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Abstract: The paper studies an extension TOPSIS method with the adjusted probabilistic linguistic
fuzzy set in which the decision maker’s behavior tendency is considered. Firstly, we propose a
concept of probabilistic linguistic q-rung orthopair set (PLQROS) based on the probability linguistic
fuzzy set (PLFS) and linguistic q-rung orthopair set (LQROS). The operational laws are introduced
based on the transformed probabilistic linguistic q-rung orthopair sets (PLQROSs) which have the
same probability. Through this adjustment method, the irrationality of the existing methods in the
aggregation process is avoided. Furthermore, we propose a comparison rule of PLQROS and the
aggregated operators. The distance measure of PLQROSs is also defined, which can deal with the
symmetric information in multi-attribute decision making problems. Considering that the decision
maker’s behavior has a very important impact on decision-making results, we propose a behavioral
TOPSIS decision making method for PLQROS. Finally, we apply the practical problem of investment
decision to demonstrate the validity of the extension TOPSIS method, and the merits of the behavior
decision method is testified by comparing with the classic TOPSIS method. The sensitivity analysis
results of decision-maker’s behavior are also given.

Keywords: behavioral decision making; risk attitude; adjusted probabilistic fuzzy set

1. Introduction

There is much uncertainty in decision making problems. It is not easy to describe the
evaluation information with accurate numerical value, and they can only be described
with linguistic values. Zadeh [1–3] defined the linguistic term set (LTS) and applied it to
express the qualitative evaluation. For example, the commonly used seven valued LTS
is in the form of S = {s0 : great distaste, s1 : distaste, s2 : a bit distaste, s3 : generally, s4 :
a bit f avorite, s5 : f avorite, s6 : great f avorite}, it can be used to describe how much the
decision maker likes the object. However, when the decision maker hesitates about the
preference of the evaluation object, the single linguistic term is no longer describe such
information. So Rodríguez et al. [4] presented the hesitant fuzzy linguistic term set (HFLTS),
each of elements is a collection of linguistic terms. For example, the decision maker thinks
that the audience’s opinion of the program is “favorite” or “great favorite”, the evaluation
about the opinion of the program can be only expressed in the form of {s5, s6}. Since
the HFLTS was put forward, some extensions of HFLTS were developed and applied
in many fields [5–11]. Beg and Rashid [5] proposed the TOPSIS method of HFLTS and
applied it to sort the alternative, Liao et al. [6] defined the preference relation of HFLTS,
Liu et al. [7] applied the HFLTSs to the generalized TOPSIS method and presented a new
similarity measure of HFLTS. In these studies however, all the linguistic terms in HFLTS
have the same weights, it rarely happens in reality. In fact, the decision makers may
have different degrees to the possible linguistic evaluations. Therefore, Pang et al. [12]
developed the HFLTS to the PLFS through adding the probabilities to each element. For
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example, the decision maker believes that the possibility of favorite to the program is 0.4
and the possibility of great favorite to the program is 0.6, then the above evaluation can be
represented as {s5(0.4), s6(0.6)}.

In the aboved LTS, they only describe the membership degree of elements. To improve
the range of their application, Chen [13] defined the linguistic intuitionistic fuzzy set (LIFS)
LI = {〈xi, sθ1(xi), sφ1(xi)〉|xi ∈ X}, where sθ1(xi), sφ1(xi) ∈ S(S = {si|s0 ≤ si ≤ s2τ}),
the membership sθ1(xi) and the non-membership sφ1(xi) satisfy the following condition:
0 ≤ θ1 + φ1 ≤ 2τ. Furthermore, Garg [14] defined the linguistic Pythagorean fuzzy
set (LPFS) LP = {〈xi, sθ2(xi), sφ2(xi)〉|xi ∈ X}, where sθ2(xi), sφ2(xi) ∈ S, the following
condition of the membership sθ2(xi) and the non-membership sφ2(xi) must be satisfied:
0 ≤ (θ2)

2 + (φ2)
2 ≤ (2τ)2, its advantage is it has a wider range of uncertainty than LIFS.

Furthermore, in order to better describe the uncertainty in decision making problems,
Liu et al. [7] proposed the LQROS LQ = {〈xi, sθ(xi), sφ(xi)〉|xi ∈ X} based on the q-rung
orthopair fuzzy set (QROFS) [15], where the following condition of the membership sθ(xi)
and the non-membership sφ(xi) should be met: 0 ≤ (θ)q + (φ)q ≤ (2τ)q(q ≥ 1). Obviously,
when q = 1 or 2, the LQROS is reduced to LIFS or LPFS, respectively. Although the LQROS
extends the scope of information representation, it cannot describe the following evaluation
information. For the given LTS S = {s0 : extreme slowly, s1 : slowly, s2 : slightly slowly, s3 :
generally, s4 : slightly high, s5 : high, s6 : extreme high}, one expert believes that 30%
possibility of profit from the investment in the project is high, and 70% possibility of
profit from the investment in the project is extreme high. While the other expert may
believe that 10% possibility of not making a profit is extreme slowly and 90% possibility
of not making a profit is slightly slowly. Up to now, we cannot apply the existing LTS to
describe the above evaluation information. Motivated by this, we introduce the PLQROS
by integrating the LQROS and the probabilistic fuzzy set. Then the above information can
be represented by Qs(p) = 〈{s5(0.3), s6(0.7)}, {s0(0.1), s2(0.9)}〉, the detailed definition is
given in Section 3.1.

On the other side, the TOPSIS is a classical method to handle the multiple criteria
decision making problems. Since it was introduced by Hwang and Yoon [16], there were
many literatures on TOPSIS method, we can refer to [17–22]. The TOPSIS method is a
useful technique for choosing an alternative that is closet to the best alternative and farthest
from the worst alternative simultaneously. Furthermore, Yoon and Kim [23] proposed a
behavioral TOPSIS method that incorporates the gain and loss in behavioral economics,
which makes the decision results more reasonable. As all we know, there is no related
research study the behavioral TOPSIS method in uncertain decision environments problems.
Inspired by this, we study the TOPSIS method which consider the decision maker’s risk
attitude and the adjusted probabilistic fuzzy set, the main contributions of the paper are
given as follows:

(1) The operational laws of PLQROS are given based on the adjusted PLQROS with the
same probability, which can avoid the unreasonable calculation and improve the
adaptability of PLQROS in reality.

(2) The new aggregation operators and distance measures between PLQROSs are pre-
sented, which can represent the differences between PLQROSs and deal with the
symmetry information.

(3) The behavioral TOPSIS method is introduced into the uncertain multi-attribute deci-
sion making process, which changes the behavioral TOPSIS method only used in the
deterministic environment.

The remainder of paper is organized as follows: in the second section, some related
concepts are reviewed. In the third section, we introduce the operational laws of PLQROSs,
the aggregated operators and distance measures of PLQROSs, and we also give their corre-
sponding properties. In Section 4, the process steps of the behavioral decision algorithm are
given. In Section 5, a practical example is utilized to prove the availability of the extension
TOPSIS method. Furthermore, the sensitivity analysis of the behavioral factors of decision
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maker’s risk attitude is provided. Finally, we made a summary of the paper and expanded
the future studies.

2. Preliminaries

In order to define the PLQROS, we introduce some concepts of LTS, PLFS, QROFS
and LQROS. Throughout the paper, assume X = {x1, x2, · · · , xm} to be a non-empty and
finite set.

In the uncertain decision making environment, the experts applied the LTS to make a
qualitative description, it is defined as follows:

Definition 1 ([1]). Assume S = {sα|α = 0, 1, · · · , 2g} is a finite set, where sα is a linguistic term
and g is a natural number, the LTS S should satisfy two properties:

(1) if α ≤ β, then sα ≤ sβ;
(2) sα = neg(sβ), where α + β = 2g.

In order to describe the decision information more objective, Xu [24] extended the LTS S to a
continuous LTS S̄ = {sα|α ∈ [0, ρ]}, where ρ(ρ > 2g) is a natural number.

The PLFS is regarded as an extension of HFLTS, which considers the elements of LTSs
with different weights, the PLFS can be denoted as:

Definition 2 ([12]). Assume X = {x1, x2, · · · , xm} and S = {s0, s1, . . . , s2g} is a LTS, the
PLFS Zs(r) in X is defined as:

Zs(r) = {〈xj, zs(r)(xj)〉|xj ∈ X},

where zs(r)(xj) = {sj(u)(r(u))|sj(u) ∈ S, r(u) ≥ 0, u = 1, 2, · · · , U; ∑U
u=1 r(u) ≤ 1}, sj(u) is the

linguistic term and r(u) is the corresponding probability of sj(u), U is the number of linguistic
terms sj(u).

Next, we introduce the concept of QROFS as follows:

Definition 3 ([15]). Assume X = {x1, x2, · · · , xm}, the QROFS Q is represented as:

Q = {〈xj, µQ(xj), νQ(xj)〉|xj ∈ X}, q ≥ 1,

where the membership µQ(xj)(0 ≤ µQ(xj) ≤ 1) and the non-membership νQ(xj)(0 ≤ νQ(xj) ≤ 1)

satisfy 0 ≤ (µQ(xj))
q + (νQ(xj))

q ≤ 1, πQ(xj) = q
√

1− (µQ(xj))q − (νQ(xj))q is the indeter-
minacy degree of QROFS Q.

If X = {x}, the QROFS Q is reduced to a q-rung orthopair fuzzy number (QROFN)
Q , 〈µQ, νQ〉.

Remark 1. If q = 1 or 2, the QROFS Q is degenerated to an intuitionistic fuzzy set (IFS) or a
Pythagorean fuzzy set (PFS).

