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Abstract: In this paper, we investigate several fuzzy differential subordinations that are connected
with the Borel distribution series B(λ, α, β)(z) of the Mittag-Leffler type, which involves the two-
parameter Mittag-Leffler function Eα,β(z). Using the above-mentioned operator B(λ, α, β), we also
introduce and study a classMF

λ,α,β(η) of holomorphic and univalent functions in the open unit disk
∆. The Mittag-Leffler-type functions, which we have used in the present investigation, belong to
the significantly wider family of the Fox-Wright function pΨq(z), whose p numerator parameters
and q denominator parameters possess a kind of symmetry behavior in the sense that it remains
invariant (or unchanged) when the order of the p numerator parameters or when the order of the
q denominator parameters is arbitrarily changed. Here, in this article, we have used such special
functions in our study of a general Borel-type probability distribution, which may be symmetric or
asymmetric. As symmetry is generally present in most works involving fuzzy sets and fuzzy systems,
our usages here of fuzzy subordinations and fuzzy membership functions potentially possess local
or non-local symmetry features.

Keywords: holomorphic functions; analytic functions; univalent functions; fuzzy differential subor-
dination; fuzzy best dominant; Mittag-Leffler functions; Fox-Wright function; Mittag-Leffler type
Borel distribution

MSC: Primary 30C45; Secondary 30A10, 30C20, 33E12

1. Introduction and Motivation

Our main objective in this article is to investigate several potentially useful results
that are based upon second-order fuzzy differential subordinations and their applications
in Geometric Function Theory of Complex Analysis and that are intimately connected with
the Mittag-Leffler-type Borel distribution series.

The motivation for this investigation was derived from a number of recent works
that made use of Borel and other types of probability distributions in the study of such
members of the family of holomorphic functions, such as univalent starlike functions and
univalent convex functions, which are defined and normalized in the open unit disk in the
complex z-plane.

We choose here to mention the works of El-Deeb et al. [1], Murugusundaramoorthy
and El-Deeb [2], Srivastava et al. [3], and Wanas and Khuttar [4], in which use was made of
the Borel distribution series, involving many different special functions and orthogonal
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polynomials, in their study of subclasses of normalized holomorphic functions in the open
unit disk.

On the other hand, various applications of the concept of fuzzy sets and fuzzy systems
in conjunction with the principle of differential subordination between analytic functions
can be found in the works of El-Deeb et al. (see [5,6]), Lupaş et al. (see [7–9]), Oros and Oros
(see [10–12]), and Wanas [13]. Some other recent publications that are worth mentioning
here include those by Eş [14], Laengle et al. [15], Lupaş [16], Oros [17], and Venter [18].
In particular, the recently-published article by Laengle et al. [15] includes an interesting
and useful bibliometric and bibliograhic account of notable developments on Fuzzy Sets
and Fuzzy Systems over the past 40 years.

The organization of this paper is as follows. In Section 2, we present the definitions
and preliminaries that provide the foundation of our paper. Section 3 includes several
lemmas that are needed in proving our main results in Section 4. Some corollaries and
consequences of our main results are also deduced in Section 4. In Section 5, we present
a number of remarks and observations based upon our work. Finally, in the concluding
section (Section 6), some potential directions for related further research are presented.

2. Definitions and Preliminaries

Let C and N denote the set of complex numbers and the set of positive integers,
respectively. For Ω ⊂ C, we denote byH(Ω) the class of holomorphic functions in Ω.

For d ∈ N, we denote by Ad the class of functions defined by

Ad :=

{
f : f ∈ H(∆) and f (z) = z +

∞

∑
j=d+1

ajzj (z ∈ ∆; d ∈ N)
}

,

where ∆ is the open unit disk given by

∆ := {z : z ∈ C and |z| < 1}.

In particular, we write A := A1.
Finally, we let

H[γ, d] :=

{
f : f ∈ H(∆) and f (z) = γ +

∞

∑
j=d+1

ajzj (z ∈ ∆; γ ∈ C; d ∈ N)
}

and we denote by S , S∗, and C the classes of functions in A, which are, respectively,
univalent, starlike, and convex in ∆, so that, by definition, we have

S∗ :=
{

f : f ∈ A and <
(

z f ′(z)
f (z)

)
> 0 (z ∈ ∆)

}
and

C :=
{

f : f ∈ A and <
(

1 +
z f ′′(z)
f ′(z)

)
> 0 (z ∈ ∆)

}
.

For our present investigation, we need the following definitions.

