
symmetryS S

Article

A New Analysis of Fractional-Order Equal-Width Equations via
Novel Techniques

Muhammad Naeem 1 , Ahmed M. Zidan 2,3 , Kamsing Nonlaopon 4,* , Muhammad I. Syam 5 ,
Zeyad Al-Zhour 6 and Rasool Shah 7

����������
�������

Citation: Naeem, M.; Zidan, A.M.;

Nonlaopon, K.; Syam, M.I.; Al-Zhour,

Z.; Shah, R. A New Analysis of

Fractional-Order Equal-Width

Equations via a Novel Techniques.

Symmetry 2021, 13, 886. https://

doi.org/10.3390/sym13050886

Academic Editor: Jan Awrejcewicz

Received: 27 April 2021

Accepted: 12 May 2021

Published: 17 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Deanship of Joint First Year, Umm Al-Qura University, Makkah P.O. Box 517, Saudi Arabia;
mfaridoon@uqu.edu.sa

2 Department of Mathematics, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
ahmoahmed@kku.edu.sa

3 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
4 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
5 Department of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates;

m.syam@uaeu.ac.ae
6 Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University,

Dammam 31441, Saudi Arabia; zalzhour@iau.edu.sa
7 Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan;

rasoolshah@awkum.edu.pk
* Correspondence: nkamsi@kku.ac.th

Abstract: In this paper, the new iterative transform method and the homotopy perturbation transform
method was used to solve fractional-order Equal-Width equations with the help of Caputo-Fabrizio.
This method combines the Laplace transform with the new iterative transform method and the
homotopy perturbation method. The approximate results are calculated in the series form with easily
computable components. The fractional Equal-Width equations play an essential role in describe
hydromagnetic waves in cold plasma. Our object is to study the nonlinear behaviour of the plasma
system and highlight the critical points. The techniques are very reliable, effective, and efficient,
which can solve a wide range of problems arising in engineering and sciences.

Keywords: new iterative method; homotopy perturbation method; Caputo–Fabrizio operator; laplace
transform; Equal-Width equations

1. Introduction

Many researchers have studied fractional evaluation equations in the last decade
because of their significant applicability in various fields of modern technology and science.
It has been demonstrated that time-fractional equations define certain physical processes
and that their application solves different problems. In this regard, it is critical to develop
more implementations of innovative for fractional calculus [1–6]. Ford and Simpson found
the fractional Caputo derivative [7] to be the best technique for finding time-fractional
problems since it consistently contains the initial specifications that are missing in different
individual models [8]. According to Spanier and Oldham, integrals and fractional deriva-
tives can be utilized to demonstrate much more useful synthetic models than traditional
approaches [9]. Furthermore, later on, fractional theory commitments and implementation,
such as fractal mathematics, can be discussed in the literature. Readers interested are
referred to [10–18].

Many researchers have focused on partial differential equations in recent years due to
their wide range of technology and research implementations. These fractional equations
are appropriate for identifying different important inventions in fluid dynamics, magnetic
fields, nuclear physics, acoustics, electrodynamics, particle physics, optical structures, vis-
coelasticity, and other fields [19–21]. The fractional-order nonlinear Equal-Width equations
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are fundamental partial differential equations that show the various complex nonlinear
phenomenon in the field of sciences, usually in plasma physics, plasma waves, fluid me-
chanics, chemical physics, solid-state physics, etc. The Equal-Width equations described
the behavior of nonlinear waves in a variety of nonlinear systems, including hydromag-
netic waves in acoustic waves in plasma, surface waves incompressible fluids, cold plasma,
shallow water waves, acoustic waves in enharmonic crystals, and so on [22–25].

The general fractional-order equal width (EW) equation has the following form for
long waves traveling in the positive φ direction [26–33]:

D$
=ω = αωpωφ − βωφφ= = 0, = > 0, φ ∈ R, 0 < $ ≤ 1,

where p is a positive integer; α and β are the positive constant, which require the bound-
ary conditions ω → 0 as φ → ±∞; and $ is a parameter presenting order of fractional
derivative. The derivative is understood in Caputo–Fabrizio form. Function ω(φ,=) is
probability density function, φ is the spatial coordinate, and = is the temporal coordinate.
This expression carries a parameter that describes fractional-order derivative. For $ = 1,
fractional-order equations convert into classical equations. In this paper, we shall incor-
porate periodic boundary conditions for a region a ≤ φ ≤ b. The form of the initial wave
will be taken so that at large distances from the wave, |ω| is very small and follows the
free-space boundary conditions ω = 0.

