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Abstract: A connected graph G is said to be a cactus if any two cycles have at most one vertex in
common. The multiplicative sum Zagreb index of a graph G is the product of the sum of the degrees
of adjacent vertices in G. In this paper, we introduce several graph transformations that are useful
tools for the study of the extremal properties of the multiplicative sum Zagreb index. Using these
transformations and symmetric structural representations of some cactus graphs, we determine
the graphs having maximal multiplicative sum Zagreb index for cactus graphs with the prescribed
number of pendant vertices (cut edges). Furthermore, the graphs with maximal multiplicative sum
Zagreb index are characterized among all cactus graphs of the given order.
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1. Introduction

In chemical graph theory and mathematical chemistry, a degree-based topological
index, also known as a connectivity index, is a type of molecular descriptor calculated based
on the molecular graph of a chemical compound. Symmetry has played an important role
in chemical graph theory; in recent years, this role has increased in the study of topological
indices. Let G = (V, E) be a graph with vertex set V(G) and edge set E(G). The degree of
the vertex v in G is denoted by dG(v). The oldest and most well-known graph invariants
are the first Zagreb index M1 and the second Zagreb index M2 of a graph G, and they are
defined as

M1(G) = ∑
u∈V(G)

(dG(u))2 and M2(G) = ∑
uv∈E(G)

dG(u)dG(v).

These indices were first introduced about fifty years ago by Gutman and Trinajstić [1];
for details of the mathematical studies and chemical applications on the Zagreb indices,
see [2–6]. Moreover, the relation and comparison between them were studied in [7–13].

Todeschini and Consonni [14] proposed the multiplicative versions of the classical
Zagreb indices M1 and M2, which are defined as

Π1(G) = ∏
u∈V(G)

dG(u)2 and Π2(G) = ∏
uv∈E(G)

dG(u)dG(v).

Gutman [15] studied these two graphical invariants and called them first and second
multiplicative Zagreb indices, respectively. Recent results related to the multiplicative
Zagreb indices and their other versions can be found in [16,17].

Eliasi, Iranmanesh, and Gutman [18] introduced a new graphical invariant, which
is the multiplicative version of the well-known first Zagreb index M1 and called the
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multiplicative sum Zagreb index by Xu and Das [19]. The multiplicative sum Zagreb index
is defined as follows:

Π∗1(G) = ∏
uv∈E(G)

(dG(u) + dG(v)).

Although Π∗1 was introduced in 2012, it has been studied only to a limited extent
for various classes of graphs. Elias, Iranmanesh, and Gutman [18] proved that among all
connected graphs with a given order, the path has minimal Π∗1-value. They also determined
the trees with the second minimal Π∗1-value. Xu and Das [19] characterized the extremal
trees, unicyclic and bicyclic graphs with a given order with respect to the multiplicative sum
Zagreb index. Azari and Iranmanesh [17] gave some lower bounds for the multiplicative
sum Zagreb index of graph operations. Kazemi [20] studied the multiplicative Zagreb
indices of molecular graphs with a tree structure. The extremal graphs with respect to the
multiplicative sum Zagreb index for several classes of graphs were determined in [21].

A connected graph G is said to be a cactus if any two cycles have at most one vertex
in common. For the class of cactus graphs, the graphs were characterized that have the
extremal Zagreb indices [22], the difference between Zagreb indices [23], and multiplicative
Zagreb indices [24]. Recently, Liu, Yao, and Das [25] characterized the extremal cactus
graphs with respect to several well-known vertex degree-based graph invariants. A vertex
of degree one is called pendent, and an edge incident with a pendent vertex is called
pendent. For v ∈ V(G), NG(v) denotes the set of neighbors of v. A cut edge in a graph
G is an edge whose removal increases the number of connected components of G. For
X ⊂ E(G), denote by G− X the subgraph of G obtained from G by deleting all edges in X.
For Y ⊂ E(Ḡ), denote by G + Y the supergraph of G obtained from G by adding all edges
in Y, where Ḡ is a complement of G.