Definition 1 (see [19–21]). Given two functions f1 and f2, which are analytic in ∆, we say that
f1 is subordinate to f2, denoted by

f1 ≺ f2 or f1(z) ≺ f2(z) (z ∈ ∆),

provided that a Schwarz function w exisits, which is analytic in ∆ and saisfies the condition given by

w(0) = 0 and |w(z)| < 1 (∀ z ∈ ∆),
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such that
f1(z) = f2

(
w(z)

)
.

Moreover, in the case where f2 is univalent in ∆, then the following equivalence holds true:

f1(z) ≺ f2(z) ⇐⇒ f1(0) = f2(0) and f1(∆) ⊂ f2(∆).

Remark 1. The widely-applied principle of differential subordination between analytic functions
happens to provide an interesting and useful generalization of various inequalities involving complex
variables. In fact, the monograph on this subject by Miller and Mocanu [20] (see also [19] for recent
developments on differential subordinations and differential superordinations) is a good source to learn
about the theories and applications of differential subordinations and differential superordinations.

The following definitions and propositions present the notion of fuzzy differen-
tial subordination.

Definition 2 (see [22]). Assume that the set X is non-empty, that is, X 6= ∅. Then an application
FX : X → [0, 1] is called a fuzzy subset of the non-empty set X . More precisely, a pair (B,FB),
where FB : X → [0, 1] and

B = {x : x ∈ X and 0 < FB(x) 5 1}, (1)

is said to be a fuzzy subset of X . The set B is referred to as the support of the fuzzy set (B,FB),
written as supp(B,FB), and the set function set function FB is called the membership function of
the fuzzy set (B,FB).

Remark 2. Symmetry type properties and symmetry type features are known to be generally
present in most works dealing with fuzzy sets and fuzzy systems. Our usages here of fuzzy
subordinations and fuzzy membership functions potentially possess local or non-local symmetric or
asymmetric features.

We now make use of moduli of complex-valued functions in order to introduce and
apply the concept of membership functions on the set C of complex numbers given by

z = x + iy (x, y ∈ R) and |z| =
√

x2 + y2 = 0 (z ∈ C).

Definition 3 (see [9], p. 120). Let F : C→ R+ be a function such that

FC(z) = |F(z)| (z ∈ C).

Denote by
FC(C) = {z : z ∈ C and 0 < |F(z)| 5 1} =: supp(C, FC)

the fuzzy subset of the set C of complex numbers. We call the following subset:

FC(C) = {z : z ∈ C and 0 < |F(z)| 5 1} = ∆F(0, 1)

the fuzzy unit disk. It is observed that (C, FC) is the same as its fuzzy unit disk ∆F(0, 1).

Proposition 1 (see [9,10]). Each of the following assertions holds true:
(i) If (B,FB) = (U ,FU ), then B = U , where

B = supp(B,FB) and U = supp(U ,FU ).

(ii) If (B,FB) ⊆ (U ,FU ), then B ⊆ U , where

B = supp(B,FB) and U = supp(U ,FU ).
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For f , g ∈ H(Ω), we now use the following notations:

f (Ω) =
{

f (z) : 0 < |F f (Ω) f (z)| 5 1 (z ∈ Ω)
}
= supp

(
f (Ω),F f (Ω)

)
(2)

and
g(Ω) =

{
g(z) : 0 < |Fg(Ω)g(z)| 5 1 (z ∈ Ω)

}
= supp

(
g(Ω),Fg(Ω)

)
. (3)

Definition 4 (see [10]). For a given fixed point z0 ∈ Ω, let f , g ∈ H(Ω). Then we say that f is
fuzzy subordinate to g, written as f ≺F g or f (z) ≺F g(z), provided that
(i) f (z0) = g(z0)

and
(ii)

∣∣F f (Ω) f (z)
∣∣ 5 ∣∣Fg(Ω)g(z)

∣∣ (z ∈ Ω).

Proposition 2 (see [10]). Assume that z0 ∈ Ω is a fixed point and the functions f , g ∈ H(Ω). If
f (z) ≺F g(z) (z ∈ Ω), then
(i) f (z0) = g(z0)

and
(ii) f (Ω) ⊆ g(Ω) and |F f (Ω) f (z)| 5 |Fg(Ω)g(z)| (z ∈ Ω),
where f (Ω) and g(Ω) are defined by (2) and (3), respectively.

Definition 5 (see [11]). Assume that Φ : C3 × ∆→ C and h ∈ S , with

Φ(α, 0, 0; 0) = h(0) = α.