In some realistic decision making problems, the set should be described qualitatively.
So we review the concept of LQROS as follows:

Definition 4 ([25]). Assume X = {x1, x2, · · · , xm}, S̄ = {sα|α ∈ [0, ρ]}(ρ > 2g) is a LTS, the
LQROS Y is represented as:

Y = {〈xj, sθ(xj), sφ(xj)〉|xj ∈ X},
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where the membership sθ(xj) and the non-membership sφ(xj) satisfy 0 ≤ θ
q
j + φ

q
j ≤ ρq (q ≥ 1),

the indeterminacy degree πY(xj) = s q
√

ρq−θ
q
j−φ

q
j
.

If X = {x}, the LQROS Y is degenerated to a linguistic q-rung orthopair number
(LQRON) Y , 〈sθ , sφ〉.

Definition 5 ([25]). Let y1 = 〈sθ1 , sφ1〉 and y2 = 〈sθ2 , sφ2〉 be two LQRONs, sθι
, sφι ∈ S̄[0,ρ] (ι =

1, 2), ε > 0, the algorithms of the LQRONs can be expressed as follows:

(a) y1 ⊕ y2 = 〈s
((θ1)

q+(θ2)
q−( θ1θ2

ρ )q)
1
q

, s φ1φ2
ρ
〉;

(b) y1 ⊗ y2 = 〈s θ1θ2
ρ

, s
((φ1)

q+(φ2)q−( φ1φ2
ρ )q)

1
q
〉;

(c) εy1 = 〈s
(ρq−ρq(1− (θ1)

q

ρq )ε)
1
q

, s
ρ(

φ1
ρ )ε〉;

(d) yε
1 = 〈s

ρ(
θ1
ρ )ε

, s
(ρq−ρq(1− (φ1)

q

ρq )ε)
1
q
〉.

3. The Proposed Probabilistic Fuzzy Set

Now we propose a new probabilistic fuzzy set—PLQROS, which not only allows the
experts to express evaluation information with multiple linguistic terms but contains the
possibility of each linguistic terms. The difficulty is how to define the operational laws of
PLQROS reasonably when the corresponding probability distributions are different.

3.1. The Basic Definition of PLQROS

Definition 6. Let X = {x1, x2, · · · , xm} and S̄[0,ρ] (ρ > 2g) be a continuous LTS, the PLQROS
PLs(r) in X can be defined as:

PLs(r) = {〈xj, Hs(r̂)(xj), Gs(r̃)(xj)〉|xj ∈ X},

where Hs(r̂)(xj) = {sθ j(u)(r̂(u))|sθ j(u) ∈ S̄[0,ρ], r̂(u) ≥ 0, ∑U
u=1 r̂(u) ≤ 1} is the membership

and Gs(r̃)(xj) = {sφj(v)(r̃(v))|sφj(v) ∈ S̄, r̃(v) ≥ 0, ∑V
v=1 r̃(v) ≤ 1} is the non-membership,

respectively. For any xj ∈ X, they satisfy with: 0 ≤
( U

max
u=1
{θ j(u)}

)q
+
( V

max
v=1
{φj(v)}

)q ≤
ρq (q ≥ 1).

If X = {x}, the PLQROS PLs(r) is degenerated to a PLQRON pls(r) , 〈{sθ(u)(r̂
(u))},

{sφ(v)(r̃(v))}〉, where sθ(u) , sφ(v) ∈ S̄[0,ρ], ∑U
u=1 r̂(u) ≤ 1 and ∑V

v=1 r̃(v) ≤ 1.

Example 1. Let S = {s0 : very slowly, s1 : slowly, s2 : slightly slowly, s3 : generally, s4 :
slightly f ast, s5 : f ast, s6 : very f ast}. Two groups of experts inspected the development of the
company, one group may think that “the speed of company development is slightly slowly with
100% possibility, with 40% probability that it is not slightly slowly, with 40% probability that
the speed of company development is not generally and with 20% probability that the speed of
company development is not slightly fast”. The other group think that “with 20% probability
that the speed of company development is slowly, with 60% probability that the speed of company
development is slightly slowly and with 20% probability that it is generally, with 50% probability
that it is not slightly fast and with 50% probability that it is not very fast”. Then the above
evaluation information can be denoted as pl1

s (r) = 〈{s2(1)}, {s2(0.4), s3(0.4), s4(0.2)}〉 and
pl2

s (r) = 〈{s1(0.2), s2(0.6), s3(0.2)}, {s5(0.5), s6(0.5)}〉.

According to Example 1, we can see that the probabilities and numbers of elements in
pl1

s (r) and pl2
s (r) are not same, the general operations on PLFSs multiply the probabilities

of corresponding linguistic terms directly, which may cause the unreasonable result. There-
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fore, Wu et al. [26] presented a method to modify the probabilities of linguistic terms to be
same, which is given as follows:

Let S̄[0,ρ] (ρ > 2g) be a continuous LTS, pl1
s (r) = 〈{sθ1(u)(r̂(u))}, {sφ1(v)(r̃(v))}|u =

1, 2, · · · , U1; v = 1, 2, · · · , V1〉 and pl2
s (r) = 〈{sθ2(u)(r̂(u))}, {sφ2(v)(r̃(v))}|u = 1, 2, · · · , U2;

v = 1, 2, · · · , V2〉 are two PLQRONs. We adjust the probability distributions of pl1
s (r) and

pl2
s (r) to be same, respectively. That is to say, pl∗1s (r) = 〈{sθ1(k)(r̂∗(k))}, {sφ1(b)(r̃∗(b))}|k =

1, 2, · · · , K; b = 1, 2, · · · , B〉 and pl∗2s (r) = 〈{sθ2(k)(r̂∗(k))}, {sφ2(b)(r̃∗(b))}|k = 1, 2, · · · , K;
b = 1, 2, · · · , B〉. Applying the method of Wu et al. [26] to adjust the PLQRONs, the linguis-
tic terms and the sum of probabilities of each linguistic term set are not changed, which
means that the adjustment method does not result in the loss of evaluation information.

Example 2. Let S = {sα|α = 0, 1, 2, · · · , 6}, pl1
s (r) = 〈{s2(1)}, {s3(0.4), s4(0.4), s6(0.2)}〉

and pl2
s (r) = 〈{s1(0.2), s2(0.6), s3(0.2)}, {s5(0.5), s6(0.5)}〉 be two PLQRONs, the adjusted

PLQRONs are pl∗1s (r) = 〈{s2(0.2), s2(0.6), s2(0.2)}, {s3(0.4), s4(0.1), s4(0.3), s6(0.2)}〉 and
pl∗2s (r) = 〈{s1(0.2), s2(0.6), s3(0.2)}, {s5(0.4), s5(0.1), s6(0.3), s6(0.2)}〉, respectively. The
adjustment process is shown in Figure 1.

Figure 1. The adjust process of PLQRONs pl1
s (r) and pl2

s (r).

3.2. Some Properties for PLQRONs

Firstly, we apply the adjustment method to adjust the probabilistic linguistic terms
with same probability, which can overcome the defects that may occur in process of aggrega-
tion. Then, we propose the operation rules of the adjusted PLQRONs, and their properties.

Definition 7. Let S̄[0,ρ] (ρ > 2g) be a LTS, pl∗1s (r) = 〈{sθ1(u)(r̂∗(u))}, {sφ1(v)(r̃∗(v))}〉 and

pl∗2s (r) = 〈{sθ2(u)(r̂∗(u))}, {sφ2(v)(r̃∗(v))}〉 (u = 1, 2, · · · , U; v = 1, 2, · · · , V) are two adjusted

PLQRONs, where θι(u), φι(v) (ι = 1, 2) are the subscript of sθι(u) , sφι(v) (ι = 1, 2), η > 0, the
operational laws of the PLQRONs can be expressed as follows:

(a) neg(pl∗1s (r)) = 〈{sφ1(v)(r̃∗(v))}, {sθ1(u)(r̂∗(u))}〉;
(b) pl∗1s (r)⊕ pl∗2s (r) = 〈{s

((θ1(u))q+(θ2(u))q−( (θ
1(u))(θ2(u))

ρ )q)
1
q
(r̂∗(u))}, {s

φ1(v)φ2(v)
ρ

(r̃∗(v))}〉;

(c) pl∗1s (r)⊗ pl∗2s (r) = 〈{s
θ1(u)θ2(u)

ρ

(r̂∗(u))}, {s
((φ1(v))q+(φ2(v))q−( (φ

1(v))(φ2(v))
ρ )q)

1
q
(r̃∗(v))}〉;

(d) ηpl∗1s (r) = 〈{s
(ρq−ρq(1− (θ1(u))q

ρq )η)
1
q
(r̂∗(u))}, {s

ρ(
φ1(v)

ρ )η
(r̃∗(v))}〉;

(e) (pl∗1s (r))η = 〈{s
ρ( θ1(u)

ρ )η
(r̂∗(u))}, {s

(ρq−ρq(1− (φ1(v))q

ρq )η)
1
q
(r̃∗(v))}〉.