Denote by Cn,k the class of cactus graphs of order n with k pendent vertices, and denote
by Ck

n the class of cactus graphs of order n with k cut edges. This paper is organized as
follows. In Section 2, we present several graph transformations that increase the Π∗1-value.
In Section 3, by using these transformations, we determine the graphs that have maximal
Π∗1-value in Cn,k and Ck

n. Moreover, the graphs with maximal Π∗1-value are characterized
among all cactus graphs of the given order.

2. Transformations

In this Section, we introduce several transformations that will be used in the proof of
the main results of this paper. We begin by recalling the following two lemmas due to Xu
and Das [19].

Lemma 1 ([19]). Let G be a graph with uv /∈ E(G). Then Π∗1(G + uv) > Π∗1(G).

An edge contraction is an operation which removes an edge from a graph while
simultaneously merging the two vertices that it previously joined.

Lemma 2 ([19]). Let uv be a non-pendent cut edge of graph G. Denote by G′ = G · (uv) +
uv the graph obtained by the contraction of uv onto the vertex u and adding a new pendent
vertex v to u. Then Π∗1(G) < Π∗1(G

′).

Transformation A. Let x0x1x2 · · · xl x0 (l ≥ 4) be a cycle of a connected graph G. If
x0x2, x0x3 /∈ E(G) then G′ = G− x2x3 + {x0x2, x0x3} (see Figure 1).

Lemma 3. Let G and G′ be the graphs depicted in Figure 1. Then Π∗1(G) < Π∗1(G
′).
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Proof. From the definition of G′, we have dG(v) = dG′(v) for all v ∈ V(G) \ {x0}. Then by
the definition of Π∗1 , we have

Π∗1(G
′)

Π∗1(G)
=

(dG(x0) + 2 + dG(x2))(dG(x0) + 2 + dG(x3))

dG(x2) + dG(x3)

· ∏
v∈NG(x0)

dG(x0) + 2 + dG(v)
dG(x0) + dG(v)

>
2(dG(x2) + dG(x3))

dG(x2) + dG(x3)
> 1

and it follows that Π∗1(G) < Π∗1(G
′).

x0

x1 x2

x3

xl x4

x0x0

x1 x2

x3

xl x4G G′

Figure 1. Transformation A.

Transformations B and C. Let x0x1x2x3x0 and y0y1y2y3y0 be cycles in connected graphs
H1 and H2, respectively (x0x2 /∈ E(H1), y0y2 /∈ E(H2)). Let G be the graph obtained from
H1 and H2 by identifying x0 with y0 and denote this vertex x0 (see Figure 2). Without
loss of generality, we can assume that dG(x1) ≥ dG(x3), dG(y1) ≥ dG(y3), and dG(x1) ≥
dG(y1). Let G′ = G− {x2x3, y2y3}+ {x0x2, x0y2, x3y3} and G′′ = G− {x2x3, y2y3, x0y1}+
{x0x2, x1y1, x1y2, x3y3} (see Figure 2).

x0H1 H2

x1

x2

x3

y1

y2

y3 G

x0

H1 H2

x1

x2

x3

y1

y2

y3
G′

x0H1 H2

x1

x2

x3

y1

y2

y3
G′′

Figure 2. Transformations B and C.

Lemma 4. Let G, G′, and G′′ be the graphs depicted in Figure 2.

(i) If dG(x2) ≥ dG(x3) then Π∗1(G) < Π∗1(G
′).

(ii) If dG(x2) < dG(x3) then Π∗1(G) < Π∗1(G
′′).

Proof. Set dG(x0) = a ≥ 4, dG(xi) = ai, and dG(yi) = bi, i = 1, 2, 3.