Numerous researchers have used various techniques to solve nonlinear fractional
differential equations. Many investigators have used various methods to solve a variety of
problems in previously implemented different analytical and numerical methods, such as
the Adomian decomposition technique, finite difference method, generalized differential
transform technique, finite element technique, perturbation methods, fractional differential
transform technique, homotopy analysis strategy, iterative technique, etc., see [26–31,34–36]
for more details. The homotopy analysis method (HAM) is a brilliant mathematical strategy
proposed and applied by Liao [32,33,37]. Some scientists have shown the promise of using
the HAM to study different mathematical modeling [38]. Furthermore, a good fundamen-
tal method identified as the homotopy analysis transform technique is as an important
example of the homotopy analysis method that is used by combining the Laplace transfor-
mation technique. This inventive convergence of HAM and Laplace transformation is used
to examine a wide variety of different problems [39,40]. When compared to traditional
methods, these changes promote and strengthen the problem-solving methodology.

Several authors have suggested techniques for find the solution of fractional partial
differential equations applying the fractional order Caputo and Fabrizio operators. The
fractional-order wave equations was analyzed analytically by Xu in [41], who reduced
the governing equation to two fractional ordinary differential equations. Dehghan et al.
in [42], for example, used the HAM to solve linear partial differential equations; fractional
derivatives are expressed by Liouville-Caputo sense in this work. Using the CF fractional
derivative, Goufo et al. [43] developed a mathematical analysis of a model of rock fracture
in the environment and achieved computational and analytical techniques. In [44], Jafari et
al. utilized the HAM to solve a multi-order fractional differential equation investigated
by Diethelm and Ford [45]. The chinese mathemation JH He introduce the homotopy
perturbation method in 1998 [46]. This technique is efficient and accurate and eliminates
an unconditione matrix, complicate integrals, and infinite series form. This method does
not need of the problem a specific parameters. The homotopy perturbation transformation
method (HPTM) combines the Elzaki transformation and the Homotopy perturbation
method. Many researcher have been implemented HPTM to solving differential equations,
such as Navier-Stokes problems [47], heat-like problems [48], gas dynamic model [49],
Fisher’s and hyperbolic equation [50].

Daftardar-Gejji and Jafari [51,52] developed a new iterative approach for solving
nonlinear equations in 2006. Jafari et al. [53] first applied Laplace transform in the iterative
technique. They proposed a new straightforward method called the iterative Laplace
transform method to look for the numerical solution of the fractional partial differential
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equation (FPDE) system. the iterative Laplace transform method to solve linear and non-
linear partial differential equations such as time-fractional Fokker Planck equation [54],
Zakharov Kuznetsov equation [55] and Fornberg Whitham equation [56], etc.

In this paper, we use the Iterative and homotopy perturbation transform methods to
solved fractional Equal-Width equations with the help of Caputo-Fabrizio. The fractional
calculus fundamental definitions are defined in Section 2, write the general methodologies
in Sections 3 and 4, many test models to show the effectiveness of suggested techniques are
given in Sections 5 and 6, and finally, the conclusion is given in Section 7.

2. Preliminaries Concepts

This section provides some fundamental concepts of fractional calculus.

Definition 1 ([57]). The Liouville–Caputo fractional derivative of order $ is given as:

D$
=ω(φ,=) = 1

Γ(n− $)

∫ =
0

(=− θ)n−$−1ω(n)(φ, θ)dθ, n− 1 < $ < n,= > 0, (1)

where ω(φ,=) ∈ L1(a, b), ω(n)(φ, θ) is the integer n-th order derivative of ω(φ, θ) and n ∈ N.
For 0 < $ ≤ 1, we defined the Laplace transform for the Liouville–Caputo fractional derivative

of order $ as:
L[D$

=ω(φ,=)](s) = s$L[ω(φ,=)](s)− s$−1[ω(φ, 0)]. (2)

Definition 2 ([57]). The Caputo–Fabrizio fractional derivative of order $ is defined by

D$
=ω(φ,=) = (2− $)M($)

2(n− $)

∫ =
0

exp
(
− $

n− $
(=− θ)

)
ω(n)(φ, θ)dθ, (3)

where M(α) is a normalization form such that M(0) = M(1) = 1. The exponential law is used as
the nonsingular kernel in this fractional derivative.

For 0 < $ ≤ 1, we defined the Laplace transform for the Caputo–Fabrizio fractional derivative
of order $ as:

L[D$
=ω(φ,=)](s) = sL[ω(φ,=)](s)−ω(φ, 0)

s + $(1− s)
. (4)

3. Homotopy Perturbation Transform Method

Consider the general form fractional-order partial differential equation of the form

CFD$
=ω(φ,=) + Mω(φ,=) + Nω(φ,=) = h(φ,=), = > 0, 0 < $ ≤ 1 (5)

with the initial condition
ω(φ, 0) = g(φ), (6)

where is CFD$
=µ = ∂$µ($,=)

∂=$ the fractional-order Caputo operator of $, M and N are linear
and nonlinear functions, and the source term is h($,=).