Let the function p be analytic in ∆, with p(0) = α and satisfy the following second-order fuzzy
differential subordination:∣∣∣∣FΦ(C3×∆)Φ

(
p(z), zp′(z), z2 p′′(z); z

)∣∣∣∣ 5 ∣∣Fh(∆)h(z)
∣∣,

that is,
Φ
(

p(z), zp′(z), z2 p′′(z); z
)
≺F h(z) (z ∈ ∆). (4)

Then p is said to be a fuzzy solution of the fuzzy differential subordination. Moreover, if

∣∣Fp(∆)p(z)
∣∣ 5 ∣∣∣∣Fq(∆)q(z)

∣∣∣∣,
that is, if

p(z) ≺F q(z) (z ∈ ∆)

for all functions p that satisfy (4), then we say that the univalent function q is a fuzzy dominant of
the fuzzy solutions for the fuzzy differential subordination.

A fuzzy dominant q̃ satisfying the following condition:

|Fq̃(∆) q̃(z)| 5 |Fq(∆)q(z)|,

that is,
q̃(z) ≺F q(z) (z ∈ ∆)

for all fuzzy dominants q of (4), is called the fuzzy best dominant of (4).

Remark 3. In the literature on probability theory, a nice relationship between Poisson processes
and Borel distributions can be found. In addition, Borel distributions are also closely related to the
Galton-Watson branching processes. Details can be found in, for example, [23,24].
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Various families of linear or convolution operators are known to play important
roles in the Geometric Function Theory of Complex Analysis and its related fields. One
can indeed express derivative and integral operators as convolutions of some families
of analytic functions. This kind of formalism makes further mathematical investigation
much easier and also aids in the better understanding of the geometric properties of the
operators involved.

We now introduce the familiar Mittag-Leffler function Eα(z) and its two-parameter
version Eα,β(z) are defined, respectively, by

Eα(z) :=
∞

∑
k=0

zk

Γ(αk + 1)
and Eα,β(z) :=

∞

∑
k=0

zk

Γ(αk + β)
(5)

(
z, α, β ∈ C; <(α) > 0

)
,

which were first considered by Magnus Gustaf (Gösta) Mittag-Leffler (1846–1927) in 1903
and Anders Wiman (1865–1959) in 1905 (see, for details, [25–27]).

The Mittag-Leffler function Eα(z) and its two-parameter version Eα,β(z) are known to
contain, as their special cases, a number of elementary functions, such as the exponential,
trigonometric, and hyperbolic functions. In fact, these Mittag-Leffler functions happen to be
the most commonly-used special cases of the Fox-Wright function pΨq(z) with p numerator
parameters and q denominator parameters, which is defined by the following series

(
see,

for example, Ref. [28] p. 67, Equation (1.12.68) and Ref. [29] p. 21, Equation 1.2(38); see
also Ref. [30]

)
:

pΨq

 (α1, A1), · · · , (αp, Ap);

(β1, B1), · · · , (βq, Bq);
z

 :=
∞

∑
n=0

p
∏
j=1

Γ(αj + Ajn)

q
∏
j=1

Γ(β j + Bjn)

zn

n!
. (6)

Indeed, by comparing the definitions in (5) and (6), it can be seen that

Eα,β(z) = 1Ψ1

 (1, 1);

(β, α);
z

. (7)

Remark 4. In the vast and widely-scattered literature on mathematical, physical and engineering
sciences, one can find infinitely many usages of the celebrated Gauss hypergeometric function
2F1, the Kummer (or confluent) hypergeometric function 1F1, the Clausen hypergeometric
function 3F2, and various other mathematical functions of the hypergeometric type, all of which
are contained in the generalized hypergeometric function pFq, involving p numerator parameters
a1, · · · , ap and q denominator parameters b1, · · · , bq, as special cases (see, for details, [29,31]).
The Fox-Wright function pΨq(z) defined by (6) does, in fact, provide a further generalization of
the generalized hypergeometric function pFq(z), involving p numerator parameters a1, · · · , ap
and q denominator parameters b1, · · · , bq, given by

pFq

 α1, , · · · , αp;

β1, · · · , βq;
z

 :=

q
∏
j=1

Γ(β j)

p
∏
j=1

Γ(αj)

∞

∑
n=0

p
∏
j=1

Γ(αj + n)

q
∏
j=1

Γ(β j + n)

zn

n!

= pΨq

 (α1, 1), · · · , (αp, 1);

(β1, 1), · · · , (βq, 1);
z
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The relatively more familiar Bessel-Wright function Jµ
ν (z) is also a very specialized case of the

Fox-Wright function pΨq(z) defined by (6).

