for engines with Diesel [11–14] and Otto [15–17] cycles, light-driven
engines [18–20], and Stirling engines [21–23].

The optimization approach used in the current study to optimize the Stirling engine
differs from [21–23] in that a cyclic version of Optimal Control Theory is applied. Be-
yond Endoreversible Thermodynamics, this has been done by Craun and Bamieh [24]
for an ideal beta-Stirling engine model with an actively controlled displacer. In [24],
the heat transfer between the heat baths and the working gas was infinitely fast and re-
generation was perfect. The pressure drop across the regenerator was thermodynamically
neglected, but considered in terms of mechanical losses. As opposed to this, in the current
study, an alpha-Stirling engine model with finite heat transfer between the heat baths and
the working gas, an external heat leak, gas leakages and friction of the piston rings, and an
irreversible regenerator is considered. Compared to the endoreversible regenerator models
used in [22,23], the EEn-regenerator model [25] used in this study features a significantly
higher degree of detail.

2. Stirling Engine Model

In this paper, our focus is on a cyclic control optimization algorithm that can be
applied to various Stirling engine models, or models of other cyclically operating systems.
Nevertheless, we here briefly introduce a Stirling engine model [25] that we will use to
demonstrate the algorithm’s usage. In particular, we will present optimization results for
this model in Section 5.

We consider an alpha-type Stirling engine as schematized in Figure 1, where the heat
transfer between the external heat baths and the working gas is realized through the
cylinders.

Figure 1. Schematics of the alpha-type Stirling engine considered. The corresponding endoreversible
model [25] has ten degrees of freedom (state variables), being the working space’s volumes Vi,
temperatures Ti, and particle numbers ni, the energies ER.h and ER.l of the hot and cold halves of
the regenerator matrix as well as the particle number nR.d and temperature TR.d of the gas inside
the regenerator dead space.

For the sake of simplicity, we assume a constant finite heat transfer coefficient. Further
irreversibilities result from an external heat leak between the heat baths, gas leakage of
the piston rings, friction of the pistons, pressure drop across the regenerator, and thermal
mixing at the interfaces of the regenerator and the working spaces.

The regenerator is described with the reduced-order endoreversible EEn-regenerator
model, developed in [25]. Essentially, this is based on the assumptions that the spatial
temperature distribution inside the regenerator is linear and that the temperature difference



Symmetry 2021, 13, 873 4 of 15

between the gas and matrix is small. Aside from external irreversibilities that automatically
occur due to thermal mixing in the regenerator’s interactions with the working spaces, inter-
nal irreversibilities can be included via entropy source terms in the EEn-regenerator model.
In the current study, the irreversibility due to the pressure drop across the regenerator is
accounted for by such an entropy source term.

The Stirling engine performance measures that are to be optimized in this study are
power and efficiency. The power, or net power output, is defined as

P =
W
τ

, (1)

with the fixed cycle time τ and the net cycle work

W =
∫ τ

0

(
pH V̇H + pL V̇L

)
− γ

(
V̇2

H + V̇2
L

)
dt, (2)

where Vi and pi are the volume and pressure of the working spaces i ∈ {H, L} and γ is
the friction coefficient of the pistons. Then, the efficiency is

η =

∫ τ
0

(
pH V̇H + pL V̇L

)
− γ

(
V̇2

H + V̇2
L

)
dt∫ τ

0 IH,ExH + KEx (TExH − TExL) dt
, (3)

where IH,ExH is the instantaneous heat flux to the hot working space and KEx (TExH − TExL)
corresponds to an external heat leak. We here use the same transfer laws and parameter
values as in [25], for example, the heat bath temperatures are defined as TExH = 500 K and
TExL = 300 K. Solely for the heat conductance of the external heat leak, we chose a different
parameter value: KEx = 5 W/K.