Next, we apply the Laplace transform to (5), and we get

L[D$
=ω(φ,=) + Mω(φ,=) + Nω(φ,=)] = L[h(φ,=)].

Further, simplification through Laplace differentiation leads to

s$L(ω(φ,=))− s−1ω(φ, 0)
s + $(1− s)

= L[Mω(φ,=) + Nω(φ,=)] + h((φ,=))],

L[ω(φ,=)] = s−1g(φ) +
s + $(1− s)

s
L[h(φ,=)]− s + $(1− s)

s
L[Mω(φ,=) + Nω(φ,=)]. (7)

Now, taking inverse Laplace transform converts (7) into
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ω(φ,=) = L−1
{

s−1g(φ) +
s + $(1− s)

s
L[h(φ,=)]

}
−L−1

{
s + $(1− s)

s
L[Mω(φ,=) + Nω(φ,=)]

}
, (8)

or

ω(φ,=) = g(φ) + L−1
{

s + $(1− s)
s

L[h(φ,=)]
}
−L−1

{
s + $(1− s)

s
L[Mω(φ,=) + Nω(φ,=)]

}
. (9)

Now, the perturbation procedure in terms of power series with parameter p is pre-
sented as

ω(φ,=) =
∞

∑
k=0

pkωk(φ,=), (10)

where perturbation term is p and p ∈ [0, 1].
The nonlinear terms can be defined as

Nω(φ,=) =
∞

∑
k=0

pk Hk(ωk), (11)

where Hm are He’s polynomials of ω0, ω1, ω2, . . . , ωm, and can be determined as [46]

Hm(ω0, ω1, . . . , ωm) =
1

m!
∂m

∂pm

[
N

(
∞

∑
k=0

pkωk

)]
p=0

, (12)

where m ∈ N∪ {0}.
Putting (11) and (12) into (9), we have

∞

∑
k=0

pkωk(φ,=) = g(φ) + L−1
{

s + $(1− s)
s

L[h(φ,=)]
}

− p

[
L−1

{
s + $(1− s)

s
L
{

M
∞

∑
k=0

pkωk(φ,=) +
∞

∑
k=0

pk Hk(ωk)

}}]
.

(13)

By comparing the coefficient of p on both sides of (13), we get

p0 : ω0(φ,=) = g(φ) + L−1
{

s + $(1− s)
s

L[h(φ,=)]
}

,

p1 : ω1(φ,=) = L−1
{

s + $(1− s)
s

L[Mω0(φ,=) + H0(ω)]

}
,

p2 : ω2(φ,=) = L−1
{

s + $(1− s)
s

L[Mω1(φ,=) + H1(ω)]

}
,

...

pk : ωk(φ,=) = L−1
{

s + $(1− s)
s

L[Mωk−1(φ,=) + Hk−1(ω)]

}
, k > 0, k ∈ N,

(14)

where

ω(φ,=) = lim
M→∞

M

∑
k=1

ωk(φ,=). (15)
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4. The New Iterative Transform Method Basic Procedure

Consider a particular type of a FPDE of the form

CFD$
=ω(φ,=) + Mω(φ,=) + Nω(φ,=) = h(φ,=), n− 1 < $ ≤ n, n ∈ N (16)

with the initial conditions

ωk(φ, 0) = gk(φ), k = 0, 1, 2, . . . , n− 1, (17)

where M and N are linear and nonlinear functions, respectively.
By applying the Laplace transformation to (16), we get

L[D$
=ω(φ,=)] + L[Mω(φ,=) + Nω(φ,=)] = L[h(φ,=)]. (18)

Applying the Laplace differentiation is given as

L[ω(φ,=)] = 1
s

ω(φ, 0) +
s + $(1− s)

s2 L[h(φ,=)]− s + $(1− s)
s2 L[Mω(φ,=) + Nω(φ,=)], (19)

using inverse Laplace transformation to (19) into

ω(φ,=) = L−1
{

1
s

ω(φ, 0) +
s + $(1− s)

s2 L[h(φ,=)]
}
−L−1

{
s + $(1− s)

s2 L[Mω(φ,=) + Nω(φ,=)]
}

. (20)

Using the iterative technique, we obtain

ω(φ,=) =
∞

∑
m=0

ωm(φ,=). (21)

Further, the operator M is linear; therefore,

M

(
∞

∑
m=0

ωm(φ,=)
)

=
∞

∑
m=0

M[ωm(φ,=)], (22)

and the operator N is nonlinear, so we have

N

(
∞

∑
m=0

ωm(φ,=)
)

= ω0(φ,=) + M

(
m

∑
k=0

ωk(φ,=)
)
− N

(
m

∑
k=0

ωk(φ,=)
)

. (23)

By substituting (21), (22) and (23) into (20), we obtain

∞

∑
m=0

ωm(φ,=) = L−1
{

1
s

ω(φ, 0) +
s + $(1− s)

s2 L[h(φ,=)]
}

−L−1

{
s + $(1− s)

s2 L
{

M

(
m

∑
k=0

ωk(φ,=)
)
− N

(
m

∑
k=0

ωk(φ,=)
)}}

.

