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Abstract: Although the power of low-frequency oscillatory field potentials (FP) has been extensively
applied previously, few studies have investigated the influence of conducting direction of deep-brain
rhythm generator on the power distribution of low-frequency oscillatory FPs on the head surface.
To address this issue, a simulation was designed based on the principle of electroencephalogram
(EEG) generation of equivalent dipole current in deep brain, where a single oscillatory dipole current
represented the rhythm generator, the dipole moment for the rhythm generator’s conducting direction
(which was orthogonal and rotating every 30 degrees and at pointing to or parallel to the frontal lobe
surface) and the (an)isotropic conduction medium for the 3D (a)symmetrical brain tissue. Both the
power above average (significant power value, SP value) and its space (SP area) of low-frequency
oscillatory FPs were employed to respectively evaluate the strength and the space of the influence.
The computation was conducted using the finite element method (FEM) and Hilbert transform.
The finding was that either the SP value or the SP area could be reduced or extended, depending
on the conducting direction of deep-brain rhythm generator flowing in the (an)isotropic medium,
suggesting that the 3D (a)symmetrical brain tissue could decay or strengthen the spatial spread of a
rhythm generator conducting in a different direction.

Keywords: finite element method; electrical field potential; dipole moment; power; EEG

1. Introduction

Theta oscillations (4–8 Hz), which originate in deep brain cortex region, are associated
with cognition and memory [1]. They can be measured not only by conducting a deep brain
electroencephalogram (EEG) in vivo (local field potentials, LFPs) but also by the oscillatory
field potentials (FPs) on either the frontal or temporal lobe surface via a scalp EEG [2,3].
Power fluctuation is the fundamental parameter to evaluate theta rhythms, which can
reveal important information about a neural network, e.g., the extent of synchronous
neurons in a local assembly. The power spectral density may be dependent on a reference
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scheme at frequency bands less than 100 Hz [4,5]. In addition, power could be related to
various factors such as age, long-term synaptic modification, brain structure, network state
and pathology. Thus, power was generally used to investigate the scale of synchronized
neurons in cognition and memory, human and animal behaviors, and even functional
connectivity of rhythmic brain activity [4,6–10]. Recent evidence indicates that neural
disinhibition would vary the frequency dependent LFP states such as burst, suppression
and continuous. Increasing power can be observed at lower frequencies (less than 20 Hz),
whereas decreasing power can be observed at higher frequencies (more than 20 Hz) in the
hippocampus [11].

A consensus has not been achieved regarding the spatial spread of LFPs or FPs in
the cortical medium [12–16]. The traveling theta oscillations in deep brain is an important
recent observation [17], which implies that the measurement of scalp EEG rhythm at the
theta frequency band considers not only some factors studied traditionally, such as the am-
plitude of rhythmic source current, capacitive extracellular medium, electrical conductivity
and position of a rhythm generator, but also other factor such as the conducting direction
of a rhythm generator. However, only some reports have investigated the latter factor [14].
Therefore, by considering the frontal lobe as an example, we attempt to map the relation
between the FP power distribution on the frontal lobe surface and the conducting direction
of the low-frequency rhythm generator in deep brain, based on the theory of equivalent
dipole current that pertains to the generation of EEG (forward problem) [18,19].

Here, a quasi-real head surface was reconstructed from 256 T1-weighted MRI slices
based on the concept of inverse engineering. The electrical conductivity of the brain tissue
was described by the 3D (a)symmetrical tensor and inclusion of (an)isotropy, and the brain
rhythm generator was depicted as a quasi-static dipole current in deep brain. The activity
of the latter could be representative of a sine oscillation function at a low frequency (here,
6 Hz) and the moment of which could simulate the conducting direction of rhythmic source
current (here, the orthogonal conducting directions, pointing to or parallel to the frontal
lobe surface). Thus, a distribution of FPs evoked by the dipole current at a time point could
be estimated by FEM on a quasi-real head surface by changing some simulation conditions,
e.g., conductivity tensor and (an)isotropy, the position of a single dipole current and dipole
moment, such as pointing to or parallel to the frontal lobe surface. During a certain time
period, a simulated rhythm could be obtained based on the time series of oscillatory FPs.
The instantaneous power of simulated rhythms was estimated by Hilbert transform and
displayed by FPs when considering the amplitude of a single dipole current. Then, the
SP area estimated by global statistics was used to study the influence of a single dipole
current, such as its moment (e.g., rotating every 30◦) and position (e.g., three positions
inside the frontal lobe) on the SP area, by comparatively studying the anisotropic and
isotropic medium with 3D asymmetrical conduction tensor and 3D symmetrical conduction
tensor [20]. The flow diagram of research is shown in Figure 1.
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This study presents the combined effects of the low-frequency rhythm generator’s
conducting direction and position as well as (a)symmetrical brain tissue conductivity in
mapping the FP power distribution on the head surface. Therefore, it may be helpful
to further understand the generative mechanism of spontaneous low-frequency brain
oscillations at the system level.