This Stirling engine model has ten state variables, which are the working spaces’
volumes Vi, temperatures Ti, and particle numbers ni with i ∈ {H,L}, the energies ER.h
and ER.l of the hot and cold halves of the regenerator matrix as well as the particle number
nR.d and temperature TR.d of the gas inside the regenerator dead space.

The state variables of this Stirling engine model can be arranged in a state vector x
and the state dynamics can be expressed in terms of ẋ = f (x, u). Here, f (x, u) is a vector-
valued function that depends on the state vector x and a control vector u. In our Stirling
engine model we define the control vector u in terms of an explicitly time-dependent,
τ-periodic control function u(t), which has the entries uH(t) and uL(t). Each of those two
sub-functions determines the dynamics of one working volume, as indicated in Figure 1.
An essential requirement that we raise is that the state dynamics ẋ = f (x, u(t)) features
a limit cycle with regard to all state variables, which will be necessary for the applicability
of the optimization algorithm. Therefore, care must be taken regarding the embedding of
the control in the system dynamics, which will be explained in Section 4.

3. Cyclic Optimal Control Problem

Optimal Control Theory provides a framework for the dynamic (or indirect) optimiza-
tion of dynamical systems, such as the above-described Stirling engine model. The type
of optimal control problem considered in this work can be formulated as: find an uncon-
strained, smooth, τ-periodic control function u(t) that maximizes the objective functional

J =
∫ τ

0
ζ(x, u(t))dt (4)

subject to the constraint

ẋ = f (x, u(t)) (5)
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for a fixed period τ. Here, x is the state vector of the system. The dynamics of the system is
determined by the ordinary differential Equation (5) and is influenced by the vector-valued,
explicitly time-dependent, τ-periodic control function u(t).

For the formulation of necessary conditions of optimality, a Hamilton function H is
defined as [26,27]

H(x, u, λ) := ζ(x, u) + λT f (x, u) (6)

with an adjoint vector λ, which varies over time and will henceforth also be called a costate
vector. As we will see later, there exists an interesting symmetry between the dynamics
of the state vector x and the costate vector λ. The first order necessary conditions for
the control u with the optimal value are [26,27]

ẋ = ∇λ H(x, u, λ), (7)

λ̇ = 9∇x H(x, u, λ), (8)

0 = ∇u H(x, u, λ), (9)

combined with the respective transversality conditions that specify the boundary conditions
for the state and costate dynamics from Equations (7) and (8), respectively. In the case
of the optimal cyclic regime, as valid for the stationary operational state of a cyclically
operating engine, these boundary conditions are [27]

x|τ = x|0, (10)

λ|τ = λ|0. (11)

The notation x|t refers to the value of x at time t, while it does not indicate explicit
time dependence. These boundary conditions do not render the problem overdetermined,
since the initial and final values are not quantified, but only required to be equal.

In this way, the global dynamic optimization problem from Equation (4) with the con-
straint Equation (5) is turned into the continuous set of local (static) optimization problems
from Equation (9) with the constraints Equations (7) and (8). This means that H(x, u, λ)
must be locally maximized for all t ∈ [0, τ) with respect to u. For the optimal solution x∗, u∗,
λ∗ of the considered kind of cyclic optimization problem, without explicit time dependence
of ζ(x, u), the temporal value of the Hamilton function H∗ will then be constant [26,27].

3.1. Maximum Power

In the case of the optimization being performed for the objective functional, which is
the cycle-averaged net power output P, as defined in Equation (1), the definition of the path
target function ζ(x, u) for Equations (4) and (6) is straightforward:

ζW(x, u) :=
(

pH V̇H + pL V̇L
)
− γ

(
V̇2

H + V̇2
L

)
, (12)

which is simply the instantaneous power output. Since the optimization is performed for
fixed cycle time τ, maximum power corresponds to maximum work. Hence, a prefactor of
1/τ can be disregarded here.