(i) Then dG′(x0) = a + 2 and dG(v) = dG′(v) for all v ∈ V(G) \ {x0}. Therefore, we have

Π∗1(G
′)

Π∗1(G)
=

(a + 2 + a2)(a + 2 + b2)(a3 + b3)

(a2 + a3)(b2 + b3)
· ∏

v∈NG(x0)

a + 2 + dG(v)
a + dG(v)

>
(a2 + b2 + a2b2)(a3 + b3)

a2b2 + a2b3 + a3b2 + a3b3
> 1

since a2 ≥ a3 > 1 and b2 > 1.
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(ii) Then dG′′(x1) = a1 + 2 and dG(v) = dG′′(v) for all v ∈ V(G) \ {x1}. From the
assumption, we have a1 ≥ b1 ≥ b3 and hence we get a1 + 2 + b2 > b2 + b3. Therefore,
we have

Π∗1(G
′′)

Π∗1(G)
=

(a1 + 2 + b1)(a1 + 2 + b2)(a + a2)(a3 + b3)

(a + b1)(a2 + a3)(b2 + b3)
· ∏

v∈NG(x1)

a1 + 2 + dG(v)
a1 + dG(v)

>
(a1 + b1)(a + a2)(a3 + b3)

aa2 + aa3 + a2b1 + a3b1
>

aa1 + aa3 + a2b1 + a3b1

aa2 + aa3 + a2b1 + a3b1
> 1

since a2 < a3 ≤ a1 and a1 ≥ b1 > 1.

Transformation D. Let u1u2u3u4u1 and v1v2v3v4v1 be two disjoint cycles of length 4 in a
connected graph G. Suppose that u1u3, v1v3, u1v2, u2v2 /∈ E(G) and

dG(u1) = max{dG(u1), . . . , dG(u4), dG(v1), . . . , dG(v4)}.

Let G′ = G− {u2u3, v1v2, v2v3}+ {u1u3, v1v3, u1v2, u2v2} (see Figure 3).

u1

u2

u3

u4

v1

v2

v3

v4

u1

u2

u3

u4

v1

v2

v3

v4

G G′

Figure 3. Transformation D.

Lemma 5. Let G and G′ be the graphs depicted in Figure 3. Then Π∗1(G) < Π∗1(G
′).

Proof. Set dG(ui) = ai, dG(vi) = bi, i = 1, 2, 3. Then dG′(u1) = a1 + 2 and dG′(w) = dG(w)
for all w ∈ V(G) \ {u1}. Therefore, we have

Π∗1(G
′)

Π∗1(G)
=

(a1 + 2 + a3)(a1 + 2 + b2)(b1 + b3)(a2 + b2)

(a2 + a3)(b1 + b2)(b2 + b3)
· ∏

x∈NG(u1)

a1 + 2 + dG(x)
a1 + dG(x)

>
(a1 + 2 + a3)(a1 + 2 + b2)(b1 + b3)(a2 + b2)

(a2 + a3)(b1 + b2)(b2 + b3)
>

(b1 + b3)(a2 + b2)

b2 + b3
> 1

since a1 ≥ a2, a1 ≥ b1 and a2, b1, b2, b3 ≥ 2.

Transformation E. Let uv be an edge in a connected graph G such that dG(u) ≥ 3, dG(v) ≥ 3
and NG(u) ∩ NG(v) = ∅. Assume that y1 ∈ NG(v) is the maximum degree vertex in
NG(u)∪ NG(v) \ {u, v}. Let G′ = (G− vy1) · (uv) + uv + vy1 be the graph obtained by the
contraction of uv onto the vertex u and adding a new vertex v of degree two to u and y1
(see Figure 4).

Lemma 6. Let G and G′ be the graphs depicted in Figure 4. Then Π∗1(G) < Π∗1(G
′).
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y2 B y2 B
u

G G′

A u
x1x1

A
v

v

y1y1

Figure 4. Transformation E.

Proof. Set A = NG(u) \ {v}, B = NG(v) \ {u, y1} and |A| = a, |B| = b. Then dG(u) =
a + 1, dG(v) = b + 2, dG′(u) = a + b + 1, dG′(v) = 2, and dG′(w) = dG(w) for all w ∈
V(G) \ {u, v}. Let x1 and y2 be maximum degree vertices in A and B, respectively. By the
definition of Π∗1 and Bernoulli’s inequality, we have

Π∗1(G
′)

Π∗1(G)
= ∏

x∈A

a + b + 1 + dG(x)
a + 1 + dG(x)

·∏
y∈B

a + b + 1 + dG(y)
b + 2 + dG(y)