2. Methods

The power distribution was analyzed by changing some factors, i.e., the conductivity
tensor and inclusion of (an)isotropy, (a)symmetrical conductivity tensor in 3D, position and
conducting direction of a single dipole current on a homogeneous single-layer quasi-real
head model.

2.1. Model Building
2.1.1. Reconstructed 3D Quasi-Real Head Model

Initially, a numerical model of the cortical surface was reconstructed using Simpleware
(Simpleware Ltd. Corp. Exeter, UK) and then digitized using Geomagic Studio (Raindrop
Ltd. Corp. Morrisville, USA), based on 256 T1-weighted MRI slices (structural MRI slices).
The process required two steps. the first step was the reconstruction of a 3D quasi-real head
surface model, wherein 256 sMRI images (DICOM format and 256× 256 pixel matrix) were
imported into scan image processing (Scan IP) module of Simpleware. In order to strip the
cortical tissue from the brain tissues rapidly, the slice images were trimmed and segmented
according to the gray value of the image using the interactive threshold function to segment
the target area. The target area (the cerebral cortex) was removed. Surface smoothing and
model configuration were employed to make the surface model more realistic, and the scalp
surface model was exported in the STL format. Then, the DISCRETIZED model of head was
rebuilt. The STL-format surface model was imported into Geomagic Studio. It is worth
mentioning that there were still some unusable points left and the holes were missing. For
the editing of unusable points, Select Outliers function and Reduce Noise function were
used to remove the noise points generated by the scan moving and the noise points outside
the target area. To edit the holes, they were either filled directly or a large hole diameter
was dug and then filled. If the filling effect was still unsatisfactory, they were filled using
the Create Point Cover function to reconstruct the area point space to repair the hole. After
editing and filtering to optimize the tissue data, the holes and other drawbacks in the
model were filled and repaired. The traits of the model were distinguished and extracted
to build a high quality Non-Uniform Rational B-Spline (NURBS) curved surface and to
generate the cortical space model (also known as reverse engineering model, R-E model).
The flow chart of reconstructing the 3D quasi-real head model is shown in Figure 2.
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To account for the 3D elements in the finite element method, the NUBS model was
layered and the key points were selected by the equal angle or equal distance method,
and the nodes were connected between the layers to form a split element. The NUBS
model was imported into the COMSOL Multiphysics (COMSOL Inc. Stockholm, SWE)
software platform for splitting, and 35,273 elements were automatically generated under
the user-controlled element/standard mode, as shown in Figure 3a. Since each element was
divided into a plane on the surface of the model, the larger the curvature of the boundary
of the model, the smaller the element was divided, and the more the number, the denser
the unit element. Among all the elements, 3600 elements were on the frontal lobe. The
isopotential lines are shown in Figure 3b, the zero-potential surface was the FP reference as
shown in Figure 3c, and the alternative dipole positions are shown in Figure 3d.
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2.1.2. Position and Conducting Direction of a Single Dipole Current

To study the influence of the position and conducting direction of a single dipole
current inside the frontal lobe, the dipole direction was assumed to be the Z axis for
simulating the conducting direction of dipole current parallel to the frontal lobe surface
and the -X axis for the conducting direction of the dipole current pointing to the frontal
lobe surface. At each dipole moment, there were three positions (denoted as right frontal
lobe, central frontal lobe and left frontal lobe) with a displacement of 1 cm. Along the Z
axis, the dipole position was assumed to be in the normal direction in the X–Y plane, and
could be changed from the right part and middle part to the left part, the coordinates (cm)
of which were (x, y, z: 8.2,10.9,5.8) (right frontal lobe), (x, y, z: 8.2,10.9,6.8) (central frontal
lobe), and (x, y, z: 8.2,10.9,7.8) (left frontal lobe), respectively, as shown in Figure 3d. In
addition, along the -X axis, the dipole moment could simulate the conducting direction of
a single rhythm generator pointing to the frontal lobe surface, where, the dipole position
(x, y, z: 8.2,10.9,6.8) was localized inside the central frontal lobe. Thus, the near frontal
lobe (x, y, z: 7.2,10.9,6.8) represented carrying the dipole current near to the lobe surface,
whereas the far frontal lobe (x, y, z: 9.2,10.9,6.8) represented carrying the dipole current far
away from the lobe surface.
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2.1.3. Symmetrical Conductivity and Asymmetrical Conductivity