(24)

The new iterative transform method is defined as

ω0(φ,=) = L−1
{

1
s

ω(φ, 0) +
s + $(1− s)

s2 L(g(φ,=))
}

, (25)

ω1(φ,=) = −L−1
{

s + $(1− s)
s2 L{M[ω0(φ,=)] + N[ω0(φ,=)]}

}
, (26)

and
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ωm+1(φ,=) = −L−1

{
s + $(1− s)

s2 L
{
−M

(
m

∑
k=0

ωk(φ,=)
)
− N

(
m

∑
k=0

ωk(φ,=)
)}}

, m ≥ 1. (27)

Lastly, (16) and (17) provide the m-term solution in series form, defined as

ω(φ,=) ∼= ω0(φ,=) + ω1(φ,=) + ω2(φ,=) + · · ·+ ωm(φ,=), m ∈ N. (28)

5. Implementation of the HPTM

Example 1. Consider the fractional-order nonlinear Equal-Width equation; if α = 1, β = 1 and
p = 1 is given as

CFD$
=ω + ωωφ −ωφφ= = 0, = > 0, φ ∈ R, 0 < $ ≤ 1 (29)

with the initial condition

ω(φ, 0) = 3sech2
(

φ− 15
2

)
. (30)

Applying the Laplace transform to (29) with initial condition (30), we have

s$L(ω(φ,=))− s−1ω(φ, 0)
s + $(1− s)

= L
[
ωφφ= −ωωφ

]
, (31)

or

L[ω(φ,=)] = s−13sech2
(

φ− 15
2

)
+

s + $(1− s)
s

L
[
ωφφ= −ωωφ

]
. (32)

Now, using the inverse Laplace transform to (32), we have

ω(φ,=) = 3sech2
(

φ− 15
2

)
+ L−1

{
s + $(1− s)

s
L
[
ωφφ= −ωωφ

]}
. (33)

Now, by implementing HPM, we get

∞

∑
m=0

pmωm(φ,=) = 3sech2
(

φ− 15
2

)

+ p

[
L−1

{
s + $(1− s)

s
L
{(

∞

∑
m=0

pmωm(φ,=)φφ=

)
−
(

∞

∑
m=0

pm Hm(ω)

)}}]
. (34)

The nonlinear terms can be defined with the help of He’s polynomials

∞

∑
m=0

pmHm(ω) = ωωφ. (35)

He’s polynomials are defined as

H0(ω) = ω0(ω0)φ,

H1(ω) = ω0(ω1)φ + ω1(ω0)φ,
....
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With the coefficients comparing p-like, we get

p0 : ω0(φ,=) = 3sech2
(

φ− 15
2

)
,

p1 : ω1(φ,=) = L−1
{

s + $(1− s)
s

L
[
(ω0)φφ= − H0

]}
,

p1 : ω1(φ,=) = 9sech4
(

φ− 15
2

)
tanh

(
φ− 15

2

)
($=+ (1− $)),

p2 : ω2(φ,=) = L−1
{

s + $(1− s)
s

L
[
(ω1)φφ= − H1

]}
,

and

p2 : ω2(φ,=) = 9
4

1

cosh12
(

1
2 φ− 15

2

)[sinh
(

1
2

φ− 15
2

){
−24

(
(1− $)2 + 2$(1− $)=+

1
2

$2=2
)

cosh3
(

1
2

φ− 15
2

)

+ 30
(
(1− $)2 + 2$(1− $)=+

$2=2

2

)
cosh

(
1
2

φ− 15
2

)
− 72($=+ (1− $)) sinh

(
1
2

φ− 15
2

)
cosh

(
1
2

φ− 15
2

)
+135($=+ (1− $)) sinh

(
1
2

φ− 15
2

)
+ 4 cosh7

(
1
2

φ− 15
2

)}
($=+ (1− $))

]
,

....

Provided the series form solution is

ω(φ,=) =
∞

∑
k=0

ωk(φ,=).

Then, we have

ω(φ,=) = 3sech2
(

φ− 15
2

)
+ 9sech4

(
φ− 15

2

)
tanh

(
φ− 15

2

)
($=+ (1− $))

+
9
4

1

cosh12
(

1
2 φ− 15

2

)[sinh
(

1
2

φ− 15
2

){
−24

(
(1− $)2 + 2$(1− $)=+

$2=2

2

)
cosh3

(
1
2

φ− 15
2

)

+ 30
(
(1− $)2 + 2$(1− $)=+

$2=2

2

)
cosh

(
1
2

φ− 15
2

)
− 72($=+ (1− $)) sinh

(
1
2

φ− 15
2

)
cosh

(
1
2

φ− 15
2

)
+135($=+ (1− $)) sinh

(
1
2

φ− 15
2

)
+ 4 cosh7

(
1
2

φ− 15
2

)}
($=+ (1− $))

]
+ · · · .