3.2. Maximum Efficiency

In the case of the optimization being performed for the objective of efficiency η,
as defined in Equation (3), the definition of ζ(x, u) is slightly more involved. This is
because the definition of the efficiency corresponds to a ratio of two functionals (inte-
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grals) which need to be separately evaluated before calculating their ratio. This can be
seen in Equation (3) and is in contrast to the structure of Equation (4). In order to re-
solve this discrepancy, we investigate how variations in the cycle work W and the heat
QH :=

∫ τ
0 IH,ExH + KEx (TExH − TExL) dt translate to the first variation of the efficiency:

δη = δ

(
W
QH

)
=

∂η

∂W
δW +

∂η

∂QH
δQH =

1
QH

δW − W

Q2
H

δQH. (13)

This means that the problem of optimizing the efficiency can be morphed into an equiv-
alent optimization problem of the weighted sum λW W + λQH QH with the weights being
defined according to the partial derivatives:

λW = ∂η/∂W = 1/QH and λQH = ∂η/∂QH = 9W/Q2
H. (14)

Within these weights, W and QH are the results obtained for a specific prescribed τ-periodic
control function u†(t) for which, at a given time t, the values of the control and state vectors
are u ≈ u†(t) and x ≈ x†(t). Here, x†(t) is the periodic solution of the state dynamics
for u†(t). Based on this, we can now define the path target function for maximizing
the efficiency:

ζη(x, u) :=
W

QH τ
+

1
QH

ζW(x, u)− W

Q2
H

IH,ExH(x, u). (15)

Here, W and QH are again the results obtained for a τ-periodic control function
u†(t) with the above-described closeness requirements for the instantaneous values of x
and u. In a strict sense, the path target function ζη(x, u) is therefore also a functional of

u†(t) and x†(t), that is: ζη(x, u) = ζη [ x†(·), u†(·) ](x, u) because W = W[ x†(·), u†(·) ] and

QH = QH[ x†(·), u†(·) ]. If the closeness requirement of x and u, regarding u†(t) is valid
for all t, the second and third terms in Equation (15) will (approximately) cancel upon
integration from 0 to τ. Therefore, the first term was added here to ensure that

∫ τ
0 ζη(x, u)dt

does actually represent η. This first term does, in fact, not influence the optimization
problem from Equation (7) to Equation (11), since it does not depend on the instantaneous
values of x and u.

3.3. Penalty Function

The cyclic optimal control problem introduced so far does not contain inequality
constraints for the state x or the control u. However, we can introduce inequality constraints
for x and u by means of a penalty function. In particular, we will use such a penalty function
to introduce lower and upper bounds for the Stirling engine’s working volumes:

ζpenalty(x, u) := 9v0

(
e

v1
VH,min−VH

VH,sw + e
v1

VH−VH,max
VH,sw + e

v1
VL,min−VL

VL,sw + e
v1

VL−VL,max
VL,sw

)
(16)

where the working volumes Vi are contained in x, v0 = 1 W and v1 = 500 are penalty
factors, Vi,sw = Vi,max−Vi,min refers to the admissible swept volumes and Vi,max and Vi,min
are the maximum and minimum admissible working volumes with i ∈ {H, L}.

Accordingly, in the case of optimizing the Stirling engine’s piston paths for maximum
power, the overall path target function is defined as

ζ(x, u) := ζW(x, u) + ζpenalty(x, u), (17)

whereas in case of the optimization for maximum efficiency, it is defined as

ζ(x, u) := ζη(x, u) + ζpenalty(x, u). (18)
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4. Optimization Algorithm

The indirect iterative gradient method described in the following was inspired by
a contribution of Craun and Bamieh [24,28], who solved an optimal control problem of
a modified beta-Stirling engine using an ideal thermodynamic model, namely the Schmidt
model. Similar methods have earlier been used, for example, by Horn and Lin [29], Kowler
and Kadlec [30], as well as Noorden et al. [31] for other applications. The method presented
in this paper differs from the aforementioned ones in the means by which the periodic
solutions of the state and costate equations are obtained. A pseudocode representation of
the cyclic control optimization algorithm is shown in Algorithm 1.