The mean electrical conductivity was considered in this study [21]. Ideally, the
conducting medium must be isotropic with the 3D symmetrical conductivity tensor of
σx = σy = σz = 0.14 S/m. However, the conducting medium was anisotropic in a real brain
with the 3D asymmetrical conductivity tensor of σx = σy = 0.04427 S/m, σz = 0.4427 S/m,
i.e., σx : σz = 1 : 10. Here, the influence of anisotropic conductivity was compared with that
of isotropic conductivity, where the influence of a 3D asymmetrical conductivity tensor was
comparatively studied with that of a 3D symmetrical conductivity tensor. The isotropic
conductivity medium tensor is shown in Formula (1), and the anisotropic conductivity
medium tensor is shown in Formula (2).

σ =

 σx σxy σxz
σyx σy σyz
σzx σzy σz

 =

 0.14 0 0
0 0.14 0
0 0 0.14

 (1)

σ =

 σx σxy σxz
σyx σy σyz
σzx σzy σz

 =

 0.04427 0 0
0 0.04427 0
0 0 0.4427

 (2)

2.2. Calculation Derivation
2.2.1. FP Derivations of Low-Frequency Simulated Rhythms

A generalized expression of the forward problem, i.e., the theory of the equiva-
lent dipole current with respect to the generation of EEG, could be helpful to facilitate
mapping [18,19]. Given the position and moment of a static equivalent dipole current
generator and the geometry and electrical conductivity (σ) profile of the volume conductor
(Ω, i.e., model of the head), the electrical FPs (ψ) can be considered as EEG and could be
expressed by Poisson’s equation and the Neumann boundary condition. This is a very
authoritative method since it was released in 1978 and is still in use today [18] on the head
surface (S).

∇·(σ·∇ψ) = −∑
Ω

Js (in Ω) (3)

σ(∇ψ)·n = 0 (on S) (4)

Here, n is the normal direction of the boundary and Js is the electric current density of
a conductor.

The rhythms were simulated by oscillatory electrical FPs on a 3D quasi-real head
surface model (single-layer homogeneous medium), which was obtained via FEM using
COMSOL Multiphysics. The activity of the dipole current was a sine function with an
amplitude of 0.1 nA, a frequency of 6 Hz and an initial phase of 0 radian when considering
a time window of 1 s. The dipole current can be considered as the rhythm generator and
the electrical field evoked by a single dipole current was quasi-static. Additionally, the
electrical FP could be calculated by FEM at each time point at each generated element. A
time course of 1 s with respect to the dipole current was split into 128 equal time points.
The oscillating electrical FP was considered as the simulated rhythm on each element
during this 1 s period.

2.2.2. FP Power Derivations of Low-Frequency Simulated Rhythms

The low-frequency oscillatory FP is a continuous signal, which is denoted as FP(t).
FP(t) was Hilbert transformed (hilbert, MATLAB) to get F̃P(t) and can be expressed
as follows.

F̃P(t) =
1
π

p.v.
∫ +∞

−∞

A(τ)ejφFP(τ)

t− τ
dτ (5)

Here, A(τ) is the instantaneous amplitude of FP(t), φFP(τ) is the instantaneous phase
of FP(t), and p.v. is the Cauchy principal value.
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For a continuous signal, its instantaneous power value is equal to the square of the
signal modulus after Hilbert transformation of the signal. This is to say the instantaneous
power was a sum of the square of the real part plus the square of the imaginary part of the
oscillatory FPs., The power was then averaged over time.