(36)
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Putting $ = 1 into (36), we obtain the solution of this problem as

ω(φ,=) = 3sech2
(

φ− 15
2

)
+ 9sech4

(
φ− 15

2

)
tanh

(
φ− 15

2

)
=

+
9
4

1

cosh12
(

1
2 φ− 15

2

)[sinh
(

1
2

φ− 15
2

){
−24=2 cosh3

(
1
2

φ− 15
2

)

+ 30=2 cosh
(

1
2

φ− 15
2

)
− 72= sinh

(
1
2

φ− 15
2

)
cosh

(
1
2

φ− 15
2

)
+135= sinh

(
1
2

φ− 15
2

)
+ 4 cosh7

(
1
2

φ− 15
2

)}
=
]
+ · · · .

(37)

The exact solution of this problem as follows:

ω(φ,=) = 3sech2
(

φ− 15−=
2

)
. (38)

In Figure 1, the exact and the HPTM solutions of Example 1 at $ = 1 are shown by subgraphs.
From the given figure, it can be seen that both the HPTM and exact results are in close contact with
each other. Furthermore, in Figure 2, the HPTM results of Example 1 are investigated at different
fractional-order at $ = 1, 0.8, 0.6 and 0.4 of the 3D graph. It is analyzed that fractional-order
problem solutions converge to an integer-order effect as fractional-order analysis to integer-order.

Figure 1. The actual and HPTM solution graphs at $ = 1 of Example 1.

Figure 2. The HPTM solution of different fractional-order $ graph of Example 1.



Symmetry 2021, 13, 886 9 of 20

Example 2. Consider the fractional nonlinear Equal-Width equation of the form: if α = 3, β = −1
and p = 2 are given as

CFD$
=ω + 3ω2ωφ −ωφφ= = 0, = > 0, φ ∈ R, 0 < $ ≤ 1 (39)

with the initial condition
ω(φ, 0) =

1
4

sech(φ− 30). (40)

Applying Laplace transform to (39), we get

L[ω(φ,=)] = s−1ω(φ, 0) +
s + $(1− s)

s
L
[
ωφφ= − 3ω2ωφ

]
. (41)

Using the initial condition (40) into (41), we get

L[ω(φ,=)] = s−1 1
4

sech(φ− 30) +
s + $(1− s)

s
L
[
ωφφ= − 3ω2ωφ

]
. (42)

By applying inverse Laplace transform to (42), we get

ω(φ,=) = 1
4

sech(φ− 30) + L−1
{

s + $(1− s)
s

L
[
ωφφ= − 3ω2ωφ

]}
. (43)

Now, we implement HPM, and we get

∞

∑
m=0

pmωm(φ,=) = 1
4

sech(φ− 30)

+ p

[
L−1

{
s + $(1− s)

s
L
(

∞

∑
m=0

pmωm(φ,=)φφ= −
∞

∑
m=0

pmHm(ω)

)}]
. (44)

The nonlinear terms can be defined with the help of He’s polynomials

∞

∑
m=0

pm Hm(ω) = 3ω2ωφ. (45)

He’s polynomial are defined as

H0(ω) = 3(ω0)
2(ω0)φ,

H1(ω) = 3(ω0)
2(ω1)φ + 6ω0ω1(ω0)φ,

....

By comparing p-like coefficients, we get

p0 : ω0(φ,=) = 1
4

sech(φ− 30),

p1 : ω1(φ,=) = L−1
{

s + $(1− s)
s

L
[
(ω0)φφ= − H0(ω)

]}
,

p1 : ω1(φ,=) = 3
64

sech3(φ− 30) tanh(φ− 30)($=+ (1− $)),

....

The series form solution is

ω(φ,=) =
∞

∑
m=0

ωm(φ,=).
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Then, we have

ω(φ,=) = 1
4

sech(φ− 30) +
3

64
sech3(φ− 30) tanh(φ− 30)($=+ (1− $)) + · · · . (46)

Putting $ = 1 in (46), we obtain the solution of this problem as

ω(φ,=) = 1
4

sech(φ− 30) +
3
64

sech3(φ− 30) tanh(φ− 30) + · · · . (47)

The exact solution of this problem is

ω(φ,=) = 1
4

sech
(

φ− 30− =
4

)
. (48)

In Figure 3, the exact and the HPTM solutions of Example 2 at $ = 1 are shown by subgraphs.
From the given figure, it can be seen that both the HPTM and exact results are in close contact
with each other. Furthermore, in Figure 4, the HPTM results of Example 2 are investigated at
different fractional-order at $ = 1, 0.8, 0.6 and 0.4 of 3D graph. According to the analysis, that
fractional-order problem solutions converge to an integer-order effect as fractional-order analysis to
integer-order.