Example 3. Let S = {sα|α = 0, 1, 2, · · · , 6}, pl1
s (r) = 〈{s4(0.4), s5(0.6)}, {s1(0.7), s2(0.3)}〉

and pl2
s (r) = 〈{s3(0.2), s4(0.5), s5(0.3)}, {s3(0.5), s4(0.5)}〉 be two PLQRONs, the modified

PLQRONs are pl∗1s (r) = 〈{s4(0.2), s4(0.2), s5(0.3), s5(0.3)}, {s1(0.5), s1(0.2), s2(0.3)}〉 and
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pl∗2s (r) = 〈{s3(0.2), s4(0.2), s4(0.3), s5(0.3)}, {s3(0.5), s4(0.2), s4(0.3)}〉, The adjustment pro-
cess is shown in Figure 2. Let η = 0.5 and q = 3, then we have

neg(pl∗1s (r)) = 〈{s1(0.5), s1(0.2), s2(0.3)}, {s4(0.2), s4(0.2), s5(0.3), s5(0.3)}〉;
pl∗1s (r)⊕ pl∗2s (r) = 〈{s4.3621(0.2), s4.7774(0.2), s5.3364(0.3), s5.6217(0.3)}, {s0.5(0.5), s0.6667(0.2), s1.3333(0.3)}〉;
pl∗1s (r)⊗ pl∗2s (r) = 〈{s2(0.2), s2.6667(0.2), s3.3333(0.3), s4.1667(0.3)}, {s3.0321(0.5), s4.0146(0.2), s4.114(0.3)}〉;
0.5pl∗1s (r) = 〈{s3.2649(0.2), s3.2649(0.2), s4.2321(0.3), s4.2321(0.3)}, {s2.4495(0.5), s2.4495(0.2), s3.4641(0.3)}〉;
(pl∗1s (r))0.5 = 〈{s4.899(0.2), s4.899(0.2), s5.4772(0.3), s5.4772(0.3)}, {s0.794(0.5), s0.794(0.2), s1.5924(0.3)}〉.

Figure 2. The adjust process of PLQRONs pl1
s (r) and pl2

s (r).

Theorem 1. Let pl∗1s (r) = 〈{sθ1(u)(r̂∗(u))}, {sφ1(v)(r̃∗(v))}〉 and pl∗2s (r) = 〈{sθ2(u)(r̂∗(u))},
{sφ2(v)(r̃∗(v))}〉 (u = 1, 2, · · · , U; v = 1, 2, · · · , V) be any two adjusted PLQRONs, η, η1,
η2 > 0, then

(1) pl∗1s (r)⊕ pl∗2s (r) = pl∗2s (r)⊕ pl∗1s (r);
(2) pl∗1s (r)⊗ pl∗2s (r) = pl∗2s (r)⊗ pl∗1s (r);
(3) η(pl∗1s (r)⊕ pl∗2s (r)) = ηpl∗1s (r)⊕ ηpl∗2s (r);
(4) η1 pl∗1s (r)⊕ η2 pl∗1s (r) = (η1 + η2)pl∗1s (r);
(5) (pl∗1s (r))η1 ⊗ (pl∗1s (r))η2 = (pl∗1s (r))η1+η2 ;
(6) (pl∗1s (r))η ⊗ (pl∗2s (r))η = (pl∗1s (r)⊗ pl∗2s (r))η .

Here we prove the property (1) and (3), other properties proof process are similar, we omit them.

(1) By Definition 7, we have

pl∗1s (r)⊕ pl∗2s (r) = 〈{s
((θ1(u))q+(θ2(u))q−( (θ

1(u))(θ2(u))
ρ )q)

1
q
(r̂∗(u))}, {s

φ1(v)φ2(v)
ρ

(r̃∗(v))}〉

= 〈{s
((θ2(u))q+(θ1(u))q−( (θ

2(u))(θ1(u))
ρ )q)

1
q
(r̂∗(u))}, {s

φ2(v)φ1(v)
ρ

(r̃∗(v))}〉

= pl∗2s (r)⊕ pl∗1s (r).

Therefore pl∗1s (r)⊕ pl∗2s (r) = pl∗2s (r)⊕ pl∗1s (r) is obtained.

(3) By Definition 7, we can get

η(pl∗1s (r)⊕ pl∗2s (r)) = η〈{s
((θ1(u))q+(θ2(u))q−( θ1(u)θ2(u)

ρ )q)
1
q
(r̂∗(u))}, {s

φ1(v)φ2(v)
ρ

(r̃∗(v))}〉

= 〈{s
(ρq−ρq(1−

(θ1(u))q+(θ2(u))q−( (θ
1(u))(θ2(u))

ρ )q

ρq )η)
1
q

(r̂∗(u))}, {s
ρ(

φ1(v)φ2(v)

ρ2 )η
(r̃∗(v))}〉.
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Moreover, since

η(pl∗1s (r)) = 〈{s
(ρq−ρq(1− (θ1(u))q

ρq )η)
1
q
(r̂∗(u))}, {s

ρ(
φ1(v)

ρ )η
(r̃∗(v))}〉,

η(pl∗2s (r)) = 〈{s
(ρq−ρq(1− (θ2(u))q

ρq )η)
1
q
(r̂∗(u))}, {s

ρ(
φ2(v)

ρ )η
(r̃∗(v))}〉,

let v = (ρq − ρq(1− (θ1(u))q

ρq )η)
1
q and χ = (ρq − ρq(1− (θ2(u))q

ρq )η)
1
q , the above formulas can

be denoted as:

ηpl∗1s (r)⊕ ηpl∗2s (r) = 〈{s(vq+χq−( v·χ
ρ )q)1/q(r̂∗(u))}, {s

ρ(
φ1(v)φ2(v)

ρ2 )η
(r̃∗(v))}〉

= 〈{s
{ρq−ρq ·[(1− (θ1(u))q

ρq )η+(1− (θ2(u))q

ρq )η ]−(1−(1− (θ1(u))q

ρq )η)·[ρq−ρq(1− (θ2(u))q

ρq )η ]}
1
q
(r̂∗(u))}, {s

ρ(
φ1(v)φ2(v)

ρ2 )η
(r̃∗(v))}〉

= 〈{s
{ρq−ρq ·[(1− (θ1(u))q

ρq )η+(1− (θ2(u))q

ρq )η ]+ρq [(1− (θ1(u))q

ρq )η+(1− (θ2(u))q

ρq )η−(1− (θ1(u))q

ρq )η ·(1− (θ2(u))q

ρq )η ]}
1
q
(r̂∗(u))},

{s
ρ(

φ1(v)φ2(v)

ρ2 )η
(r̃∗(v))}〉

= 〈{s
{ρq−ρq ·[(1− (θ1(u))q

ρq )η ·(1− (θ2(u))q

ρq )η ]}
1
q
(r̂∗(u))}, {s

ρ(
φ1(v)φ2(v)

ρ2 )η
(r̃∗(v))}〉

= 〈{s
(ρq−ρq(1−

(θ1(u))q+(θ2(u))q−( (θ
1(u))(θ2(u))

ρ )q

ρq )η)
1
q

(r̂∗(u))}, {s
ρ(

φ1(v)φ2(v)

ρ2 )η
(r̃∗(v))}〉

= η(pl∗1s (r)⊕ pl∗2s (r)).

Therefore η(pl∗1s (r)⊕ pl∗2s (r)) = ηpl∗1s (r)⊕ ηpl∗2s (r) is proved.
In order to compare the order relation of PLQROSs, we present the comparison rules

as follows:

Definition 8. Assume S̄[0,ρ] (ρ > 2g) be a LTS, for any adjusted PLQRON pl∗s (r) = 〈{sθ(u)(r̂
∗(u))},

{sφ(v)(r̃∗(v))}〉, where sθ(u) , sφ(v) ∈ S̃[0,ρ], (u = 1, 2, · · · , U; v = 1, 2, · · · , V), the score function
of pl∗s (r) is

A(pl∗s (r)) =
#Uθ

∑
u=1

(
θ(u) · r̂∗(u)

ρ
)q −

#Vφ

∑
v=1

(
φ(v) · r̃∗(v)

ρ
)q, (1)

where θ(u), φ(v) ∈ [0, ρ], #Uθ and #Vφ represent the number of elements in the corresponding set,
respectively.

The accuracy function of pl∗s (r) is

H(pl∗s (r)) =
#Uθ

∑
u=1

(
θ(u) · r̂∗(u)

ρ
)q +

#Vφ

∑
v=1

(
φ(v) · r̃∗(v)

ρ
)q, (2)

where θ(u), φ(v) ∈ [0, ρ], #Uθ and #Vφ represent the number of elements in the corresponding
set, respectively.

Theorem 2. Let pl∗1s (r) = 〈{sθ1(u)(r̂∗(u))}, {sφ1(v)(r̃∗(v))}〉 and pl∗2s (r) = 〈{sθ2(u)(r̂∗(u))},
{sφ2(v)(r̃∗(v))}〉 be two adjusted PLQRONs. A(pl∗1s (r)) and A(pl∗2s (r)) are the score function of

pl∗1s (r) and pl∗2s (r), the accuracy function of pl∗1s (r) and pl∗2s (r) are H(pl∗1s (r)) and H(pl∗2s (r)),
respectively, then the order relation of pl∗1s (r) and pl∗2s (r) are given as follows:

(1) If A(pl∗1s (r)) > A(pl∗2s (r)), then pl∗1s (r) � pl∗2s (r);
(2) If A(pl∗1s (r)) = A(pl∗2s (r)), then
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(a) If H(pl∗1s (r)) = H(pl∗2s (r)), then pl∗1s (r) � pl∗2s (r);
(b) If H(pl∗1s (r)) < H(pl∗2s (r)), then pl∗1s (r) ≺ pl∗2s (r);
(c) If H(pl∗1s (r)) > H(pl∗2s (r)), then pl∗1s (r) � pl∗2s (r);

(3) If A(pl∗1s (r)) < A(pl∗2s (r)), then pl∗1s (r) ≺ pl∗2s (r).

3.3. The Aggregation Operators of PLQROSs

In order to aggregate the multi-attribute information well, we introduce the aggrega-
tion operators of PLQRONs as follows.