2.2.3. Value and Area of Significant Power

Power values greater than the mean power (significant power, denoted as, i.e., SP),
were a concern to study the influence of the position strength and conducting direction
of a rhythm generator on the significant power distribution. In addition, the SP area (%)
was defined as the ratio of the number of elements with an SP value to the total number
of elements needed to study the influence space. Moreover, the SP area was displayed
by a spatial sum of a warm color tone plus a cold color tone on a standard colormap of
FPs corresponding to a rhythm generator at an amplitude of 0.1 nA. According to the
partial volume effect [22], the larger the SP area, the smaller the significant FP power value.
This suggests that a greater space influence will mean a weaker influence of strength, and
vice versa.

The subsequent statistical significance of the FP power was determined between
anisotropic medium and isotropic medium, where the dipole moment was parallel to and
pointing to the frontal lobe surface and the adjacent displacement distance of a single dipole
current. The student’s unpaired t-test was used to determine the statistical significance.

2.3. Validation Influence of Conducting Direction

The influence of the conducting direction of the rhythm generator on the SP area was
validated by rotating the conduction direction of a single dipole current at every 30◦ of
the rotation under two conditions, i.e., pointing to or parallel to the lobe surface, when
the dipole current was at the central inside frontal lobe. The dipole moment was rotated
(i) departing from the -X axis via the Y axis and arriving at the opposite site (X axis);
(ii) departing from the Z axis via the Y axis and arriving at the opposite site (-Z axis).

3. Results

There were 3600 elements present from left to right on the frontal lobe surface; thus,
the power values of these elements were considered during the analysis.

3.1. Distribution of Significant Power at Dipole Moment Pointing to Frontal Lobe Surface

The distribution of FP power when a dipole current was flowing directly to the frontal
surface (dipole moment at the -X axis) is shown in Figure 4. From the horizontal perspective,
i.e., isotropic medium (left panel) compared to anisotropic medium (right panel), the SP
area was greatly reduced in the anisotropic medium relative to that in the isotropic medium
(p < 0.001), suggesting that the 3D asymmetrical conductivity tensor of brain tissue could
strengthen an ongoing dipole current in deep brain, thereby resulting in the SP area to
reduce on the frontal lobe surface. From the vertical perspective, because of the dipole
current position, the partial volume effect could be observable, i.e., the smaller the SP area,
the greater the SP values, suggesting the opposite effects indicated by the SP area and the
SP value. At a distance of 1 cm, the maximum power values differed by more than a factor
of two, as indicated by the maximum value using the color bars.

3.2. Distribution of Significant Power at Dipole Moment Parallel to Frontal Lobe Surface

The FP power distribution when a dipole current was flowing parallel to the frontal
lobe surface (dipole moment at the Z axis) is shown in Figure 5. From the horizontal
perspective, the SP area considerably increased in the anisotropic medium (right panel)
compared to that in the isotropic medium (left panel) (p < 0.001), suggesting that the 3D
asymmetrical conductivity tensor of brain tissue could weaken an ongoing dipole current
in deep brain. This would y result in the SP area increasing on the frontal lobe surface,
which is the reverse of the effect shown in Figure 4. However, from the vertical perspective,
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the partial volume effect is similar to that shown in Figure 4, i.e., the smaller the SP area,
the greater the SP values.

3.3. Validation of Influence of Dipole Moment on Area of Significant Power

In Figure 6, the SP area was shown by rotating the dipole moment after every 30◦

in two directions, pointing to and parallel to the frontal surface. When considering the
condition of the dipole moment flowing along the frontal lobe, an increased SP area was
observed on the frontal lobe surface in the anisotropic medium relative to the isotropic
medium, implying that the 3D asymmetrical conductivity of brain tissue could decay the
ongoing dipole current. In reverse, a decreased SP area was observed when considering the
condition of the dipole moment flowing directly to the frontal lobe. This implies that the 3D
asymmetrical conductivity of brain tissue could enhance the ongoing dipole current, except
under some specific conditions, such as the Y axis (parallel to the frontal lobe surface) and
X axis (pointing to deep brain), as shown in Figure 6a.

Taken together, as long as the dipole moment is flowing along the frontal lobe, the
3D asymmetrical conductivity of brain tissue could weaken the ongoing dipole current,
leading to an increase in SP area which was observed on the frontal lobe surface in the
anisotropic medium.
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an anisotropic medium (right panel). (a) Located inside the right frontal lobe; (b) located inside the
central frontal lobe; (c) located inside the left frontal lobe.
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Figure 6. Influence of dipole moment on the SP area. (a) Direct to the frontal lobe surface, departing from -X axis and
arriving at backward via Y axis (90 degree); (b) along the frontal lobe surface, departing from Z axis and arriving at
backward via Y axis (90 degree).