Algorithm 1 Cyclic optimal control algorithm.

1: //############ Basic functions of the control problem ############
2: define f (x, u){ // RHS of state dynamics
3: return temporal rate of state vector;
4: };
5: define ζ(x, u, ā){ // Path cost function, ā may contain W and QH
6: return path cost value;
7: };
8: define H(x, u, λ, ā){ // Hamilton function
9: return ζ(x, u, ā) + λT f (x, u);

10: };
11: define 9∇app

x H(x, u, λ, ā){ // Approximation of RHS of costate dynamics
12: declare ε = small number;
13: declare êm = unit vector of mth state component;
14: return ∑m 9êm( H(x + ε êm, u, λ, ā)− H(x, u, λ, ā) )/ ε;
15: };
16: define ∇app

u H(x, u, λ, ā){ // Approximation of control gradient function
17: declare ε = small number;
18: declare êm = unit vector of mth control component;
19: return ∑m êm( H(x, u + ε êm, λ, ā)− H(x, u− ε êm, λ, ā) )/(2 ε);
20: };
21: //########## Declare control, state, and costate functions ###########
22: declare τ = cycle time; // Define cycle time
23: declare u(t) with t ∈ [0, τ); // Control vector function
24: declare x(t) with t ∈ [0, τ); // State vector function
25: declare λ(t) with t ∈ [0, τ); // Costate vector function
26: initialize u(t) with smooth guess of optimal control vector function;
27: initialize x(0) with arbitrary admissible values;
28: initialize λ(0) = 0;
29: //############ Iterative optimization of the control #############
30: for(n = 0; n < large number; n = n + 1){
31: while(ε > small number){ // Solve state dynamics
32: for(t = 0; t < τ; t += ∆t){ x(t + ∆t) = x(t) + f (x(t), u(t)) ∆t; }
33: ε = ||x(τ)− x(0)||;
34: x(0) = x(τ);
35: }
36: declare a(t) = some_function(x(t),u(t)) for t ∈ [0, τ); // Auxiliary vector function
37: declare ā = cycle average of a(t) for t ∈ [0, τ); // Auxiliary vector cycle average
38: while(ε > small number){ // Solve costate dynamics
39: λ(τ) = λ(0);
40: for(t = τ; t > 0; t−= ∆t){ λ(t− ∆t) = λ(t)− 9∇app

x H(x(t), u(t), λ(t), ā) ∆t; }
41: ε = ||λ(τ)− λ(0)||;
42: }
43: declare s(t) = ∇app

u H(x(t), u(t), λ(t)) for t ∈ [0, τ); // Define search direction
44: smooth s(t) in the periodic domain t ∈ [0, τ); // Smooth search direction
45: declare Λ = small number; // Step-size factor
46: update u(t) = u(t) + Λ s(t) for t ∈ [0, τ); // Shift control
47: smooth u(t) in the periodic domain t ∈ [0, τ); // Smooth control
48: }
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In the first section, between lines 1 and 20, the basic function definitions are made.
First, the right-hand side (RHS) of the state dynamics is defined as a vector function f (x, u).
Afterwards, the path cost function ζ(x, u, ā) that is to be maximized in terms of the objective
functional from Equation (4) is defined. Here, the argument ā may, for example, contain
the cycle work W and heat QH, as required in Equation (15). Then, based on the definition
of the Hamilton function H(x, u, λ, ā) from lines 8 to 10, the right-hand side of the costate
dynamics −∇app

x H(x, u, λ, ā) is defined in terms of an approximation:

−∂H(x, u, λ, ā)
∂xm

≈ −H(x + ε êm, u, λ, ā)− H(x, u, λ, ā)
ε

(19)

where xm is the mth state component, êm is the corresponding unit vector and ε is a suf-
ficiently small difference. For simple systems, it is reasonable to derive this right-hand
side in terms of algebraic expressions. However, for involved systems it can be much
more practical to do this by numerical partial differentiation as, for example, according to
Equation (19). Note that for systems with discontinuous dynamics additional care must be
taken here in order to make sure that the derivatives are properly approximated in the vicin-
ity of the discontinuity. Similarly to −∇app

x H(x, u, λ, ā), the vector ∇app
u H(x, u, λ, ā) of

partial derivatives of the Hamilton function with respect to the control is defined from
lines 16 to 20. Here, the following approximation is used:

∂H(x, u, λ, ā)
∂um

≈ H(x, u + ε êm, λ, ā)− H(x, u− ε êm, λ, ā)
2 ε

(20)

where um is the mth control component, êm is the corresponding unit vector and ε is, again,
a sufficiently small difference.

In the second section between lines 21 and 28, the most relevant variables are declared
and initialized. These are the control vector function u(t), the state vector function x(t),
and the costate vector function λ(t). They are defined in the time domain [0, τ) and may
be implemented as vectors of arrays, where the array lengths correspond to the number of
time steps per period. That means that the values of u, x, and λ are saved at every time
step in the periodic domain. The control vector function u(t) is initialized with a smooth
τ-periodic guess of the optimal control. Moreover, x(0) is set to arbitrary but physically
admissible values, whereas λ(0) is set to 0.

The iterative control optimization itself is described in the third section between
lines 29 and 48. This starts at iteration n = 0 with the initial guess of the smooth τ-periodic
control function u(0)(t), and the previously defined state and costate initial values x(0)(0)
and λ(0)(0), respectively. Here, the bracketed superscript identifies the iteration n of the for-
loop from lines 30 to 48. Since the control is predefined, the state and costate problem can
be solved separately. The steps to obtain the subsequent iteration u(n+1)(t), according to
Algorithm 1, can be summarized in simplified terms:

0. If n = 0, set x(0)(0) to arbitrary physically admissible values and λ(0)(0) := 0.

Otherwise, set x(n)(0) := x(n−1)(τ) and λ(n)(0) := λ(n−1)(τ).
1. For given u(n)(t): Solve

ẋ(n)(t) = f (x(n)(t), u(n)(t))

by temporal forward integration in the periodic domain until the cyclic equilibrium is
reached. Save auxiliary quantities, such as the cycle work W and the heat QH in ā(n).
(Algorithm 1, lines 31 to 37: example with Euler method.)

2. For given u(n)(t), x(n)(t), ā(n): Solve

λ̇(n)(t) = 9∇x H(x(n)(t), u(n)(t), λ(n)(t), ā(n))
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by temporal backward integration in the periodic domain until the cyclic equilibrium
is reached. (Algorithm 1, lines 38 to 42: example with Euler method.)

3. Calculate the search direction (See Algorithm 1, line 43.)

s(n)(t) := ∇u H(x(n)(t), u(n)(t), λ(n)(t)).

4. Calculate the next control vector function

u(n+1)(t) := u(n)(t) + Λ s(n)(t)

with a sufficiently small positive step-size factor Λ. (Algorithm 1, line 46.)

These five steps are repeated for increasing n until u(n)(t) has converged to the optimal
control. This can, for example, be checked with the below indicators which should both
approach a numerical zero:

C(n)
∇ :=

∫ τ

0

(
∇u H(x(n)(t), u(n)(t), λ(n)(t))

)2
dt, (21)

C(n)
H := max

t
H(x(n)(t), u(n)(t), λ(n)(t))−min

t
H(x(n)(t), u(n)(t), λ(n)(t)). (22)

4.1. Exploiting Limit Cycles

The dynamic systems considered here are required to posses a limit cycle. This means
that, given a proper periodic control function, the systems feature a closed state trajectory
x∞(t) in the state space, which is attractive. Here, the subscript ∞ refers to this limit cycle.
If the state dynamics is integrated forward in time starting from t = 0 with a proper initial
value x|0 in the vicinity of x∞(0), then x|t → x∞(t) for t→ ∞. This is a property of many
dissipative systems, and it is directly made use of in the first step (Algorithm 1, lines 31 to
35) for finding the periodic solution of the state vector.