· 2 + dG(y1)

b + 2 + dG(y1)

≥
(

1 +
b

a + 1 + dG(x1)

)a
·
(

1 +
a− 1

b + 2 + dG(y2)

)b
· 2 + dG(y1)

b + 2 + dG(y1)

≥
(

1 +
ab

a + 1 + dG(x1)

)
·
(

1 +
ab− b

b + 2 + dG(y2)

)
· 2 + dG(y1)

b + 2 + dG(y1)
(1)

since dG(x1), dG(y2) are maximum in A and B, respectively. Denote dG(x1) + 1 = s,
dG(y2) + 2 = r and dG(y1) + 2 = t. Then we have t > s and t ≥ r since dG(y1) is maximum
in NG(u) ∪ NG(v) \ {u, v}. From (1), we have

Π∗1(G
′)

Π∗1(G)
≥ (ab + a + s)(ab + r)t

(a + s)(b + r)(b + t)

=
a2b2t + a2bt + abst + abrt + art + srt

ab2 + abt + abr + art + sb2 + bst + srb + srt
> 1

since a2b2t ≥ 2ab2t > ab2 + b2t > ab2 + b2s, abst ≥ 2bst ≥ bst + bsr and abrt > ab(r + t).
Hence, we get Π∗1(G) < Π∗1(G

′).

Transformation F. Let uv be an edge in a connected graph G such that dG(u) ≥ 3, dG(v) ≥ 3
and NG(u) ∩ NG(v) = {w}. Let G′ = (G− vw) · uv + {uv, vw} be the graph obtained by
the contraction of uv in G− vw onto the vertex u and adding a new vertex v of degree two
to u and w (see Figure 5).

A AB B

G G′

u

w

v u

w v

Figure 5. Transformation F.

Lemma 7. Let G and G′ be the graphs in Figure 5. If dG(u) is the maximum degree in NG(v) \
{w}, then Π∗1(G) < Π∗1(G

′).
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Proof. Clearly, dG′(z) = dG(z) for all z ∈ V(G) \ {u, v}. Set A = NG(u) \ {v, w}, B =
NG(v) \ {u, w} and |A| = a, |B| = b, dG(w) = c− 2. Then dG(u) = a + 2, dG(v) = b + 2
and dG′(u) = a + b + 2, dG′(v) = 2. Let dG(x1) and dG(y1) be the maximum degrees in A
and B, respectively. By the definition of Π∗1 and Bernoulli’s inequality, we have

Π∗1(G
′)

Π∗1(G)
=

c(a + b + c)
(b + c)(a + c)

· ∏
x∈A

a + b + 2 + dG(x)
a + 2 + dG(x)

·∏
y∈B

a + b + 2 + dG(y)
b + 2 + dG(y)

≥ c(a + b + c)
(b + c)(a + c)

·
(

1 +
b

a + 2 + dG(x1)

)a
·
(

1 +
a

b + 2 + dG(y1)

)b

≥ c(a + b + c)
(b + c)(a + c)

·
(

1 +
ab

a + 2 + dG(x1)

)
·
(

1 +
ab

b + 2 + dG(y1)

)
. (2)

Denote dG(x1) + 2 = p and dG(y1) + 2 = q. Then from (2), we get

Π∗1(G
′)

Π∗1(G)
≥ (ab + a + p)(ab + b + q)(ac + bc + c2)

(a + p)(b + q)(ab + ac + bc + c2)

=
abc(ab + a + b + p + q)(a + b + c) + (a + p)(b + q)(ac + bc + c2)

(ab + aq + bp + pq)ab + (a + p)(b + q)(ac + bc + c2)

>
ab(ab + aq + bp + (a + c)p) + (a + p)(b + q)(ac + bc + c2)

(ab + aq + bp + pq)ab + (a + p)(b + q)(ac + bc + c2)
≥ 1

since a + c ≥ a + 4 = dG(u) + 2 ≥ dG(y1) + 2 = q, and the proof is complete.