Figure 3. The actual and HPTM solution graphs at $ = 1 of Example 2.

Figure 4. The HPTM solution of different fractional-order $ graph of Example 2.
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Example 3. Consider the fractional nonlinear fractional-order modified equal width equation is
given as follows. Consider the fractional nonlinear Equal-Width equation of the form

CFD$
=ω +

12
7
(ω6)φ −

3
7
(ω6)φφ= = 0, = > 0, φ ∈ R, 0 < $ ≤ 1 (49)

with the initial condition

ω(φ, 0) = cosh2/5
(

5φ

6

)
. (50)

Using Laplace transform to (49), we get

L[ω(φ,=)] = s−1ω(φ, 0) +
s + $(1− s)

s
L
[

12
7
(ω6)φ −

3
7
(ω6)φφ=

]
. (51)

Putting the initial condition (50) into (51), we have

L[ω(φ,=)] = s−1 cosh2/5
(

5φ

6

)
+

s + $(1− s)
s

L
[

12
7
(ω6)φ −

3
7
(ω6)φφ=

]
. (52)

By applying inverse Laplace transform to (52), we have

ω(φ,=) = cosh2/5
(

5φ

6

)
+ L−1

{
s + $(1− s)

s
L
[

12
7
(ω6)φ −

3
7
(ω6)φφ=

]}
. (53)

Now, we implement HPM, and we get

∞

∑
m=0

pmωm(φ,=) = cosh2/5
(

5φ

6

)
+ p

[
L−1

{
s + $(1− s)

s
L
(

∞

∑
m=0

pmωm(φ,=)φφ=

)}]
. (54)

The nonlinear terms can be defined with the help of He’s polynomials

∞

∑
m=0

pm Hm(ω) =
12
7
(ω6)φ −

3
7
(ω6)φφ=. (55)

He’s polynomials are defined as

H0(ω) =
12
7
(ω6

0)φ −
3
7
(ω6

0)φφ=

....

By comparing p-like coefficients, we get

p0 : ω0(φ,=) = cosh2/5
(

5φ

6

)
,

p1 : ω1(φ,=) = L−1
{

s + $(1− s)
s

L[H0(ω)]

}
,

p1 : ω1(φ,=) = −24
7

cosh7/5
(

5φ

6

)
sinh

(
5φ

6

)
($=+ (1− $)),

....

The series form solution is

ω(φ,=) =
∞

∑
m=0

ωm(φ,=).
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Then, we have

ω(φ,=) = cosh2/5
(

5φ

6

)
− 24

7
cosh2/5

(
5φ

6

)
sinh

(
5φ

6

)
($=+ (1− $)) + · · · . (56)

Putting $ = 1 into (56), we obtain the solution of this problem as

ω(φ,=) = cosh2/5
(

5φ

6

)
− 24

7
cosh7/5

(
5φ

6

)
sinh

(
5φ

6

)
=+ · · · . (57)

The exact solution of this problem is

ω(φ,=) = cosh2/5
{

5
6
(φ−=)

}
. (58)

In Figure 5, the exact and the HPTM solutions of Example 3 at $ = 1 are showm by subgraphs,
respectively. From the given figure, it can be seen that both the HPTM and exact results are
in close contact with each other. Furthermore, in Figure 6, the HPTM results of Example 3 are
investigated at different fractional-order at $ = 1, 0.8, 0.6 and 0.4 of 3D graph. Analysis shows that
fractional-order problem solutions converge to an integer-order effect as fractional-order analysis to
integer-order.

Figure 5. The actual and HPTM solution graphs at $ = 1 of Example 3.

Figure 6. The HPTM solution of different fractional-order $ graph of Example 3.
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6. Implementation of Iterative Transform Method

Example 4. Consider the fractional nonlinear Equal-Width equation of the form

CFD$
=ω + ωωφ −ωφφ= = 0, = > 0, φ ∈ R, 0 < $ ≤ 1 (59)

with the initial condition

ω(φ, 0) = 3sech2
(

φ− 15
2

)
. (60)

Applying the Laplace transform to (59), we get

L[ω(φ,=)] = s−1ω(φ, 0)− s + $(1− s)
s

L
[
ωωφ −ωφφ=

]
. (61)

Applying inverse Laplace transform to (61), we have

ω(φ,=) = L−1
{

s−1ω(φ, 0)
}
−L−1

{
s + $(1− s)

s
L
[
ωωφ −ωφφ=

]}
. (62)