Definition 9. Let S̄[0,ρ] (ρ > 2g) be a LTS, pl∗1s (r) = 〈{sθι(u)(r̂∗(u))}, {sφι(v)(r̃∗(v))}〉(ι =

1, 2, · · ·, n; u = 1, 2, · · ·, U; v = 1, 2, · · ·, V) are n adjusted PLQRONs, where sθι(u) , sφι(v) ∈ S̄[0,ρ],
the probabilistic linguistic q-rung orthopair weighted averaging (PLQROWA) operator can be
expressed as:

PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) = ω1 pl∗1s (r)⊕ω2 pl∗2s (r)⊕ · · · ⊕ωn pl∗ns (r)

= 〈{s
(ρq−ρq ∏n

ι=1(1−
(θι(u))q

ρq )ωι )
1
q
(r̂∗(u))}, {s

∏n
ι=1 ρ(

φι(v)
ρ )ωι

(r̃∗(v))}〉, (3)

where ω = (ω1, ω2, · · · , ωn)T is the weight vector, and it satisfies ∑n
ι=1ωι = 1(0 ≤ ωι ≤ 1).

Theorem 3. Let pl∗ιs (r) = 〈{sθι(u)(r̂∗(u))}, {sφι(v)(r̃∗(v))}〉(ι = 1, 2, · · · , n; u = 1, 2, · · · , U;
v = 1, 2, · · · , V) be ι adjusted PLQRONs, the weight ωι (ι = 1, 2, · · · , n) satisfies with
0 ≤ ωι ≤ 1 and ∑n

ι=1ωι = 1, then the properties of PLQROWA are shown as follows:

(1) Idempotency: if pl∗ιs (r) (ι = 1, 2, · · ·, n) are equal, i.e., pl∗ιs (r) = pl∗s (r) , 〈{sθ(u)(r̂
∗(u))},

{sφ(v)(r̃∗(v))}〉, then

PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) = pl∗s (r) = 〈{sθ(u)(r̂
∗(u))}, {sφ(v)(r̃∗(v))}〉.

(2) Monotonicity: let pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r) and pl
′∗1
s (r), pl

′∗2
s (r), · · · , pl

′∗n
s (r) be two

collections of adjusted PLQRONs, for all ι, sθι(u) < s′θι(u) and sφι(v) > s′φι(v) , then

PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) < PLQROWA(pl
′∗1
s (r), pl

′∗2
s (r), · · · , pl

′∗n
s (r)).

(3) Boundedness: let sθι(+) =
U

max
u=1

sθι(u) , sθι(−) =
U

min
u=1

sθι(u) , sφι(+) =
V

max
v=1

sφι(v) and sφι(−) =

V
min
v=1

sφι(v) , then

〈{sθι(−)(r̂∗(u))}, {sφι(+)(r̃∗(v))}〉 ≤ PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) ≤ 〈{sθι(+)(r̂∗(u))}, {sφι(−)(r̃∗(v))}〉.

(1) For all ι, since pl∗ιs (r) = pl∗s (p) = 〈{sθ(u)(r̂
∗(u))}, {sφ(v)(r̃∗(v))}〉, then

PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) = ω1 pl∗1s (r)⊕ω2 pl∗2s (r)⊕ · · · ⊕ωn pl∗ns (r)

= 〈{s
(ρq−ρq ∏n

ι=1(1−
(θι(u))q

ρq )ωι )
1
q
(r̂∗(u))}, {s

∏n
ι=1 ρ(

φι(v)
ρ )ωι

(r̃∗(v))}〉

= 〈{s
(ρq−ρq(1− (θι(u))q

ρq )∑n
ι=1 ωι )

1
q
(r̂∗(u))}, {s

ρ(
φι(v)

ρ )∑n
ι=1 ωι

(r̃∗(v))}〉

= 〈{s
(ρq−ρq(1− (θ(u))q

ρq ))
1
q
(r̂∗(u))}, {s

ρ(
φ(v)

ρ )
(r̃∗(v))}〉

= 〈{sθ(u)(r̂
∗(u))}, {sφ(v)(r̃∗(v))}〉.

Therefore PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) = 〈{sθ(u)(r̂
∗(u))}, {sφ(v)(r̃∗(v))}〉

is proved.
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(2) For all ι, sθι(u) < s′θι(u) and sφι(v) > s′φι(v) , then we have

s′
1− θι(u)

ρ

< s
1− θι(u)

ρ

⇒ s
(ρ−ρ ∏n

ι=1(1−(
θι(u)

ρ )q)ωι )
1
q
< s′

(ρ−ρ ∏n
ι=1(1−(

θι(u)
ρ )q)ωι )

1
q

, s∏n
ι=1(φ

ι(v))ωι > s′∏n
ι=1(φ

ι(v))ωι .

Assume PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) = pls(r) and PLQROWA(pl
′∗1
s (r),

pl
′∗2
s (r), · · · , pl

′∗n
s (r)) = pl′s(r), by (1), we can get

A(pl∗s (r)) =
#Uθ

∑
u=1

(
(ρ− ρ ·∏n

ι=1(1− ( θ(u)

ρ )q)ωι)
1
q

ρ
· (r̂∗(u)))q −

#Vφ

∑
v=1

(
(φ(v))ωι

ρ
· r̃∗(v))q;

A(pl
′∗
s (r)) =

#U
θ
′

∑
u=1

(
(ρ− ρ ·∏n

ι=1(1− ( θ′(u)
ρ )q)ωι)

1
q

ρ
· (r̂′∗(u)))q −

#V
φ
′

∑
v=1

(
(φ′(v))ωι

ρ
· r̃′∗(v))q.

Then we have A(pl∗s (r)) < A(pl
′∗
s (r)), that is pl∗s (r) < pl

′∗
s (r).

Therefore PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) < PLQROWA(pl
′∗1
s (r), pl

′∗2
s (r),

· · · , pl
′∗n
s (r)) is proved.

(3) For all ι, sθι(−) ≤ sθι(u) ≤ sθι(+) , sφι(−) ≤ sφι(v) ≤ sφι(+) , according to the properties (1)
and (2), we can easily have

〈{sθι(−)(r̂∗(u))}, {sφι(+)(r̃∗(u))}〉 ≤ PLQROWA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) ≤ 〈{sθι(+)(r̂∗(u))}, {sφι(−)(r̃∗(v))}〉.

Remark 2. Especially, when ωι =
1
n
(ι = 1, 2, · · · , n), the PLQROWA operator is reduced to a

probabilistic linguistic q-rung orthopair averaging (PLQROA) operator:

PLQROA(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) =
1
n

pl∗1s (r)⊕ 1
n

pl∗2s (r)⊕ · · · ⊕ 1
n

pl∗ns (r)

= 〈{s
(ρq−ρq ∏n

ι=1(1−
(θι(u))q

ρq )
1
n )

1
q
(r̂∗(u))}, {s

∏n
ι=1 ρ(

φι(v)
ρ )

1
n
(r̃∗(v))}〉.

Definition 10. Let S̄[0,ρ] (ρ > 2g) be a LTS, pl∗ιs (r) = 〈{sθι(u)(r̂∗(u))}, {sφι(v)(r̃∗(v))}〉(ι =

1, 2, · · · , n; u = 1, 2, · · · , U; v = 1, 2, · · · , V) is a collection of adjusted PLQRONs, where
sθι(u) , sφι(v) ∈ S̄[0,ρ], the probabilistic linguistic q-rung orthopair weighted geometric (PLQROWG)
operator is given as follows:

PLQROWG(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) = (pl∗1s (r))ω1 ⊕ (pl∗2s (r))ω2 ⊕ · · · ⊕ (pl∗ns (r))ωn

= 〈{s
∏n

ι=1 ρ( θι(u)
ρ )ωι

(r̂∗(u))}, {s
(ρq−ρq ∏n

ι=1(1−
(φι(v))q

ρq )ωι )
1
q
(r̃∗(v))}〉, (4)

where ω = (ω1, ω2, · · · , ωn)T is the weight vector and satisfies with ∑n
ι=1ωι = 1(0 ≤ ωι ≤ 1).

Theorem 4. The PLQROWG operator satisfies the properties in Theorem 3.

Proof. Because the proof is similar to Theorem 3, we omit it here.

Remark 3. Especially, when ωι =
1
n
(ι = 1, 2, · · · , n), the PLQROWG operator is degenerated

into the probabilistic linguistic q-rung orthopair geometric (PLQROG) operator

PLQROG(pl∗1s (r), pl∗2s (r), · · · , pl∗ns (r)) = (pl∗1s (r))
1
n ⊗ (pl∗2s (r))

1
n ⊗ · · · ⊗ (pl∗ns (r))

1
n

= 〈{s
∏n

ι=1 ρ( θι(u)
ρ )

1
n
(r̂∗(u))}, {s

(ρq−ρq ∏n
ι=1(1−

(φι(v))q

ρq )
1
n )

1
q
(r̃∗(v))}〉.
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Example 4. Let S̄ = {sα|0 ≤ α ≤ 6} be a LTS, pl1
s (r) = 〈{s2(1)}, {s1(0.9), s2(0.1)}〉,

pl2
s (r) = 〈{s1(0.2), s2(0.6), s3(0.2)}, {s1(0.9), s2(0.1)}〉 and pl3

s (r) = 〈{s2(0.8), s3(0.2)},
{s0(0.3), s1(0.5), s2(0.2)}〉 be three PLQRONs, ω = (0.3, 0.5, 0.2)T is the corresponding weight
vector, then the calculation results of the PLQROWA and the PLQROWG are given as follows.

Firstly, we adjust the corresponding probability distributions of pl1
s (r), pl2

s (r) and
pl3

s (r), the adjusted PLQRONs obtained as follows:

pl∗1s (r) = 〈{s2(0.2), s2(0.6), s2(0.2)}, {s1(0.3), s1(0.5), s1(0.1), s2(0.1)}〉;

pl∗2s (r) = 〈{s1(0.2), s2(0.6), s3(0.2)}, {s1(0.3), s1(0.5), s1(0.1), s2(0.1)}〉;

pl∗3s (r) = 〈{s2(0.2), s2(0.6), s3(0.2)}, {s0(0.3), s1(0.5), s2(0.1), s2(0.1)}〉.