Numerical studies of optimal control problems carried out in the context of this work
show an interesting type of symmetry in that the costate dynamics then features a limit
cycle, too, for prescribed u(t) and x|t := x∞(t). However, the respective closed trajectory
λ∞(t) is repulsive when the costate dynamics is considered forward in time, and becomes
attractive in the reversed time direction: λ|t → λ∞(t) for t → 9∞. Such a relation is not
surprising, as the overall Hamiltonian system is conservative and the expansive costate
dynamics compensates for the contractive state dynamics. Therefore, in the second step
(Algorithm 1, line 38 to 42), the temporal direction of integration is reversed to obtain
the periodic solution of the costate vector.

The correspondingly enhanced stability of the costate problem under temporal back-
ward integration can also be exploited without directly making use of the limit-cycle
property for obtaining the periodic solution, but for solving boundary value problems,
for example, see [26,31].

4.2. Proper Embedding of the Control

Note that the way in which the control is embedded in the system’s state dynamics, can
influence the existence of these limit cycles in the state and costate problems. In the Stirling
engine optimization problem, considered in this paper, our goal is to optimize the piston
paths. Hence, we chose to structure the system dynamics in such a way that the control
function determines the temporal evolution of the working space volumes Vi with i ∈
{H, L}. A rather obvious choice for embedding the control ui(t) would be:

V̇i = ui(t). (23)
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For an explicitly time-dependent, τ-periodic control ui(t) that has an average value∫ τ
0 ui(t)dt = 0, the resulting volumes Vi will be τ-periodic. However, this dynamics does

not feature a limit cycle: The solution of Vi|t will even for t being large integer multiples
of τ remain equal to the initial value Vi|0 from which integration was started. This will
translate to the costate problem, so that the solution algorithm from above will, in general,
not converge without further manipulation of the optimization problem.

A proper choice for embedding the control in the system’s state dynamics that leads
to the existence of a limit cycle for a continuous τ-periodic ui(t) is:

V̇i =
ν

τ
(ui(t)−Vi) (24)

with a sufficiently large number ν. This dynamics is similar to that of an overdamped
mass-spring-damper system, where the spring support moves according to ui(t). If ν→ ∞
then Vi|t → ui(t) for t → ∞, independent of the initial value Vi|0. That is, for ν → ∞,
the control vector function u(t) represents the limit cycle V∞(t) of the volumes.

5. Results

The previously described optimization algorithm was applied to the exemplary alpha-
Stirling engine model presented in Section 2 to optimize the control (piston paths) regarding
both power and efficiency. The optimizations were performed for varying cycle time τ,
or correspondingly varying engine speed 1/τ. With help of the penalty function from
Equation (16), the working volumes were restricted to an approximate range from 100 cm3

to 1100 cm3. The initial control, from which the optimizations were started, corresponds
to harmonic piston paths exploiting the complete admissible working volume range and
featuring a phase shift of 90◦. This harmonic control will, in the following, also be used as
a benchmark.

In Figure 2, the Stirling engine’s power-optimal working volume trajectories are
shown for different engine speeds.

It can be seen that the power-optimal volume trajectories significantly deviate from
harmonic shapes. At low engine speeds, it is favorable to let the pistons rest in their extreme
positions for about half the cycle time. This feature is less pronounced at higher engine
speeds. Above ca. 1100 rpm and ca. 1300 rpm the power-optimal working volume trajecto-
ries detach from the maximum volume bounds, as can be seen in Figure 2 at t/τ ≈ 1/4
and t/τ ≈ 1, respectively. At the highest considered engine speed of 2000 rpm, the swept
volumes are considerably reduced. The power-optimal engine speed is ca. 920 rpm, which
is highlighted in Figure 2 by thick black lines. It is interesting that the power-optimal piston
motions found in [22] by direct optimization are similar to the trajectories from Figure 2
for low and medium engine speeds. This is the case even though, in the current study,
a Stirling engine with different parameters, and a much more detailed regenerator model,
are considered. Nevertheless, compared to the parametric AS class of piston motions
used in [22] for direct optimization, the trajectories from Figure 2 feature more details.