3. Cactus Graphs with Maximal Π∗1-Value

In this Section, we determine the graphs with maximal Π∗1-value. A tree containing
exactly two non-pendent vertices is called a double star.

Lemma 8. Let G be a cactus graph different from a double star. If Π∗1(G) is maximum in Cn,k then
there is no non-pendent cut edge. Moreover, the length of all k pendent paths in G is one.

Proof. Suppose there exists a non-pendent cut edge uv in G. Then dG(u) ≥ 2 and dG(v) ≥
2, and it follows that there exist vertices w1 (w1 6= v) and w2 (w2 6= u) such that uw1, vw2 ∈
E(G). If we cannot choose w1 and w2 such that dG(w1) ≥ 2 or dG(w2) ≥ 2 then G
is isomorphic to a double star and it is a contradiction. Therefore we can assume that
dG(w1) ≥ 2. First suppose that dG(u) = 2. Clearly, vw1 /∈ E(G), since uv is a cut edge
of G. Then, since the path w1uv has no common edge with any cycle in G, we have
G + w1v ∈ Cn, k and it follows that

Π∗1(G) < Π∗1(G + vw1)

by Lemma 1. This contradicts the fact that Π∗1(G) is maximum in Cn,k.
Now suppose that dG(u) ≥ 3 and dG(v) = 2. If dG(w2) ≥ 2 then G + w2u ∈ Cn, k and

again it follows that Π∗1(G) < Π∗1(G + vw1) by Lemma 1. Let now dG(w2) = 1. Consider
G1 = G− {uw1, vw2}+ {uw2, w1w2}. Then, G1 ∈ Cn, k. By the definition of Π∗1 , we have

Π∗1(G1)

Π∗1(G)
=

(dG(u) + 1)(dG(u) + 2)(dG(w1) + 2)
3(dG(u) + 2)(dG(u) + dG(w1))

=
(dG(u)− 2)(dG(w1)− 1) + 3(dG(u) + dG(w1))

3(dG(u) + dG(w1))
> 1

since dG(u) > 2 and dG(w1) > 1. It follows that Π∗1(G) < Π∗1(G1), and we get a contradic-
tion. Hence we have dG(u) ≥ 3 and dG(v) ≥ 3. Denote by y1 the maximum degree vertex
in NG(u)∪NG(v) \ {u, v}. Without loss of generality we can assume that y1 ∈ NG(v) \ {u}.
If G′ = (G − vy1) · (uv) + uv + vy1 is the graph obtained from G by Transformation E
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(see Figure 4), then we have G′ ∈ Cn, k and Π∗1(G) < Π∗1(G
′) by Lemma 6. This is also a

contradiction. Clearly, the length of any pendent path is one, since there is no non-pendent
cut edge. Hence, the proof is complete.

Lemma 9. Let G be a cactus graph with maximum multiplicative sum Zagreb index in Cn,k. Then,
the length of any cycle in G is at most four. Moreover, the number of cycles of length four in G is at
most one.

Proof. Suppose there exists a cycle x0x1x2 · · · xl x0 in G of length at least five (l ≥ 4). Since
G is a cactus graph, we have x0x2, x0x3 /∈ E(G). If G1 = G − x2x3 + {x0x2, x0x3} is the
graph obtained from G by Transformation A, then G1 ∈ Cn, k and Π∗1(G) < Π∗1(G1) by
Lemma 3. This is a contradiction. Hence, we conclude that the length of any cycle in G is at
most four.

Now suppose that there are two cycles of length four in G. If they have a common
vertex x0, then we call them x0x1x2x3x0 and x0y1y2y3x0. Without loss of generality, we
can assume that dG(x1) ≥ dG(x3), dG(y1) ≥ dG(y3), and dG(x1) ≥ dG(y1). Let G′ = G−
{x2x3, y2y3}+ {x0x2, x0y2, x3y3} and G′′ = G−{x2x3, y2y3, x0y1}+ {x0x2, x1y1, x1y2, x3y3}
be the graphs obtained from G by Transformations B and C (see Figure 2). Then G′, G′′ ∈
Cn,k, and Π∗1(G) < max{Π∗1(G′), Π∗1(G