If q = 3, according to the Formula (3), we can get

PLQROWA(pl∗1s (r), pl∗2s (r), pl∗3s (r)) = 〈{s
(63−63 ∏3

ι=1(1−
(θι(u))3

63 )ωι )
1
3
(r̂∗(u))}, {s

∏3
ι=1 6( φι(v)

6 )ωι
(r̃∗(v))}〉

= 〈{s
(63−63(1− 23

63 )
0.5(1− 13

63 )
0.5)

1
3
(0.2), s

(63−63(1− 23
63 )

1)
1
3
(0.6), s

(63−63(1− 23
63 )

0.3(1− 33
63 )

0.7)
1
3
(0.2)},

{s6( 1
6 )

0.8( 0
6 )

0.2(0.3), s6( 1
6 )

1(0.5), s6( 1
6 )

0.8( 2
6 )

0.2(0.1), s6( 2
6 )

1(0.1)}〉

= 〈{s1.65(0.2), s2(0.6), s2.98(0.2)}, {s0(0.3), s1(0.5), s1.15(0.1), s2(0.1)}〉.

If q = 3, according to the Formula (4), we can get

PLQROWG(pl∗1s (r), pl∗2s (r), pl∗3s (r)) = 〈{s
∏3

ι=1 6( θι(u)
6 )ωι

(r̂∗(u))}, {s
(63−63 ∏3

ι=1(1−
(φι(v))3

63 )ωι )
1
3
(r̃∗(v))}〉

= 〈{s6( 1
6 )

0.5( 2
6 )

0.5(0.2), s6( 2
6 )

1(0.6), s6( 2
6 )

0.2( 3
6 )

0.7(0.2)}, {s
(63−63(1− 13

63 )
0.8(1− (0)3

63 )0.2)
1
3
(0.3), s

(63−63(1− 13
63 )

1)
1
3
(0.5),

s
(63−63(1− 13

63 )
0.8(1− 23

63 )
0.2)

1
3
(0.1), s

(63−63(1− 23
63 )

1)
1
3
(0.1)}〉

= 〈{s1.41(0.2), s2(0.6), s2.66(0.2)}, {s0(0.3), s1(0.5), s1.34(0.1), s2(0.1)}〉.

3.4. Distance Measures between PLQRONs

In order to compare the differences between different alternatives, we introduced
the distance measure between PLQRONs, which is an important tool to process multi-
attribute decision problems. In this subsection, we first propose the distance measures
between PLQRONs.

Definition 11. Let S̄[0,ρ] (ρ > 2g) be a LTS, pl∗1s (r) = 〈H∗1s (r̂), G∗1s (r̃)〉 = 〈{sθ1(u)(r̂∗(u))},
{sφ1(v)(r̃∗(v))}〉 and pl∗2s (r) = 〈H∗2s (r̂), G∗2s (r̃)〉 = 〈{sθ2(u)(r̂∗(u))}, {sφ2(v)(r̃∗(v))}〉 (u =

1, 2, · · · , U; v = 1, 2, · · · , V) are two adjusted PLQRONs, where sθι(u) , sφι(v) ∈ S̄[0,ρ] (ι = 1, 2),

the Hamming distance measure Ddhd between pl∗1s (r) and pl∗2s (r) can be defined as:

Ddhd(pl∗1s (r), pl∗2s (r)) =
#Uθ

∑
u=1

(r̂∗(u) · |(θ
1(u))q − (θ2(u))q|

ρq ) +
#Vφ

∑
v=1

(r̃∗(v) · |(φ
1(v))q − (φ2(v))q|

ρq ), (5)

where q ≥ 1, θι(u) and φι(v) (ι = 1, 2) are the subscripts of sθι(u) and sφι(v) (ι = 1, 2), #Uθ and #Vφ

represent the number of elements in H∗ιs (r̂) and G∗ιs (r̃) (ι = 1, 2), respectively.

The Euclidean distance measure Dded between pl∗1s (r) and pl∗2s (r) can be defined
as follows:

Dded(pl∗1s (r), pl∗2s (r)) =

√√√√#Uθ

∑
u=1

(r̂∗(u) · |(θ
1(u))q − (θ2(u))q|

ρq )2 +
#Vφ

∑
v=1

(r̃∗(v) · |(φ
1(v))q − (φ2(v))q|

ρq )2, (6)
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where q ≥ 1, θι(u) and φι(v) (ι = 1, 2) are the subscripts of sθι(u) and sφι(v) (ι = 1, 2), #Uθ and
#Vφ represent the number of elements in H∗ιs (r̂) and G∗ιs (r̃) (ι = 1, 2), respectively.

The generalized distance measure Ddgd between pl∗1s (r) and pl∗2s (r) can be defined as:

Ddgd(pl∗1s (r), pl∗2s (r)) = λ

√√√√#Uθ

∑
u=1

(r̂∗(u) · |(θ
1(u))q − (θ2(u))q|

ρq )λ +
#Vφ

∑
v=1

(r̃∗(v) · |(φ
1(v))q − (φ2(v))q|

ρq )λ, (7)

where λ > 0, q ≥ 1, θι(u) and φι(v) (ι = 1, 2) are the subscripts of sθι(u) and sφι(v) (ι = 1, 2),
#Uθ and #Vφ represent the number of elements in H∗ιs (r̂) and G∗ιs (r̃) (ι = 1, 2), respectively.

Remark 4. In particular, if λ = 1 or λ = 2, Ddgd is degenerated into Ddhd or Dded, respectively.

Theorem 5. Assume pl∗1s (r) and pl∗2s (r) are two adjusted PLQRONs, the distance measure Ddgd
satisfies the following properties:

(1) Non-negativity: 0 ≤ Ddgd(pl∗1s (r), pl∗2s (r)) ≤ 1, Ddgd(pl∗1s (r), pl∗1s (r)) = 0;
(2) Symmetry: Ddgd(pl∗1s (r), pl∗2s (r)) = Ddgd(pl∗2s (r), pl∗1s (r));
(3) Triangle inequality: Ddgd(pl∗1s (r), pl∗2s (r)) + Ddgd(pl∗2s (r), pl∗3s (p)) ≥ Ddgd(pl∗1s (r),

pl∗3s (p)).

Obviously, Ddgd satisfies the property (1) and (2). The symmetry information can be expressed
by the distance measure Ddgd.

The proof of property (3) is given as follows:

Ddgd(pl∗1s (r), pl∗3s (r)) = λ

√√√√#Uθ

∑
u=1

(r̂∗(u) · |(θ
1(u))q − (θ3(u))q|

ρq )λ +

#Vφ

∑
v=1

(r̃∗(v) · |(φ
1(v))q − (φ3(v))q|

ρq )λ

=
λ

√√√√#Uθ

∑
u=1

(r̂∗(u) · |(θ
1(u))q − (θ2(u))q + (θ2(u))q − (θ3(u))q|

ρq )λ +

#Vφ

∑
v=1

(r̃∗(v) · |(φ
1(v))q − (φ2(v))q + (φ2(v))q − (φ3(v))q|

ρq )λ

≤ λ

√√√√#Uθ

∑
u=1

(r̂∗(u) · |(θ
1(u))q − (θ2(u))q|+ |(θ2(u))q − (θ3(u))q|

ρq )λ +

#Vφ

∑
v=1

(r̃∗(v) · |(φ
1(v))q − (φ2(v))q|+ |(φ2(v))q − (φ3(v))q|

ρq )λ

≤ λ

√√√√#Uθ

∑
u=1

(r̂∗(u) · |(θ
1(u))q − (θ2(u))q|

ρq )λ +

#Lφ

∑
v=1

(r̃∗(v) · |(φ
1(v))q − (φ2(v))q|

ρq )λ +
λ

√√√√#Uθ

∑
u=1

(r̂∗(u) · |(θ
2(u))q − (θ3(u))q|

ρq )λ +

#Vφ

∑
v=1

(r̃∗(v) · |(φ
2(v))q − (φ3(v))q|

ρq )λ

= Ddgd(pl∗1s (r), pl∗2s (r)) + Ddgd(pl∗2s (r), pl∗3s (r)).

Therefore Ddgd(pl∗1s (r), pl∗3s (r)) ≤ Ddgd(pl∗1s (r), pl∗2s (r)) + Ddgd(pl∗2s (r), pl∗3s (r))
is proved.

Example 5. Assume S̄ = {sα|0 ≤ α ≤ 6} is a LTS, pl∗1s (r) = 〈{s2(0.2), s2(0.6), s2(0.2)},
{s3(0.4), s4(0.1), s4(0.3), s5(0.2)}〉 and pl∗2s (r) = 〈{s1(0.2), s2(0.6), s3(0.2)}, {s5(0.4), s5(0.1),
s6(0.3), s6(0.2)}〉 are two adjusted PLQRONs. If q = 2, the calculation result of Ddgd(pl∗1s (r),
pl∗2s (r)) is given as follows:

Ddgd(pl∗1s (r), pl∗2s (r)) = ((
0.2 ∗ |(22 − 12)|

62 )λ + (
0.6 ∗ |(22 − 22)|

62 )λ + (
0.2 ∗ |(22 − 32)|2

62 )λ+

(
0.4 ∗ |(32 − 52)|

62 )λ + (
0.1 ∗ |(42 − 52)|

62 )λ + (
0.3 ∗ |(42 − 62)|

62 )λ + (
0.2 ∗ |(52 − 62)|

62 )λ)
1
λ .