In Figure 3, the Stirling engine’s efficiency-optimal working volume trajectories are
shown, again for different engine speeds.
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Figure 2. Power-optimal trajectories of the working volumes VH (solid lines) and VL (dotted lines) of
an exemplary alpha-Stirling engine for varying engine speed 1/τ. The power-optimal engine speed
is ca. 920 rpm (thick black lines).
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Figure 3. Efficiency-optimal trajectories of the working volumes VH (solid lines) and VL (dotted lines)
of an exemplary alpha-Stirling engine for varying engine speed 1/τ. The efficiency-optimal engine
speed is ca. 430 rpm (thick black lines). The power-optimal engine speed for the efficiency-optimal
control is ca. 670 rpm (thick gray lines).
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Obviously, the efficiency-optimal volume trajectories are different from the power-
optimal ones. The tendency to let the pistons rest in their extreme positions at low engine
speeds can also be observed here. However, especially for the cold working volume,
this feature is less distinctive than with the power-optimal trajectories. The efficiency-
optimal volume trajectories tend to involve smaller piston velocities and reduced swept
volumes, when compared to the power-optimal trajectories for the same engine speed.
The efficiency-optimal engine speed is ca. 430 rpm, which is highlighted in Figure 3 by
thick black lines.

In Figure 4 the Stirling engine’s power and efficiency are plotted against the engine
speed for both the power-optimal control (solid, blue) and the efficiency-optimal control
(dashed, green). Moreover, the values obtained with the harmonic control (dotted, grey)
from which the optimizations were started is shown as a benchmark.
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Figure 4. Net output power P and efficiency η for the harmonic (gray, dotted), power-optimal (blue,
solid), and efficiency-optimal (green, dasehd) control plotted against the engine speed.

At the maximum power point, the relative power gain due to the power-optimal
control is ca. 28%. The relative efficiency gain at the maximum efficiency point, which is
achieved with the efficiency-optimal control, is ca. 10%.

Obviously, for a given engine speed, the power-optimal and efficiency-optimal controls
each lead to maximum power and maximum efficiency, respectively. However, the opti-
mization for one performance measure may come at the cost of the other. This can, in par-
ticular, be seen in the left-hand subfigure for the efficiency-optimal control: For medium
engine speeds, the optimization for maximum efficiency leads to remarkable reductions in
the output power. There, the power even drops below that obtained with the harmonic
control. As opposed to that, the power-optimal control also leads to higher efficiency than
the harmonic control over the complete considered range of engine speeds. Note, however,
that this may be different for a different set of model parameters.

In the left-hand subfigure of Figure 4, it can be seen that the efficiency-optimal control
(green, dashed) leads to a sharp bend at the maximum power point. This occurs at an engine
speed of ca. 670 rpm, where the hot working volume trajectory (solid gray line in Figure 3)
starts to detach from the maximum volume bound at t/τ ≈ 1.

Note that optimal controls obtained with the optimization algorithm introduced above
generally constitute local optima. This becomes obvious in Figure 4 when, for example,
comparing the powers resulting from the power-optimal controls at τ = 0.06 s (1000 rpm)
and τ = 0.12 s (500 rpm). At τ = 0.06 s the power is close to the maximum value, whereas
at τ = 0.12 s the power is much lower. However, it is clear that the power-optimal control
obtained for τ = 0.06 s is an admissible periodic control for τ = 0.12 s as well, since two
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oscillations could be performed in one cycle. Hence, the power obtained for τ = 0.06 s
(1000 rpm) constitutes a lower bound for the global optimum at τ = 0.12 s (500 rpm). It can
be concluded that the optimal control found for τ = 0.12 s (500 rpm) is a local optimum
and not the global one. Similar arguments are applicable for the efficiency-optimal control,
for example, with the efficiency values obtained at 400 rpm and 200 rpm.