Now, by using the suggested analytical method, we get

ω0(φ,=) = 3sech2
(

φ− 15
2

)
,

ω1(φ,=) = −L−1{L[ω0ωφ0 −ω0φφ=
]}

= 9sech4
(

φ− 15
2

)
tanh

(
φ− 15

2

)
($=+ (1− $)),

ω2(φ,=) = −L−1
{

s + $(1− s)
s

L
[
ω1ωφ1 −ω1φφ=

]}
,

=
9
4

1

cosh12
(

1
2 φ− 15

2

)[sinh
(

1
2

φ− 15
2

){
−24

(
(1− $)2 + 2$(1− $)=+

$2=2

2

)
cosh3

(
1
2

φ− 15
2

)

+ 30
(
(1− $)2 + 2$(1− $)=+

$2=2

2

)
cosh

(
1
2

φ− 15
2

)
− 72($=+ (1− $)) sinh

(
1
2

φ− 15
2

)
cosh

(
1
2

φ− 15
2

)
+135($=+ (1− $)) sinh

(
1
2

φ− 15
2

)
+ 4 cosh7

(
1
2

φ− 15
2

)}
($=+ (1− $))

]
...

ωn+1(φ,=) = L−1
{
(s + $(1− s))n

sn L
[
ωnωφn −ωnφφ=

]}
.

The series form result is

ω(φ,=) = ω0(φ,=) + ω1(φ,=) + ω2(φ,=) + ω3(φ,=) + · · ·+ ωn(φ,=).

Then, we have
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ω(φ,=) = 3sech2
(

φ− 15
2

)
+ 9sech4

(
φ− 15

2

)
tanh

(
φ− 15

2

)
($=+ (1− $))

+
9
4

1

cosh12
(

1
2 φ− 15

2

)[sinh
(

1
2

φ− 15
2

){
−24

(
(1− $)2 + 2$(1− $)=+

$2=2

2

)
cosh3

(
1
2

φ− 15
2

)

+ 30
(
(1− $)2 + 2$(1− $)=+

$2=2

2

)
cosh

(
1
2

φ− 15
2

)
− 72($=+ (1− $)) sinh

(
1
2

φ− 15
2

)
cosh

(
1
2

φ− 15
2

)
+135($=+ (1− $)) sinh

(
1
2

φ− 15
2

)
+ 4 cosh7

(
1
2

φ− 15
2

)}
($=+ (1− $))

]
+ · · · .

(63)

Putting $ = 1 into (63), we obtain the solution of this problem as

ω(φ,=) = 3sech2
(

φ− 15
2

)
+ 9sech4

(
φ− 15

2

)
tanh

(
φ− 15

2

)
=

+
9
4

1

cosh12
(

1
2 φ− 15

2

)[sinh
(

1
2

φ− 15
2

){
−24=2 cosh3

(
1
2

φ− 15
2

)

+ 30=2 cosh
(

1
2

φ− 15
2

)
− 72= sinh

(
1
2

φ− 15
2

)
cosh

(
1
2

φ− 15
2

)
+135= sinh

(
1
2

φ− 15
2

)
+ 4 cosh7

(
1
2

φ− 15
2

)}
=
]
+ · · · .

(64)

The exact solution of this problem is

ω(φ,=) = 3sech2
(

φ− 15−=
2

)
. (65)

In Figure 7, it is shown that the exact and the NITM solutions graph with respect to φ and =
of Example 4 at $ = 1. From the given figures, it can be seen that both the NITM and exact results
are in close contact with each other. Furthermore, in Figure 8, the NITM results of Example 4 are
investigated at different fractional-order at $ = 1, 0.8, 0.6 and 0.4 of 2D graph with respect to φ
and =.

Figure 7. The actual and ITM solution graphs at $ = 1 with respect to φ and = of Example 4.
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Figure 8. The ITM solution of different fractional-order $ graphs with respect to φ and= of Example 4.

Example 5. Consider the fractional nonlinear Equal-Width equation of the form

CFD$
=ω + 3ω2ωφ −ωφφ= = 0, = > 0, φ ∈ R, 0 < $ ≤ 1 (66)

with the initial condition
ω(φ, 0) =

1
4

sech(φ− 30). (67)

Applying the Laplace transform to (66), we get

L[ω(φ,=)] = s−1ω(φ, 0)− s + $(1− s)
s

L
[
3ω2ωφ −ωφφ=

]
. (68)

Applying inverse Laplace transform to (68), we have

ω(φ,=) = L−1
{

s−1ω(φ, 0)
}
−L−1

{
s + $(1− s)

s
L
[
3ω2ωφ −ωφφ=

]}
. (69)

Now, by using the suggested analytical method, we get

ω0(φ,=) = 1
4

sech(φ− 30),

ω1(φ,=) = −L−1
{

s + $(1− s)
s

L
[
3ω2

0ω0φ −ω0φφ=
]}

,

ω1(φ,=) = 3
64

sech3(φ− 30) tanh(φ− 30)($=+ (1− $)),

...