If λ = 1, we can get Ddhd = 0.475. If λ = 2, we can get Dded = 0.2545.
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4. The Behavioral Decision Method

Since Hwang and Yoon [16] proposed the TOPSIS method, it has been widely applied
in solving multiple criteria group decision making (MCGDM) problems. The traditional
TOPSIS [17,18] method is an effective method in ranking the alternative. However, in
practical decision making problems, the conditions in traditional TOPSIS method does not
consider the behavior factors of decision makers. Thus, Yoon and Kim [23] introduced a
behavioral TOPSIS method, which consider the behavioral tendency of decision makers
and incorporate it into traditional TOPSIS method. However, in the uncertain decision
making environment, how to represent the decision maker’s behavior factors is a difficult
problem. In order to solve this problem, we deal with it as follows. The gain can be viewed
as the earns from taking the alternative instead of the anti-ideal solution, and the loss
can be considered as the decision maker’s pays from taking the alternative instead of the
ideal solution, they can be expressed by the distance measure of related uncertain sets. So
the behavioral TOPSIS method contains the loss aversion of decision maker in behavioral
economics, and the decision maker can select the appropriate loss aversion ratio to express
his/her choice preference. The method is proved to give a better choice than other methods
(including traditional TOPSIS method) particularly in many fields, such as emergency
decision making, selection for oil pipeline routes, etc., because the behavioral TOPSIS
method precisely reflects the behavior tendency of decision maker.

Assume a group of experts e = {e1, e2, . . . , eW} evaluate a series of alternatives
Q = {Q1, Q2, . . . , Qm} under the criteria C = {C1, C2, . . . , Cn}, let S̄[0,ρ] (ρ > 2g) be a
continuous LTS, the evaluation of experts are represented in the form of PLQRONs loι

s (r) =
〈Hoι

s (r̂), Goι
s (r̃)〉, where Hoι

s (r̂) = {sθoι(u)(r̂(u))|sθoι(u) ∈ S̄[0,ρ], r̂(u) ≥ 0, u = 1, 2, · · · , U;

∑U
u=1 r̂(u) ≤ 1} and Goι

s (r̃) = {sφoι(v)(r̃(v))|sθoι(v) ∈ S̄[0,ρ], r̃(v) ≥ 0, v = 1, 2, · · · , V; ∑V
v=1 r̃(v) ≤

1}, o = 1, 2, . . . , m; ι = 1, 2, . . . , n. The criteria’s weight vector are ωcι = (ωc1, ωc2, . . . , ωcn)T ,
where ∑n

ι=1ωcι = 1 (0 ≤ ωcι ≤ 1), the experts’ weight vector are ωew = (ωe1, ωe2, . . . , ωeW)T

(∑W
w=1 ωew = 1, 0 ≤ ωew ≤ 1), then the wth expert’s decision matrix F(w) can be given

as follows:

F(w) =


Pw

11 Pw
12 . . . Pw

1n
Pw

21 Pw
22 . . . Pw

2n
...

...
. . .

...
Pw

m1 Pw
m2 . . . Pw

mn

,

where Pw
oι = (Poι

s (r))w(o = 1, 2, . . . , m; ι = 1, 2, . . . , n; w = 1, 2, . . . , W) are PLQRONs.
The steps of decision making are given as follows:
Step 1. Apply the adjustment method to adjust the probability distribution of PLQRONs,

the adjusted decision matrix of the wth expert can be denoted as F(∗w) = (P∗oι
s (r))w

m×n.
Step 2. Apply the PLQROWA operator or PLQROWG operator to obtain the aggregated

decision matrix F(∗) = (Ps∗oι(r))m×n. Furthermore, normalize the aggregated decision
matrix F(∗) based on the type of criteria. If it is a benefit-type criterion, there is no need to
adjust; if it is a cost-type criterion, we need utilize the negation operator to normalize the
decision matrix.

Step 3. Determine the ideal solution Q+ = {Q+
1 , Q+

2 , . . . , Q+
ι } and the anti-ideal

solution Q− =
{

Q−1 , Q−2 , . . . , Q−ι
}

, respectively, where

Q+
ι = { m

max
o=1
{pl∗oι

s (p)}}, Q−ι = {
m

min
o=1
{pl∗oι

s (p)}}.

For the criterion Cι, we apply the Formulas (1) and (2) to calculate Q+ and Q−.
Step 4. Utilize Ddgd to calculate the distance between each alternative and Q+, Q−, respectively.

That is D+
o and D−o , where D+

o = ∑n
ι=1 ωcιDdgd(Qo, Q+), and D−o = ∑n

ι=1 ωcιDdgd(Qo, Q−).
Step 5. Calculate the value function Vo for alternative Qo(o = 1, 2, . . . , m).

Vo = (D−o )α + [−γ(D+
o )β], (0 ≤ α ≤ 1, 0 ≤ β ≤ 1)
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where γ is the decision maker’s loss aversion ratio, if γ > 1, it implies the decision maker’s
behavior is more sensitive to losses than gains; if γ = 1, it implies the decision maker have
neutral attitude towards losses or gains; if γ < 1, it means the decision maker’s behavior
is more sensitive to gains than losses; α and β reflects the decision maker’s risk aversion
attitudes and the risk seeking attitudes in decision process, respectively.

Step 6. The greater value of Vo, the better alternatives Qo will be, then we can obtain
the rank of the alternatives.

5. Numerical Example

Here we present a practical multiple criteria group decision making example about
investment decision (Beg et al. [27]), and the behavioral TOPSIS method is utilized to deal
with this problem. The advantages of the behavioral TOPSIS method with PLQROSs are
highlighted by the comparison analysis with the traditional TOPSIS method. Furthermore,
we analyzed the stability and sensitivity of decision makers’ behavior.

5.1. Background

There are three investors e1, e2 and e3, who want to invest the following three types of
projects: real estate (Q1), the stock market (Q2) and treasury bills (Q3). In order to decide
which project to invest, they consider from the following attributes: the risk factor (C1), the
growth factor (C2), the return rate (C3) and the complexity of the document requirements
(C4). The weight vector of investors is (0.3, 0.5, 0.2)T and the criteria’s weight vector is
(0.4, 0.2, 0.3, 0.1)T . The evaluation for the criterion C1 is LTS S1 = {s0 : extreme low, s1 :
low, s2 : slightly low, s3 : generally, s4 : slightly high, s5 : high, s6 : extreme high}, for
the criteria Cι (ι = 2, 3) is Sι = {s0 : extreme slowly, s1 : slowly, s2 : slightly slowly, s3 :
generally, s4 : slightly f ast, s5 : f ast, s6 : extreme f ast} (ι = 2, 3); and the evaluation for
criterion C4 is LTS S4 = {s0 : extreme easy, s1 : easy, s2 : slightly easy, s3 : generally, s4 :
slightly complexity, s5 : complexity, s6 : extreme complexity}. Then, the decision matrices
of each experts are expressed in Tables 1–3.

Table 1. The decision matrix F(1).

C1 C2

Q1 〈{s6(1)}, {s0(1)}〉 〈{s4(0.4), s5(0.6)}, {s0(0.7), s1(0.3)}〉
Q2 〈{s4(0.7), s5(0.3)}, {s1(0.6), s2(0.4)}〉 〈{s3(0.3), s4(0.7)}, {s1(0.5), s2(0.5)}〉
Q3 〈{s5(0.6), s6(0.4)}, {s0(0.5), s1(0.5)}〉 〈{s1(0.5), s2(0.5)}, {s3(0.5), s4(0.5)}〉

C3 C4

〈{s0(0.3), s1(0.7)}, {s2(0.4), s3(0.6)}〉 〈{s1(0.7), s2(0.3)}, {s3(0.5), s4(0.5)}〉
〈{s3(0.3), s4(0.7)}, {s0(0.7), s1(0.3)}〉 〈{s4(0.3), s5(0.7)}, {s1(0.5), s2(0.5)}〉
〈{s1(0.5), s2(0.5)}, {s3(0.7), s4(0.3)}〉 〈{s4(0.3), s5(0.7)}, {s1(0.5), s2(0.5)}〉

Table 2. The decision matrix F(2).

C1 C2

Q1 〈{s0(0.3), s1(0.7)}, {s2(0.4), s3(0.6)}〉 〈{s4(0.7), s5(0.3)}, {s1(0.5), s2(0.5)}〉
Q2 〈{s3(0.3), s4(0.7)}, {s0(0.5), s1(0.5)}〉 〈{s1(0.5), s2(0.5)}, {s3(0.5), s4(0.5)}〉
Q3 〈{s5(0.6), s6(0.4)}, {s0(1)}〉 〈{s3(0.5), s4(0.5)}, {s1(0.1), s2(0.3), s3(0.6)}〉

C3 C4

〈{s4(0.5), s5(0.5)}, {s0(0.7), s1(0.3)}〉 〈{s5(0.7), s6(0.3)}, {s0(1)}〉
〈{s4(0.3), s5(0.7)}, {s1(0.7), s2(0.3)}〉 〈{s5(0.5), s6(0.5)}, {s0(1)}〉

〈{s1(0.5), s2(0.5)}, {s2(0.2), s3(0.6), s4(0.2)}〉 〈{s4(0.5), s5(0.5)}, {s0(1)}〉
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Table 3. The decision matrix F(3).

C1 C2

Q1 〈{s4(0.5), s5(0.5)}, {s0(0.4), s1(0.6)}〉 〈{s5(0.7), s6(0.3)}, {s0(1)}〉
Q2 〈{s1(0.5), s2(0.5)}, {s2(0.5), s3(0.3), s4(0.2)}〉 〈{s5(0.7), s6(0.3)}, {s0(1)}〉
Q3 〈{s4(0.2), s5(0.8)}, {s1(0.7), s2(0.3)}〉 〈{s4(0.6), s5(0.4)}, {s0(0.5), s1(0.5)}〉

C3 C4

〈{s2(0.5), s3(0.5), }, {s3(0.5), s4(0.5)}〉 〈{s0(0.3), s1(0.7)}, {s3(0.5), s4(0.5)}〉
〈{s4(0.4), s5(0.6)}, {s1(0.7), s2(0.3)}〉 〈{s3(0.3), s4(0.7)}, {s1(0.5), s2(0.5)}〉

〈{s0(0.2), s1(0.4), s2(0.4)}, {s2(0.4), s3(0.6)}〉 〈{s6(1), }, {s0(1)}〉

Where F(w) represents the wth investor’s evaluation information.