In view of Remark 4, it is clear that almost all of the special functions of hypergeometric
class as well as most (if not all) of the Mittag-Leffler-type functions, including those that we
have used in our present investigation, belong to the much wider family of the Fox-Wright
function pΨq(z) , whose p numerator parameters and q denominator parameters possess
some kind of symmetry behavior in the sense that the Fox-Wright function pΨq(z) remains
invariant (or unchanged) when the order of the numerator parameters or when the order
of the denominator parameters is arbitrarily changed.

It is easy to rewrite the second definition in (5) as follows:

Eα,β(z) =
∞

∑
k=d

zk−d

Γ
(
α(k− d) + β

) (z, α, β ∈ C; <(α) > 0; d ∈ N0 := N∪ {0}). (8)

In the solutions of many real-world problems, which are modeled by means of
fractional-order differential, integral and integro-differential equations, Mittag-Leffler-
type functions are known to arise naturally. Some important examples include fractional-
order generalizations of the kinetic equation, random walks, Lévy flights, super-diffusive
transport and the study of complex systems. Potentially useful properties of the Mittag-
Leffler-type functions Eα(z) and Eα,β(z) can be found in, for example, [28,32–38].

The Mittag-Leffler function Eα,β(z) does not belong to the normalized analytic function
class A. We, therefore, normalize the Mittag-Leffler function Eα,β(z) as follows:

Eα,β(z) := zΓ(β)Eα,β(z) = z +
∞

∑
j=d+1

Γ(β)

Γ
(
α(j− d) + β

) zj−d+1 (d ∈ N), (9)

α ∈ C
(
<(α) > 0

)
and β, z ∈ C. For convenience, hereafter we only consider the case

when the parameters α and β are real-valued and for z ∈ ∆.
Named after the French mathematician, Félix Édouard Justin Émile Borel (1871–1956),

the widely- and extensively-studied Borel distribution is a discrete probability distribution
that arises in such contexts as (for example) branching processes and queueing theory. We
recall that a discrete random variable x defines a Borel distribution if it takes on the values
1, 2, 3, . . . , together with the probabilities given by

e−λ

1!
,

2λe−2λ

2!
,

9λ2e−3λ

3!
, · · · ,

respectively, λ being the parameter of the Borel distribution.
Recently, Wanas and Khuttar [4] applied the Borel distribution (BD) in their study of

certain convexity and other geometric properties of analytic functions. Its probability mass
function, given by

Prob{x = ρ} = (ρλ)ρ−1 e−λρ

ρ!
(ρ ∈ N),

was studied by Wanas and Khuttar [4]. Following the work of Wanas and Khuttar [4], we
introduce the following seriesM(λ; z) in which the coefficients involve probabilities of the
Borel distribution (BD):

M(λ; z) = z +
∞

∑
j=d+1

[λ(j− d)]j−d−1 e−λ(j−d)

(j− d)!
zj−d+1 (0 < λ 5 1; d ∈ N). (10)

We now recall the following Mittag-Leffler type Borel distribution that was studied by
Murugusundaramoorthy and El-Deeb [2] (see also [1,3]):
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P(λ, α, β; ρ) =
(λρ)ρ−1

Γ(αρ + β) Eα,β(λρ)
(ρ ∈ N),

where the two-parameter Mittag-Leffler function Eα,β(z) is defined in (5). Thus, by using
(9) and (10), and by means of the Hadamard product (or convolution), we now define the
Mittag-Leffler-type Borel distribution series as follows:

B(λ, α, β)(z) = z +
∞

∑
j=d+1

Γ
(
λ(j− d) + 1

)
[λ(j− d)]j−d−1 e−λ(j−d)

(j− d)! Eα,β
(
λ(j− d)

)
Γ
(
α(j− d) + β

) zj (0 < λ 5 1).

Moreover, by making use of the Hadamard product (or convolution), for

f (z) = z +
∞

∑
j=d+1

aj zj (z ∈ ∆),

we define

B(λ, α, β) f (z) := B(λ, α, β)(z) ∗ f (z)

= z +
∞

∑
j=d+1

Γ
(
λ(j− d) + 1

)
[λ(j− d)]j−d−1 e−λ(j−d)

(j− d)! Eα,β
(
λ(j− d)

)
Γ
(
α(j− d) + β

) ajzj

= z +
∞

∑
j=d+1

φjajzj (11)

(
α ∈ C; <(α) > 0; β ∈ C \Z−0 ; 0 < λ 5 1

)
,

where Z−0 denotes the set of non-positive integers and

φj =
Γ
(
λ(j− d) + 1

)
[λ(j− d)]j−d−1 e−λ(j−d)

(j− d)! Eα,β
(
λ(j− d)

)
Γ
(
α(j− d) + β

) . (12)

We have used, in this paper, such special functions as the Mittag-Leffler type functions
in our study of a general Borel type probability distribution, which may be conditioned to
be symmetric or asymmetric.