′′)} by Lemma 4. This contradicts the fact that
Π∗1(G) is maximal in Cn,k. If the two cycles of length four are disjoint then we call them
u1u2u3u4u1 and v1v2v3v4v1, where dG(u1) = max{dG(u1), . . . , dG(u4), dG(v1), . . . , dG(v4)}.
Let v2 be the farthest vertex from u1. Since G is a cactus graph and v2 is the farthest
vertex from u1, one can easily see that u1u3, v1v3, u1v2, u2v2 /∈ E(G). Let G2 = G −
{u2u3, v1v2, v2v3}+ {u1u3, u1v2, u2v2, v1v3} be the graph obtained from G by Transforma-
tion D (see Figure 3). Obviously, the cycles u1u3u4u1 and v1v3v4v1 have no common edge
with any cycle in G2. Since G is a cactus graph and v2 is the farthest vertex, each path from
u1 and u2 to v2 contains the vertex v4. Hence, the cycle u1u2v2u1 has no common edge with
any cycle in G2. Therefore, G2 ∈ Cn,k and Π∗1(G) < Π∗1(G2) by Lemma 5. This contradicts
the fact that Π∗1(G) is maximal. This completes the proof.

Let n and k be integers such that n ≥ 1 and k ≥ 0 . If n− k is odd then denote by C1
n, k

the graph obtained from the star K1, n−1 by adding (n− k− 1)/2 independent edges. If
n− k is even then denote by C2

n, k the graph obtained from C1
n−1, k by inserting a new vertex

of degree two on a non-pendent edge of it. Then, clearly the graphs C1
n, k and C2

n, k belong
to Cn, k (see Figure 6).

Figure 6. The graphs C1
7, 2 and C2

8, 2.

Theorem 1. Let G be a graph in Cn,k.

(i) If n− k is odd then Π∗1(G) ≤ 2n−k−1nk(n + 1)n−k−1 and equality holds if and only if G is
isomorphic to C1

n, k
(ii) If n− k is even and k 6= n− 2, then Π∗1(G) ≤ 2n−k(n− 1)knn−k−2 and equality holds if

and only if G is isomorphic to C2
n, k.

(iii) If k = n− 2 then Π∗1(G) ≤ 3n(n− 1)n−3 and equality holds if and only if G is isomorphic
to a double star of order n with maximum degree n− 2.
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Proof. Suppose that Π∗1(G) is maximum in Cn,k. By Lemma 9, we have the length of all
cycles, except one cycle of length four (if it exists) in G is three. Now we distinguish the
following three cases.

(i) Let n− k be odd. Then G is different from a double star. Hence, G has no non-pendent
cut edge by Lemma 8. If G has a cycle of length four then |E(G)| = k + 3(t− 1) + 4 =
k + 3t + 1, where t is the number of cycles in G since there is no non-pendent cut edge
and the length of each cycle except one cycle of length four is three. If we delete an
edge from each cycle of G, then the resulting graph is a spanning tree of G. Hence
we have n− 1 = k + 3t + 1− t = k + 2t + 1, and this contradicts our assumption that
n− k is odd. Therefore, the length of all cycles of G is three.
Now, let u ∈ V(G) be a vertex of maximum degree. If all neighbors of u are pendent,
then k = n − 1 and G ∼= K1, n−1

∼= C1
n,n−1 since G is connected. If k < n − 1 then

at least one cycle contains u. Let uvwu be any cycle in G, where dG(v) ≥ dG(w). If
dG(v) ≥ 3 then dG(u) ≥ 3 and dG(u) is the maximum in NG(v) \ {w} since dG(u) is
maximum. If G′ is the graph obtained from G by Transformation F (see Figure 5) then
G′ ∈ Cn, k and Π∗1(G) < Π∗1(G

′) by Lemma 7. Hence we get dG(v) = dG(w) = 2 for
any cycle uvwu in G. Therefore, all cycles have length three and contain vertex u, and
all pendent vertices are adjacent to u. This means that G ∼= C1

n, k.
(ii) Let n− k be even and k 6= n− 2. Then G is different from a double star since k 6= n− 2.