6. Summary

In this paper, we presented an iterative gradient method for optimizing the piston
paths of Stirling engines, which is based on Cyclic Optimal Control Theory. After a brief
introduction to Stirling engines, we outlined an exemplary irreversible alpha-Stirling
engine model. This model served for illustrative purposes and is structured in such a way
that its state dynamics can be expressed as a set of coupled ordinary differential equations.
The Stirling engine’s state dynamics is influenced by an explicitly time-dependent, vector-
valued control function. In particular, this control function determines the temporal paths
of the engine’s two working pistons.

The question of which realization of those piston paths—or correspondingly what
control function—leads to optimal engine performance regarding a specific objective for
a fixed cycle time, constitutes a cyclic optimal control problem. We introduced the nec-
essary conditions of optimality for this problem, involving the definition of a Hamilton
function, a path target function, and a set of adjoint ordinary differential equations (costate
dynamics). For the optimization of Stirling engines, we presented proper definitions of
path target functions to maximize either power or efficiency. Maximum and minimum
volume constraints were accounted for here via an additional penalty term in the respective
path target function.

Then, we gave a detailed description of an iterative optimization algorithm that starts
with a predefined periodic control function, which is gradually shifted over the course of
the iterations, so as to gradually enlarge the objective and approach the optimal control. To
determine those gradual shifts of the control in every iteration, not only the engine’s state
dynamics needs to be solved, but also the costate dynamics. The cyclic optimal control
problem features a symmetry that manifests itself in attractive and repulsive limit cycles in
the state and costate dynamics, respectively. The algorithm exploits these limit cycles to
solve the state and costate dynamics for periodic boundary conditions.

This optimization algorithm was applied to both, power-optimize and efficiency-
optimize the control (piston paths) of the above-mentioned exemplary alpha-Stirling
engine model for a range of cycle times. The optimization results were compared to piston
paths that correspond to a harmonic control with 90◦ phase shift, which had been used as
an initial control for the optimizations. At the maximum power point, the relative power
gain due to the power-optimal control is ca. 28%, whereas the relative efficiency gain due
to the efficiency-optimal control at the maximum efficiency point is ca. 10%.

The developed optimization algorithm can easily be applied to other Stirling en-
gine models that involve additional irreversibilities or transfer laws that are adapted to
describe a specific experimental engine setup. Design limitations such as maximum pres-
sure or maximum piston acceleration can be included in the optimal control problem in
terms of additional constraints. Moreover, other types of machines, such as beta-type
or free-piston Stirling engines, Stirling cryocoolers, or Vuilleumier refrigerators can be
optimized analogously.

7. Conclusions

For the cyclic optimal control problems of a Stirling engine investigated here, we
observed that the existence of an attractive limit cycle in the state dynamics translates
to a repulsive limit cycle in the costate dynamics. We conclude that a very stable and
numerically efficient way to solve such problems is through using indirect iterative gradient
algorithms that exploit these limit cycles to solve the state and costate dynamics by temporal
forward and backward integration, respectively.
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In the case of the considered exemplary Stirling engine, the conducted piston path
optimizations lead to significant performance gains of ca. 28% in maximum power and
ca. 10% in maximum efficiency. This generally confirms earlier results [22–24] and we
conclude that it can be very worthwhile to perform such optimizations during the design
process of new engines or to improve the control strategy of existing ones. Numerous
types of energy conversion systems operate cyclically. We expect that cyclic optimal
control theory and, in particular, the developed algorithm can be applied to a wide class
of these systems, in order to identify potential performance improvements and enhance
their sustainability.
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