3. A Set of Lemmas

Each of the following lemmas will be needed in proving our main results.

Lemma 1 (see [20]). Let ψ ∈ A and suppose that

G(z) = 1
z

∫ z

0
ψ(t) dt (z ∈ ∆).

If

<
(

1 +
zψ′′(z)
ψ′(z)

)
> −1

2
(z ∈ ∆),

then G ∈ C.

Lemma 2 (see [12] Theorem 2.6). Let ψ be a convex function with ψ(0) = γ and ν ∈ C∗ =
C \ {0} with <(ν) = 0. If p ∈ H[γ, d] with p(0) = γ, Φ : C2 × ∆ → C, the function
Φ
(

p(z), zp′(z); z
)
= p(z) + 1

ν zp′(z) is analytic in ∆, and∣∣∣∣FΦ(C2×∆)

(
p(z) +

1
ν

zp′(z)
)∣∣∣∣ 5 ∣∣Fh(∆)h(z)

∣∣ =⇒ p(z) +
1
ν

zp′(z) ≺F h(z) (z ∈ ∆),



Symmetry 2021, 13, 1023 8 of 15

then
Fp(∆)p(z) 5 Fq(∆)q(z) 5 Fh(∆)h(z) =⇒ p(z) ≺F q(z) (z ∈ ∆),

where
q(z) =

ν

d z
ν
d

∫ z

0
ψ(t) t

ν
d−1 dt(z ∈ ∆).

The function q is convex in ∆ and it is the fuzzy best dominant.

Lemma 3 (see [12] Theorem 2.7). Let the function g be convex in ∆ and suppose that

ψ(z) = g(z) + d γzg′(z) (z ∈ ∆; d ∈ N; γ > 0).

If the function p given by

p(z) = g(0) + pd zd + pd+1 zd+1 + · · ·

belongs to the classH(∆) and∣∣∣∣Fp(∆)
(

p(z) + γzp′(z)
)∣∣∣∣ 5 ∣∣Fψ(∆) ψ(z)

∣∣ =⇒ p(z) + γzp′(z) ≺F ψ(z) (z ∈ ∆),

then ∣∣Fp(∆)
(

p(z)
)∣∣ 5 ∣∣Fg(∆)g(z)

∣∣ =⇒ p(z) ≺F g(z) (z ∈ ∆).

This result is sharp, that is, the equality holds true for a suitably specified function.

For the general theory of fuzzy differential subordination and its applications, we
refer the reader to the recent works [5–9,13].

In Section 4 below, we obtain several fuzzy differential subordinations that are associ-
ated with the operator B(λ, α, β) by using the method of fuzzy differential subordination.

4. Main Results and Their Consequences

Throughout this paper, we assume that η ∈ [0, 1), α ∈ C, <(α) > 0, β ∈ C \ Z−0 ,
and z ∈ ∆. By using the operator B(λ, α, β), we define a new class of normalized analytic
functionsMF

λ,α,β(η) for which we derive several fuzzy differential subordinations.

Definition 6. Let 0 5 η < 1. A function f ∈ A is said to belong to the classMF
λ,α,β(η), if it

satisfies the following inequality:∣∣∣∣F(B(λ,α,β) f
)′
(∆)

(
B(λ, α, β) f (z)

)′∣∣∣∣ > η (z ∈ ∆).

Theorem 1. Let the function k be in the normalized convex function class C on ∆ and suppose that

h(z) = k(z) +
1

λ + 2
zk′(z).

If f ∈ MF
λ,α,β(η) and

G(z) = J λ f (z) =
λ + 2
zλ+1

∫ z

0
tλ f (t) dt, (13)

then the following fuzzy differential subordination:∣∣∣∣F(B(λ,α,β) f
)′
(∆)

(
B(λ, α, β) f (z)

)′∣∣∣∣ 5 ∣∣Fh(∆)h(z)
∣∣ =⇒

(
B(λ, α, β) f (z)

)′ ≺F h(z) (14)
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implies that∣∣∣∣F(B(λ,α,β)G
)′
(∆)

(
B(λ, α, β)G(z)

)′∣∣∣∣ 5 ∣∣Fk(∆)k(z)
∣∣ =⇒

(
B(λ, α, β)G(z)

)′ ≺F k(z).