ωn+1(φ,=) = L−1
{
(s + $(1− s))n

sn L
[
3ω2

nωnφ −ωnφφ=
]}

.

The series form result is

ω(φ,=) = ω0(φ,=) + ω1(φ,=) + ω2(φ,=) + ω3(φ,=) + · · ·+ ωn(φ,=).

Then, we have

ω(φ,=) = 1
4

sech(φ− 30) +
3

64
sech3(φ− 30) tanh(φ− 30)($=+ (1− $)) + · · · . (70)
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Putting $ = 1 into (70), we obtain the solution of this problem as

ω(φ,=) = 1
4

sech(φ− 30) +
3

64
sech3(φ− 30) tanh(φ− 30)=+ · · · . (71)

The exact solution of this problem is

ω(φ,=) = 1
4

sech
(

φ− 30− =
4

)
. (72)

In Figure 9, it is shown that the exact and the NITM solutions graph with respect to φ and =
of Example 5 at $ = 1. From the given figures, it can be seen that both the NITM and exact results
are in close contact with each other. Furthermore, in Figure 10, the NITM results of Example 5 are
investigated at different fractional-order at $ = 1, 0.8, 0.6, and 0.4 of 2D graph with respect to φ
and =.

Figure 9. The actual and ITM solution graphs at $ = 1 with respect to φ and = of Example 5.

Figure 10. The ITM solution of different fractional-order $ graphs with respect to φ and = of
Example 5.

Example 6. Consider the fractional nonlinear Equal-Width equation of the form

CFD$
=ω +

12
7
(ω6)φ −

3
7
(ω6)φφ= = 0, = > 0, φ ∈ R, 0 < $ ≤ 1 (73)
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with the initial condition

ω(φ, 0) = cosh2/5
(

5φ

6

)
. (74)

Applying the Laplace transform to (73), we get

L[ω(φ,=)] = s−1ω(φ, 0)− s + $(1− s)
s

L
[

12
7
(ω6)φ −

3
7
(ω6)φφ=

]
. (75)

Applying inverse Laplace transform to (75), we have

ω(φ,=) = L−1
{

s−1ω(φ, 0)
}
−L−1

{
s + $(1− s)

s
L
[

12
7
(ω6)φ −

3
7
(ω6)φφ=

]}
. (76)

Now, by using the suggested analytical method, we get

ω0(φ,=) = cosh2/5
(

5φ

6

)
,

ω1(φ,=) = −L−1
{
L
[

12
7
(ω6

0)φ −
3
7
(ω6)0φφ=

]}
,

ω1(φ,=) = −24
7

cosh7/5
(

5φ

6

)
sinh

(
5φ

6

)
($=+ (1− $)),

...

ωn+1(φ,=) = L−1
{
(s + $(1− s))n

sn L
[

12
7
(ω6

n)φ −
3
7
(ω6)nφφ=

]}
.

The series form result is

ω(φ,=) = ω0(φ,=) + ω1(φ,=) + ω2(φ,=) + ω3(φ,=) + · · ·+ ωn(φ,=).

Then, we have

ω(φ,=) = cosh2/5
(

5φ

6

)
− 24

7
cosh2/5

(
5φ

6

)
sinh

(
5φ

6

)
($=+ (1− $)) + · · · . (77)

Putting $ = 1 into (77), we obtain the solution of this problem as

ω(φ,=) = cosh2/5
(

5φ

6

)
− 24

7
cosh7/5

(
5φ

6

)
sinh

(
5φ

6

)
=+ · · · . (78)

The exact solution of this problem is

ω(φ,=) = cosh2/5
(

5
6
(φ−=)

)
. (79)

In Figure 11, it is shown that the exact and the NITM solutions graph with respect to φ and =
of Example 6 at $ = 1. From the given figures, it can be seen that both the NITM and exact results
are in close contact with each other. Furthermore, in Figure 12, the NITM results of Example 6 are
investigated at different fractional-order at $ = 1, 0.8, 0.6, and 0.4 of the 2D graph with respect to φ
and =.
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Figure 11. The actual and ITM solution graphs at $ = 1 with respect to φ and = of Example 6.

Figure 12. The ITM solution of different fractional-order $ graphs with respect to φ and = of
Example 6.

7. Conclusions

In this paper, we have presented a homotopy perturbation transform method and iter-
ative transform method for solving fractional-order Equal-Width equations. The derivative
is considered in the Caputo–Fabrizio sense. The figures analysis of the fractional-order
results achieved has verified the convergence towards the results of the integer order.
Finally, some examples have been shown to demonstrate the efficiency and accuracy of the
current technique.
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