Hence G has no non-pendent cut edge by Lemma 8. If all cycles of G have length
three, then |E(G)| = k + 3t, where t is the number of cycles in G since all cut edges
are pendent. Similarly, as in the above case, we have n− 1 = k + 3t− t = k + 2t and
a contradiction. Therefore, G has a unique cycle of length four, as C = ux1vx2u.
Without loss of generality, we assume that u is a vertex of maximum degree among
all vertices in V(C). If dG(u) = 2, then n = 4, k = 0, and we are done. Therefore,
we have dG(u) ≥ 3. Now, suppose that dG(xi) ≥ 3 (i = 1 or 2). One can easily see
that NG(u) ∩ NG(xi) = ∅. Consider the graph G′ obtained from G by Transformation
F (see Figure 5). Then G′ ∈ Cn,k and Π∗1(G) < Π∗1(G

′) by Lemma 7. This is a
contradiction with the fact that Π∗1(G) is maximum in Cn, k. Hence, we get dG(x1) =
dG(x2) = 2.
Let H be the connected component of G− {x1u, x2u} which contains v. Let v1 be a
maximum degree vertex in H. Suppose that v1 is different from v. Then there is a cycle
v1yzv1 that contains v1 such that dG(y) ≥ 3 since G has no non-pendent cut edge.
Clearly, dG(v1) ≥ 3. Let G1 = (G− yz) · (v1y) + {v1y, yz} be the graph obtained from
G by Transformation F. Then since dG(v1) is maximum in NG(y) ∪ NG(z), we have
Π∗1(G) < Π∗1(G1) by Lemma 7 and a contradiction. Therefore, v is a maximum degree
vertex in H. If any neighbor of v has degree at least three in H then we also get a
contradiction by Lemma 7. It follows that all cycles in H contain v and all pendent
vertices in H are adjacent to v. Similarly, we can show that all cycles in H1 contain u
and all pendent vertices in H1 are adjacent to u, where H1 is the connected component
of G− {x1v, x2v}which contains u. Hence, G is isomorphic to the graph G(a, b, k1, k2)
in Figure 7, where a + b = (n− k− 4)/2 and k1 + k2 = k.
Without loss of generality, we can assume that min{k1 + 2a, k2 + 2b} = k2 + 2b. Then,
it is easy to calculate that

Π∗1(G(a, b, k1, k2)) = (k1 + 2a + 2 + 1)k1 · (k2 + 2b + 2 + 1)k2 · 4a · 4b

·(k1 + 2a + 2 + 2)2a+2 · (k2 + 2b + 2 + 2)2b+2. (3)

Now we show that

Π∗1(G(a, b, k1, k2)) ≤ Π∗1(G(a + b, 0, k1 + k2, 0)) = Π∗1(C
2
n,k)

and equality holds if and only if b = k2 = 0.
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︷ ︸︸ ︷ ︷ ︸︸ ︷ 


u v

a b

k1 k2

Figure 7. The graph G(a, b, k1, k2).

If k2 + 2b = 0 then k2 = 0 and b = 0. Hence, we are done since a + b = (n− k− 4)/2
and k1 + k2 = k. Let now k2 + 2b ≥ 1. From (3) and Bernoulli’s inequality, we obtain

Π∗1(G(a + b, 0, k1 + k2, 0))
Π∗1(G(a, b, k1, k2))

=
4

k1 + 2a + 4

(
1 +

k2 + 2b
k1 + 2a + 3

)k1
(

1 +
k2 + 2b

k1 + 2a + 4

)2a+1

· 4
k2 + 2b + 4

(
1 +

k1 + 2a
k2 + 2b + 3

)k2
(

1 +
k1 + 2a

k2 + 2b + 4

)2b+1

≥ 4
k1 + 2a + 4

(
1 +

k1(k2 + 2b)
k1 + 2a + 3

)(
1 +

(2a + 1)(k2 + 2b)
k1 + 2a + 4

)
· 4
k2 + 2b + 4

(
1 +

k2(k1 + 2a)
k2 + 2b + 3

)(
1 +

(2b + 1)(k1 + 2a)
k2 + 2b + 4

)
>

4
k1 + 2a + 4

(
1 +

k1(k2 + 2b)
k1 + 2a + 3

+
(2a + 1)(k2 + 2b)