This result is sharp, that is, the equality holds true for a suitably specified function.

Proof. Since
zλ+1G(z) = (λ + 2)

∫ z

0
tλ f (t) dt,

by differentiating both sides with respect to z, we obtain

(λ + 1)G(z) + zG′(z) = (λ + 2) f (z),

so that

(λ + 1)B(λ, α, β)G(z) + z
(
B(λ, α, β)G(z)

)′
= (λ + 2)B(λ, α, β) f (z), (15)

which, by differentiating with respect to z, yields

(
B(λ, α, β)G(z)

)′
+

1
λ + 2

z
(
B(λ, α, β)G(z)

)′′
=
(
B(λ, α, β) f (z)

)′. (16)

By using (16), the fuzzy differential subordination (14) can be written as follows:∣∣∣∣F(B(λ,α,β) f
)′
(∆)

((
B(λ, α, β)G(z)

)′
+

1
λ + 2

z
(
B(λ, α, β)G(z)

)′′)∣∣∣∣
5
∣∣Fh(∆)

(
k(z) +

1
λ + 2

zk′(z)
)∣∣. (17)

We now set
q(z) =

(
B(λ, α, β)G(z)

)′ (18)

such that q ∈ H[1, n]. Thus, by substituting from (18) into (17), we have∣∣∣∣F(B(λ,α,β) f
)′
(∆)

(
q(z) +

1
λ + 2

zq′(z)
)∣∣∣∣ 5 ∣∣Fh(∆)

(
k(z) +

1
λ + 2

zk′(z)
)∣∣. (19)

By applying Lemma (3), we find that

Fq(∆)q(z) 5 Fk(∆)k(z),

that is, that ∣∣∣∣F(B(λ,α,β)G(z)
)′
(∆)

(
B(λ, α, β)G(z)

)′∣∣∣∣ 5 ∣∣Fk(∆)k(z)
∣∣.

Therefore, we obtain (
B(λ, α, β)G(z)

)′ ≺F k(z)

and k is the fuzzy best dominant. This completes our proof of Theorem 1.

Theorem 2. Assume that

h(z) =
1 + (2η − 1)z

1 + z
, η ∈ [0, 1) and λ > 0.

Let the operator Iλ be given by (13). Then,

Iλ
[
MF

λ,α,β(η)
]
⊂MF

λ,α,β(η
∗), (20)
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where

η∗ := 2η − 1 + (λ + 2)(2− 2η)
∫ 1

0

tλ+2

t + 1
dt. (21)

Proof. Since the function h belongs to the normalized convex function class C in ∆, by
using the same technique as in the proof of Theorem 1, we find from the hypothesis of
Theorem 2 that ∣∣∣∣Fq(∆)

(
q(z) +

1
λ + 2

zq′(z)
)∣∣∣∣ 5 ∣∣Fh(∆)h(z)

∣∣,
where q(z) is defined in (18). Thus, by using Lemma 2, we obtain∣∣Fq(∆)q(z)

∣∣ 5 ∣∣Fk(∆)k(z)
∣∣ 5 ∣∣Fh(∆)h(z)

∣∣,
which implies that∣∣∣∣F(B(λ,α,β)G

)′
(∆)

(
B(λ, α, β)G(z)

)′∣∣∣∣ 5 ∣∣Fk(∆)k(z)
∣∣ 5 ∣∣Fh(∆)h(z)

∣∣,
where the function k(z), given by

k(z) =
λ + 2
zλ+2

∫ z

0
tλ+1 1 + (2η − 1)t

1 + t
dt

= (2η − 1) +
(λ + 2)(2− 2η)

zλ+2

∫ z

0

tλ+1

1 + t
dt,

belongs to C on ∆ and k(∆) is symmetric with respect to the real axis. Consequently,
we have ∣∣∣∣F(B(λ,α,β)G

)′
(∆)

(
B(λ, α, β)G(z)

)′∣∣∣∣ = min
|z|=1

{∣∣Fk(∆)k(z)
∣∣} =

∣∣Fk(∆)k(1)
∣∣ (22)

and

η∗ = k(1) = 2η − 1 + (λ + 2)(2− 2η)
∫ 1

0

tλ+2

t + 1
dt.

This evidentally completes the proof of Theorem 2.

Theorem 3. Let the function k belong to the normalized convex function class C in ∆, k(0) = 1, and

h(z) = k(z) + zk′(z) (z ∈ ∆).