4. Discussion
4.1. Power

As shown in Figures 4 and 5, the distribution of significant FP power could be reversed
in the (an)isotropic medium in the orthogonal directions of the rhythm generator in deep
brain. This implies a joint consequence of the conducting direction of rhythmic source
current and the complex conductivity of brain tissue. This consequence can be further
explained by the solution of FPs on a spherical surface in the forward problem, i.e., the FPs
evoked by the dipole current were inversely proportional to the square of the distance to the
rhythm generator. The closer the distance between an element and the rhythm generator,
the stronger the FP rhythms and the greater the significant FP power values [18,23].

The distance between the dipole source current and the lobe surface was approxi-
mately equal when the dipole current flowed along the frontal lobe; thus, distance was a
minor factor. However, the disturbance in anisotropic conductivity was a significant factor
that resulted in more SP area in the 3D electrical field relative to the balance in isotropic
conductivity. Consequently, the SP area in the anisotropic medium was greater than that in
the isotropic medium, as shown in Figures 4 and 5.

Moreover, in Figure 6a, in some specific conditions such as the Y axis (parallel to the
frontal lobe surface) the effect of anisotropy of brain tissue isn’t an exception, because its
effect is convergent to that as shown in Figure 6b.

In previously conducted neural measurement studies, power reflected the strength
of brain rhythms, which were related to many factors such as brain regions, scale of
synchronous neurons, brain function, pathology and physiology [2,7,10,24]. Our theoretical
work further suggests that FP power was dependent on the combined factors that were
difficult to measure at a system level, including the position of a rhythm generator, brain
tissue conductivity and even the conducting direction of a rhythm generator in deep brain.

4.2. Anisotropy

A formation of grey matter and white matter is a basis of the conductivity of brain
tissue. In the human brain, anisotropy is related to the fiber architecture of cortex and
laminae and the gross anatomical regions related to cortical gyri and local curvature.
The anisotropy is a consequence of a difference in conductivity of different tissues and
matter types in the brain. Anisotropy could be measured using various technologies
such as echo planar imaging and diffusion tensor imaging. Previous work has shown
anisotropy could be associated with brain physiology and pathology [25,26], with a 10-fold
relationship at the Z axis tensor where only one variable factor was required to produce an
anisotropy. Our work chose this setting by which the influence of asymmetric conductivity
on the propagation of deep-brain rhythm sources could be found significantly compared to
symmetric conductivity. In a real system, either the anisotropy or the propagation direction
of a deep-brain rhythm generator could be far more complicated than this anisotropic
setting and the representation of conducting direction in this study. There is currently no
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clear conclusion on the parameters that would model the real brain anisotropy and the
propagation pathway of a low-frequency brain rhythm generator. From the perspective
of overall brain physiology, the anisotropic model is more realistic, and isotropic model
is ideal. However, by comparing the conduction of isotropic media, it can also provide a
reference for the conduction effect of isotropic local brain tissues.

5. Conclusions

On the frontal lobe surface, the space distribution of significant EEG rhythm power (SP
area) in a low-frequency frequency band was investigated via simulation. The SP area was
considerably affected by many factors. The anisotropy of brain tissue with 3D asymmetrical
conduction tensor could limit or enlarge the available recording area of significant power,
depending on the conducting direction of the rhythm generator in deep brain. Considering
the partial volume effect, the narrower the SP area, the greater the power values. This
result implies that the accurate and cautious placement of EEG electrodes is very important
during measurement, and that traditional analysis on mean power must be conducted
under very strict conditions such as potential localization and possible spread pathway of
the rhythm generator in deep brain. Therefore, this study may be helpful to researchers and
practitioners involved with the measurement and analysis of spontaneous low-frequency
EEG rhythms at a system level.

To the best of our knowledge, the simulation described in this study is the first to report
the 3D asymmetrical conduction characteristic of anisotropic conductivity tensor. Future
investigations should focus on linking the shapes of gray and white matter, anisotropic
tissue and other related factors to study their influence on low-frequency rhythms on the
head surface.
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