5.2. The Behavioral TOPSIS Method

Step 1. According to the adjustment method, we adjust the probability distribution of
decision matrices F(1), F(2) and F(3), and the corresponding adjusted matrices F(∗1), F(∗2)

and F(∗3) are given in Tables 4–6.

Table 4. The adjusted decision matrix F(∗1).

C1 C2

Q1 〈{s6(0.3), s6(0.2), s6(0.5)}, {s0(0.4), s0(0.6)}〉 〈{s4(0.4), s5(0.3), s5(0.3)}, {s0(0.5), s0(0.2), s1(0.3)}〉
Q2 〈{s4(0.3), s4(0.2), s4(0.2), s5(0.3)}, {s1(0.5), s1(0.1), s2(0.2), s2(0.2)}〉 〈{s3(0.3), s4(0.2), s4(0.2), s4(0.3)}, {s1(0.5), s2(0.5)}〉
Q3 〈{s5(0.2), s5(0.4), s6(0.4)}, {s0(0.5), s1(0.2), s1(0.3)}〉 〈{s1(0.5), s2(0.1), s2(0.4)}, {s3(0.1), s3(0.3), s3(0.1), s4(0.5)}〉

C3 C4

〈{s0(0.3), s1(0.2), s1(0.5)}, {s2(0.4), s3(0.1), s3(0.2), s3(0.3)}〉 〈{s1(0.3), s1(0.4), s2(0.3)}, {s3(0.5), s4(0.5)}〉
〈{s3(0.3), s4(0.1), s4(0.6)}, {s0(0.7), s0(0.3)}〉 〈{s4(0.3), s5(0.2), s5(0.5)}, {s1(0.5), s2(0.5)}〉

〈{s1(0.2), s1(0.3), s2(0.1), s2(0.4)}, {s3(0.2), s3(0.2), s3(0.3), s4(0.1), s4(0.2)}〉 〈{s4(0.3), s5(0.2), s5(0.5)}, {s1(0.5), s2(0.5)}〉

Table 5. The adjusted decision matrix F(∗2).

C1 C2

Q1 〈{s0(0.3), s1(0.2), s1(0.5)}, {s2(0.4), s3(0.6)}〉 〈{s4(0.4), s4(0.3), s5(0.3)}, {s1(0.5), s2(0.2), s2(0.3)}〉
Q2 〈{s3(0.3), s4(0.2), s4(0.2), s4(0.3)}, {s0(0.5), s1(0.1), s1(0.2), s1(0.2)}〉 〈{s1(0.3), s1(0.2), s2(0.2), s2(0.3)}, {s3(0.5), s4(0.5)}〉
Q3 〈{s5(0.2), s5(0.4), s6(0.4)}, {s0(0.5), s0(0.2), s0(0.3)}〉 〈{s3(0.5), s4(0.1), s4(0.4)}, {s1(0.1), s2(0.3), s3(0.1), s3(0.5)}〉

C3 C4

〈{s4(0.3), s4(0.2), s5(0.5)}, {s0(0.4), s0(0.1), s0(0.2), s1(0.3)}〉 〈{s5(0.3), s5(0.4), s6(0.3)}, {s0(0.5), s0(0.5)}〉
〈{s4(0.3), s5(0.1), s5(0.6)}, {s1(0.7), s2(0.3)}〉 〈{s5(0.3), s5(0.2), s6(0.5)}, {s0(0.5), s0(0.5)}〉

〈{s1(0.2), s1(0.3), s2(0.1), s2(0.4)}, {s2(0.4), s3(0.2), s3(0.3), s3(0.1), s4(0.2)}〉 〈{s4(0.3), s4(0.2), s5(0.5)}, {s0(0.5), s0(0.5)}〉

Table 6. The adjusted decision matrix F(∗3).

C1 C2

Q1 〈{s2(0.3), s4(0.2), s5(0.5)}, {s0(0.4), s1(0.6)}〉 〈{s5(0.4), s5(0.3), s6(0.3)}, {s0(0.5), s0(0.2), s1(0.3)}〉
Q2 〈{s1(0.3), s1(0.2), s2(0.2), s2(0.3)}, {s2(0.5), s3(0.1), s3(0.2), s4(0.2)}〉 〈{s5(0.3), s5(0.2), s5(0.2), s6(0.3)}, {s0(0.5), s0(0.5)}〉
Q3 〈{s4(0.2), s5(0.4), s5(0.4)}, {s1(0.5), s1(0.2), s2(0.3)}〉 〈{s4(0.5), s4(0.1), s5(0.4)}, {s0(0.1), s0(0.3), s0(0.1), s1(0.5)}〉

C3 C4

〈{s2(0.3), s2(0.2), s3(0.5)}, {s3(0.4), s3(0.1), s4(0.2), s4(0.3)}〉 〈{s0(0.3), s1(0.4), s1(0.3)}, {s3(0.5), s4(0.5)}〉
〈{s4(0.3), s4(0.1), s5(0.6)}, {s1(0.7), s2(0.3)}〉 〈{s3(0.3), s4(0.2), s4(0.5)}, {s1(0.5), s2(0.5)}〉

〈{s0(0.2), s1(0.3), s1(0.1), s2(0.4)}, {s2(0.4), s2(0.2), s3(0.3), s3(0.1), s3(0.2)}〉 〈{s6(0.3), s6(0.2), s6(0.5)}, {s0(0.5), s0(0.5)}〉

Step 2. Firstly, we aggregate the adjusted decision matrices based on the PLQROWA
operator. Then we normalize the aggregated matrix according to the type of criteria
(criteria C2 and C3 belong to the benefit-type criteria, criterion C1, C4 belongs to the cost-
type criteria). If q = 2, we can get the normalized decision matrix F(∗) in Table 7.
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Table 7. The aggregate decision matrix F(∗).

C1

Q1 〈{s0(0.4), s0(0.6)}, {s6(0.3), s6(0.2), s6(0.5)}〉
Q2 〈{s0(0.5), s1.25(0.1), s1.53(0.2), s1.62(0.2)}, {s3.16(0.3), s3.69(0.2), s3.75(0.2), s4.2(0.3)}〉
Q3 〈{s0(0.5), s0(0.2), s0(0.3)}, {s4.86(0.2), s5(0.4), s6(0.4)}〉

C2

〈{s4.27(0.4), s4.6(0.3), s6(0.3)}, {s0(0.5), s0(0.2), s1.41(0.3)}〉
〈{s3.21(0.3), s3.54(0.2), s3.68(0.2), s6(0.3)}, {s0(0.5), s0(0.5)}〉

〈{s2.92(0.5), s3.6(0.1), s3.95(0.4)}, {s0(0.1), s0(0.3), s0(0.1), s2.63(0.5)}〉
C3

〈{s3.13(0.3), s3.16(0.2), s4.17(0.5)}, {s0(0.4), s0(0.1), s0(0.2), s1.83(0.3)}〉
〈{s3.76(0.3), s4.6(0.1), s4.78(0.6)}, {s0(0.7), s1.62(0.3)}〉

〈{s0.9(0.2), s1(0.3), s1.85(0.1), s2(0.4)}, {s2.26(0.2), s2.77(0.2), s3(0.3), s3.27(0.1), s3.78(0.2)}〉
C4

〈{s0(0.5), s0(0.5)}, {s4.03(0.3), s4.05(0.4), s6(0.3)}〉
〈{s0(0.5), s0(0.5)}, {s4.5(0.3), s4.86(0.2), s6(0.5)}〉
〈{s0(0.5), s0(0.5)}, s6(0.3), s6(0.2), s6(0.5)}〉

Step 3. According to Definition 8, the score function matrix can be obtained as follows:

A =

 −0.38 0.219 0.1478 −0.2035
−0.0939 0.1448 0.263 −0.3269
−0.2973 0.0841 −0.0334 −0.38

.

Furthermore, we can obtain the ideal solution as follows:

Q+ = {〈{s0(0.5), s1.25(0.1), s1.53(0.2), s1.62(0.2)}, {s3.16(0.3), s3.69(0.2), s3.75(0.2), s4.2(0.3)}〉, 〈{s4.27(0.4),

s4.6(0.3), s6(0.3)}, {s0(0.5), s0(0.2), s1.41(0.3)}〉, 〈{s3.76(0.3), s4.6(0.1), s4.78(0.6)}, {s0(0.7), s1.62(0.3)}〉,
〈{s0(0.5), s0(0.5)}, {s4.03(0.3), s4.05(0.4), s6(0.3)}〉},

The anti-ideal solution is given as follows:

Q− = {〈{s0(0.4), s0(0.6)}, {s6(0.3), s6(0.2), s6(0.5)}〉, 〈{s2.92(0.5), s3.6(0.1), s3.95(0.4)}, {s0(0.1), s0(0.3),

s0(0.1), s2.63(0.5)}〉, 〈{s0.9(0.2), s1(0.3), s1.85(0.1), s2(0.4)}, {s2.26(0.2), s2.77(0.2), s3(0.3), s3.27(0.1),

s3.78(0.2)}〉, 〈{s0(0.5), s0(0.5)}, s6(0.3), s6(0.2), s6(0.5)}〉}.