k1 + 2a + 4

)
· 4
k2 + 2b + 4

(
1 +

k2(k1 + 2a)
k2 + 2b + 3

+
(2b + 1)(k1 + 2a)

k2 + 2b + 4

)
>

4
k1 + 2a + 4

(
1 +

(k1 + 2a + 1)(k2 + 2b)
k1 + 2a + 4

)
· 4
k2 + 2b + 4

(
1 +

(k2 + 2b + 1)(k1 + 2a)
k2 + 2b + 4

)
≥ 4

k1 + 2a + 4

(
1 +

2
5
(k2 + 2b)

)
· 4
k2 + 2b + 4

(
1 +

2
5
(k1 + 2a)

)
> 1

since
k1 + 2a + 1
k1 + 2a + 4

≥ 2
5

and
k2 + 2b + 1
k2 + 2b + 4

≥ 2
5

. Hence we get G ∼= C2
n,k.

(iii) Let k = n− 2. Then G is isomorphic to a double star. Let u and v be the non-pendent
vertices in G and dG(u) = p + 1, dG(v) = q + 1, where p + q + 2 = n. By Bernoulli’s
inequality, we have

3 ·
(

p + q + 1
p + 2

)p
≥ 3 ·

(
1 +

p(q− 1)
p + 2

)
≥ 3 · (1 + 1/3(q− 1)) = q + 2

since
p

p + 2
≥ 1

3
. Hence we obtain 3 · (p + q + 1)p ≥ (p + 2)p(q + 2). Therefore, we

have

Π∗1(G) = n(p + 2)p(q + 2)q ≤ 3n(p + q + 1)p(q + 2)q−1

≤ 3n(p + q + 1)p+q−1 = 3n(n− 1)n−3
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and equality holds if and only if G is isomorphic to a double star of order n with maximum
degree n− 2. The proof is complete.

Now we characterize the graphs with maximum Π∗1-value among all cactus graphs of
the given order.

Theorem 2. Let G be a cactus graph of order n.

(i) If n is odd then Π∗1(G) ≤ 2n−1(n + 1)n−1 and equality holds if and only if G is isomorphic
to C1

n, 0.
(ii) If n is even then Π∗1(G) ≤ 2n−2n(n + 1)n−2 and equality holds if and only if G is isomorphic

to C1
n, 1.

Proof. Let k be the number of pendent vertices in G.

(i) Let n be odd. Then by Theorem 1, we get

Π∗1(G) ≤
{

2n−k−1nk(n + 1)n−k−1 if k is even,
2n−k(n− 1)knn−k−2 if k is odd

≤
{

2n−1(n + 1)n−1

2n−1(n− 1)nn−3 ≤ 2n−1(n + 1)n−1

and equality holds if and only if G is isomorphic to C1
n, 0.

(ii) Let n be even. Then by Theorem 1, we get

Π∗1(G) ≤
{

2n−k−1nk(n + 1)n−k−1 if k is odd,
2n−k(n− 1)knn−k−2 if k is even

≤
{

2n−2n(n + 1)n−2

2nnn−2 ≤ 2n−2n(n + 1)n−2

and equality holds if and only if G is isomorphic to C1
n, 1.

From Lemma 2, the following lemma holds immediately.

Lemma 10. Let G be a cactus graph with maximum multiplicative sum Zagreb index in Ck
n. Then

all cut edges of G are pendent.

The same argument as in the proof of Theorem 1 yields the following result.

Theorem 3. Let G be a graph in Ck
n.

(i) If n− k is odd then Π∗1(G) ≤ 2n−k−1nk(n + 1)n−k−1 and equality holds if and only if G is
isomorphic to C1

n, k.
(ii) If n− k is even then Π∗1(G) ≤ 2n−k(n− 1)knn−k−2 and equality holds if and only if G is

isomorphic to C2
n, k.
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