If f ∈ A and satisfies the following fuzzy differential subordination:∣∣∣∣F(B(λ,α,β) f
)′
(∆)

(
B(λ, α, β) f (z)

)′∣∣∣∣ 5 ∣∣Fh(∆)h(z)
∣∣ =⇒

(
B(λ, α, β) f (z)

)′ ≺F h(z), (23)

then ∣∣∣∣FB(λ,α,β) f (∆)
B(λ, α, β) f (z)

z

∣∣∣∣ 5 ∣∣Fk(∆)k(z)
∣∣ =⇒ B(λ, α, β) f (z)

z
≺F k(z). (24)

The result is sharp, that is, the assertion holds true for a suitably specified function.
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Proof. For

q(z) =
B(λ, α, β) f (z)

z
=

z +
∞
∑

j=d+1

Γ
(

λ(j−d)+1
)
[λ(j−d)]j−d−1 e−λ(j−d)

(j−d)! Eα,β(λ(j−d))Γ
(

α(j−d)+β
) ajzj

z

= 1 +
∞

∑
j=d+1

Γ
(
λ(j− d) + 1

)
[λ(j− d)]j−d−1 e−λ(j−d)

(j− d)! Eα,β(λ(j− d))Γ
(
α(j− d) + β

) ajzj−1,

we find that
q(z) + zq′(z) =

(
B(λ, α, β) f (z)

)′.
We, thus, see that the following inequality:∣∣∣∣F(B(λ,α,β) f

)′
(∆)

(
B(λ, α, β) f (z)

)′∣∣∣∣ 5 ∣∣Fh(∆)h(z)
∣∣

implies that ∣∣Fq(∆)
(
q(z) + zq′(z)

)∣∣ 5 ∣∣Fh(∆)h(z)
∣∣ = ∣∣Fk(∆)

(
k(z) + zk′(z)

)∣∣.
Now, by applying Lemma 3, we have

∣∣Fq(∆)q(z)
∣∣ 5 ∣∣Fk(∆)k(z)

∣∣ =⇒
∣∣∣∣FB(λ,α,β) f (∆)

B(λ, α, β) f (z)
z

∣∣∣∣ 5 ∣∣Fk(∆)k(z)
∣∣,

which implies that
B(λ, α, β) f (z)

z
≺F k(z).

The result is easily seen to be sharp, that is, the result holds true for a suitably specified
function. The proof of Theorem 3 is, thus, completed.

Theorem 4. Let h ∈ H(∆), with h(0) = 1, such that

<
(

1 +
zh′′(z)
h′(z)

)
> −1

2
(z ∈ ∆).

If f ∈ A and the following fuzzy differential subordination holds true:∣∣∣∣F(B(λ,α,β) f
)′
(∆)

(B(λ, α, β) f (z))′
∣∣∣∣ 5 ∣∣Fh(∆)h(z)

∣∣
=⇒

(
B(λ, α, β) f (z)

)′ ≺F h(z), (25)

then ∣∣FB(λ,α,β) f (∆)
B(λ, α, β) f (z)

z
∣∣ 5 ∣∣Fk(∆)k(z)

∣∣
=⇒ B(λ, α, β) f (z)

z
≺F k(z), (26)

where the function k(z), given by

k(z) =
1
z

∫ z

0
h(t) dt, (27)

is convex and it is the fuzzy best dominant.



Symmetry 2021, 13, 1023 12 of 15

Proof. Let

q(z) =
B(λ, α, β) f (z)

z

= 1 +
∞

∑
j=d+1

Γ
(
λ(j− d) + 1

)
[λ(j− d)]j−d−1 e−λ(j−d)

(j− d)! Eα,β(λ(j− d))Γ
(
α(j− d) + β

) ajzj−1, (28)

where q ∈ H[1, 1]. Suppose also that h ∈ H(∆), with h(0) = 1 such that

<
(

1 +
zh′′(z)
h′(z)

)
> −1

2
(z ∈ ∆).

From Lemma 1, we have

k(z) =
1
z

∫ z

0
h(t) dt,

which belongs to the class C and satisfies the fuzzy differential subordination (25). Since

k(z) + zk′(z) = h(z),

it is the fuzzy best dominant.
We next observe that

q(z) + zq′(z) =
(
B(λ, α, β) f (z)

)′
(z ∈ ∆),

so that (25) becomes ∣∣Fq(∆)
(
q(z) + zq′(z)

)∣∣ 5 ∣∣Fh(∆)h(z)
∣∣.

Thus, by applying Lemma 3, we find that

∣∣Fq(∆)q(z)
∣∣ 5 ∣∣Fk(∆)k(z)

∣∣ =⇒
∣∣FB(λ,α,β) f (∆)

B(λ, α, β) f (z)
z

∣∣ 5 ∣∣Fk(∆)k(z)
∣∣.