Step 4. Calculate D(Qo, Q+) an D(Qo, Q−)(o = 1, 2, 3), respectively.
If q = 2, here we apply that the Euclidean distance measure Dded, then D+

o =

∑4
ι=1 ωcιDded(Qo, Q+) and D−o = ∑4

ι=1 ωcιDded(Qo, Q−). So the separation measures be-
tween the alternative and the ideal/anti-ideal solution are obtained in Table 8.

Table 8. The separation measures for each alternative.

Q1 Q2 Q3

D+
o 0.1561 0.0549 0.2055

D−o 0.1236 0.2626 0.0561

Step 5. Calculate the value function Vo about alternatives Qo(o = 1, 2, 3). Here the
parameters α, β and γ are used to describe the decision maker’s behavior tendency. Here we
assume γ = 2.25, α = β = 0.88 [28], then we have V1 = −0.2801, V2 = 0.1334, V3 = −0.4797.

Step 6. According to the values of Vo, we have Q2 � Q1 � Q3, so Q2 is the best alternative.
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Next, we consider the relationship between the decision conclusion and the change of
parameter λ. We still take the PLQROWA operator as an example. Assume q = 2, α = β =
0.88, γ = 2.25, and λ = 2, 3, 5, 8, 10, 12, respectively. The Figure 3 shows the corresponding
ranking results (Table 9 shows the detailed calculation results). Obviously, the varies of
value function Vo is not sensitive to the parameter λ, which indicates that the parameter λ
has little effect on the decision results.

Figure 3. The results of change λ in behavioral TOPSIS method.

Table 9. The detailed results of parameter λ.

λ = 2 λ = 3 λ = 5 λ = 8 λ = 10 λ = 12

V1 −0.2801 −0.2335 −0.2056 −0.197 −0.1957 −0.1953
V2 0.1334 0.1078 0.0959 0.0929 0.0925 0.0923
V3 −0.4797 −0.4052 −0.3806 −0.3768 −0.3763 −0.3761

5.3. Comparison Analysis with Existed Method

Here, the traditional TOPSIS method is used to compare with the behavioral TOPSIS
method, the algorithm steps [29] are given as follow.

Step 1. Adjust the probability distribution of PLQRONs, the corresponding matrices
F(∗1), F(∗2) and F(∗3) are obtained.

Step 2. Apply the PLQROWA operator to aggregate the evaluation information, then
we normalize the aggregated decision matrix; the result is same as Section 5.2.

Step 3. Similarly, we can obtain the positive ideal solution Q+ as follows:

Q+ = {〈{s0(0.5), s1.25(0.1), s1.53(0.2), s1.62(0.2)}, {s3.16(0.3), s3.69(0.2), s3.75(0.2), s4.2(0.3)}〉, 〈{s4.27(0.4),

s4.6(0.3), s6(0.3)}, {s0(0.5), s0(0.2), s1.41(0.3)}〉, 〈{s3.76(0.3), s4.6(0.1), s4.78(0.6)}, {s0(0.7), s1.62(0.3)}〉,
〈{s0(0.5), s0(0.5)}, {s4.03(0.3), s4.05(0.4), s6(0.3)}〉}.

The anti-ideal solution Q− is also obtained as follows:

Q− = {〈{s0(0.4), s0(0.6)}, {s6(0.3), s6(0.2), s6(0.5)}〉, 〈{s2.92(0.5), s3.6(0.1), s3.95(0.4)}, {s0(0.1), s0(0.3),

s0(0.1), s2.63(0.5)}〉, 〈{s0.9(0.2), s1(0.3), s1.85(0.1), s2(0.4)}, {s2.26(0.2), s2.77(0.2), s3(0.3), s3.27(0.1),

s3.78(0.2)}〉, 〈{s0(0.5), s0(0.5)}, s6(0.3), s6(0.2), s6(0.5)}〉}.

Step 4. If q = 2, we apply Dded to calculate the distance of each alternative between
Q+ and Q−, the results are obtained in Table 10.
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Table 10. The separation measures for each alternative.

Q1 Q2 Q3

D+
o 0.1561 0.0549 0.2055

D−o 0.1236 0.2626 0.0561

Step 5. Calculate the closeness coefficient Ro(o = 1, 2, 3),

Ro =
D−o

D−o + D+
o

.

By calculation, we get R1 = 0.4419, R2 = 0.8271 and R3 = 0.2145. So the ranking order
of the alternatives is Q2 � Q1 � Q3. The decision result is same as behavioral TOPSIS
method, which shows the proposed method is effective.

Similarly, we consider the relationship between the decision result and the change of
λ based on the traditional TOPSIS method. Here q = 2, α = β = 0.88 and γ = 2.25, the
parameter λ = 2, 3, 5, 8, 10, 12, we apply the PLQROWA operator to calculate the closeness
coefficient Ro of each alternative, Figure 4 shows the ranking results (Table 11 shows the
detailed calculation results). As can be seen from Figure 4, the closeness coefficient Ro
remains unchanged and the decision result is also tend to stable.

Figure 4. The results of change the parameter λ in traditional TOPSIS method.

Table 11. The detailed results with the parameter λ.

λ = 2 λ = 3 λ = 5 λ = 8 λ = 10 λ = 12

R1 0.4419 0.4472 0.4582 0.4635 0.4644 0.4647
R2 0.8271 0.8202 0.8156 0.8142 0.814 0.814
R3 0.2145 0.2306 0.2347 0.2349 0.235 0.2351

5.4. The Sensitivity of Decision Maker’s Behavior

Here, we make the analysis of the influence of loss aversion parameter γ, the risk
preference parameter α and β in the proposed behavioral TOPSIS method.

Firstly, the impact of the loss aversion parameter γ in the value function is considered.
We take the PLQROWA operator as an example, if q = 2, α = β = 0.88 and λ = 2, let
γ = 0.5, 0.8, 1, 2.25, 5, the ranking results of the value function Vo are shown in Figure 5
(Table 12 shows the detailed calculation results). As can be seen from Figure 5, when
γ ≤ 2.25, the values of V1, V2 and V3 are less sensitive to the change of the loss aversion
parameter γ; while γ > 2.25, the values of Vo(o = 1, 2, 3) is changing obviously. In
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comparison, the loss aversion parameter γ has a significant influence on V2 and V3. When
γ > 2.25, the values of Vo(o = 1, 2, 3) decrease sharply at the same time, which means
if the parameter γ becomes larger, the loss aversion has a greater impact on the value
function Vo.

Figure 5. The results of changed loss aversion parameter γ.

Table 12. Preference ranking under various loss aversion parameter γ.

Distance Measure Behavioral TOPSIS

γ = 0.5 γ = 0.8 γ = 1 γ = 1.5 γ = 2.25 γ = 5

D+
i D−

i Vi Rank Vi Rank Vi Rank Vi Rank Vi Rank Vi Rank

Q1 0.1561 0.1236 0.0613 2 0.0028 2 −0.0362 2 −0.1338 2 −0.2801 2 −0.8167 2
Q2 0.0549 0.2626 0.2695 1 0.2461 1 0.2306 1 0.1917 1 0.1334 1 −0.0805 1
Q3 0.2055 0.0561 −0.0449 3 −0.1195 3 −0.1691 3 −0.2934 3 −0.4797 3 −1.1629 3

Next, we consider the influence of the risk preference parameters α and β in the
value function, respectively. We take the PLQROWA operator as an example, suppose that
q = 2, β = 0.88 and γ = 2.25, λ = 2, let α = 0.1, 0.3, 0.5, 0.8, 1, the results of value functions
change with the parameter α are shown in Figure 6. It is easy to know that the values of
the function Vo (o = 1, 2, 3) descend with the parameter α. We know Q2 is always the best
alternative from the Figure 6. If α > 0.88, the values of vo (o = 1, 2, 3) also tend to stable.

Furthermore, assume that q = 2, α = 0.88, γ = 2.25 and λ = 2, let β = 0.1, 0.3, 0.5, 0.8, 1,
the results of value functions change with the parameter β are shown in Figure 7. Similarly,
we know that the values of Vo (o = 1, 2, 3) increase with the parameter β, and the best
alternative remains unchanged. If β > 0.88, the values of Vo (o = 1, 2, 3) tend to stable. In
conclusion, the change of value function Vo is consistent with expert’s risk preference, if
the expert is risk averse, the parameter α increases, he/she is more sensitive to the loss, and
the overall value functions are decreasing. If the decision maker is risk appetite, when the
parameter β increases, he/she becomes more sensitive to gains, the overall value functions
are increasing.
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Figure 6. The results of change the risk preference parameter α.

Figure 7. The results of change the risk preference parameter β.

According to the above comparison analyses, we can find that the proposed method
has the following advantages. First, the behavioral TOPSIS method implements the decision
maker’s choice by adopting the gain and loss. Second, it has been demonstrated that the
traditional TOPSIS method is a special case of the proposed behavioral TOPSIS method [23],
while the behavioral TOPSIS method involves a wider range of situations. In addition,
there are three parameters (α, β and γ) in the value function of Vo, the decision maker
can choose the appropriate numerical value according to his/her risk preference and
loss aversion, which makes the proposed behavioral TOPSIS method more flexible in
practical application.

6. Conclusions

The main conclusions of the paper are given as follows:

(1) The operations of PLQROS are proposed based on the adjusted PLQROS with the
same probability. Then we present the PLQROWA operator, PLQROWG operator and
the distance measures between the PLQROSs based on the proposed operational laws.

(2) We develop the fuzzy behavior TOPSIS method to PLQROS, which consider the
behavioral tendency in decision making process.

(3) We utilize a numerical example to demonstrate the validity and feasibility of the fuzzy
behavior TOPSIS method, and we prove the superiority of the method by comparison
with the traditional TOPSIS method.
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Next, we will apply the proposed method to deal with the multi-attribute decision
making problems, such as the emergency decision, supplier selection and investment
decision, etc.
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