Consequently, we obtain
B(λ, α, β) f (z)

z
≺F k(z),

which completes the proof of Theorem 4.

Upon setting

h(z) =
1 + (2β− 1)z

1 + z
(z ∈ ∆)

in Theorem 4, we can deduce the following corollary.

Corollary 1. Let

h(z) =
1 + (2β− 1)z

1 + z
(z ∈ ∆)

be in the normalized convex function class C in ∆, with h(0) = 1 and 0 5 β < 1. If the function
f ∈ A satisfies the following fuzzy differential subordination:∣∣∣∣F(B(λ,α,β) f

)′
(∆)

(
B(λ, α, β) f (z)

)′∣∣∣∣ 5 ∣∣Fh(∆)h(z)
∣∣

=⇒
(
B(λ, α, β) f (z)

)′ ≺F h(z), (29)

then the function k(z), given by

k(z) = 2β− 1 +
2(1− β)

z
log(1 + z), (30)
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is convex and is the fuzzy best dominant.

5. Further Remarks and Observations

In our present investigation, we derived several results involving fuzzy differential
subordinations that are connected with the Mittag-Leffler-type Borel distribution series
given by

B(λ, α, β)(z) = z +
∞

∑
j=d+1

Γ
(
λ(j− d) + 1

)
[λ(j− d)]j−d−1 e−λ(j−d)

(j− d)! Eα,β
(
λ(j− d)

)
Γ
(
α(j− d) + β

) zj

or, equivalently, by

B(λ, α, β)(z) = z +
∞

∑
k=2

Γ
(
λ(k− 1) + 1

)
[λ(k− 1)]k−2 e−λ(k−1)

(k− 1)! Eα,β
(
λ(k− 1)

)
Γ
(
α(k− 1) + β

) zk+d−1,

where d is a positive integer and 0 < λ 5 1. We successfully applied the above operator
B(λ, α, β) with a view to introduce and study the class MF

λ,α,β(η) of holomorphic and
univalent functions in the open unit disk ∆. Upon specialization, one of our main results
(Theorems 1 to 4) yields an interesting special case, which we have recorded here as
a corollary.

Recently, in his survey-cum-expository review article, Srivastava [39] demonstrated
how the theories of the basic (or q-) calculus and the fractional q-calculus have significantly
encouraged and motivated further developments in Geometric Function Theory of Com-
plex Analysis. It is, therefore, worthwhile to reiterate an important observation, which was
made in the above-mentioned review-cum-expository review article by Srivastava [39],
who pointed out the fact that the basic (or q-) extensions of the results, which we have pre-
sented here, can easily, and almost trivially, be translated into the corresponding results for
the so-called (p, q)-analogues (with 0 < |q| < p 5 1) by making use of some obvious and
straightforward variations of parameters and arguments. This is so, because the additional
parameter p is redundant.

6. Conclusions

In our present investigation of applications of fuzzy differential subordinations in
Geometric Function Theory of Complex Analysis, we successfully made use of a general
Mittag-Leffler type Borel distribution involving the two-parameter Mittag-Leffler function
Mα,β(z). As we indicated in Remark 3 above, almost all of the higher transcendental
functions of the hypergeometric class as well as most (if not all) of the Mittag-Leffler-type
functions, including those that we used in this article, belong to the much wider family of
the Fox-Wright function pΨq(z).

Consequently, one could possibly generalize the results presented in this paper by anal-
ogously using the Borel distribution and other suitable probability distributions with
Mittag-Leffler-type functions that are more general than the two-parameter Mittag-Leffler
function Mα,β(z) that we used herein.

Another avenue for further research on this subject is provided by the fact that, in the
theory of differential subordinations and differential superordinations, there are differential
subordinations and differential superordinations of the third and higher orders as well (see,
for details, [20]; see also [19] for recent developments on this subject). In this presentation,
we only used and explored the second-order differential subordinations and differential
superordinations.
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distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2021, 24, 235–245. [CrossRef]
2. Murugusundaramoorthy, G.; El-Deeb, S.M. Second Hankel determinant for a class of analytic functions of the Mittag-Leffler-type

Borel distribution related with Legendre polynomials. Turkish World Math. Soc. J. Appl. Engrg. Math. 2021, in press.
3. Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estmates of bi-close-to-convex functions

connected with the Borel distribution of the Mittag-Leffler-type. J. Nonlinear Var. Anal. 2021, 5, 103–118.
4. Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82.

[CrossRef]
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