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Abstract: A new subclass L, 4(«, A, B) of meromorphic multivalent functions is defined by means of
a g-difference operator. Some properties of the functions in this new subclass, such as sufficient and
necessary conditions, coefficient estimates, growth and distortion theorems, radius of starlikeness
and convexity, partial sums and closure theorems, are investigated.
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1. Introduction

In recent years, g-analysis has attracted the interest of scholars because of its numerous
applications in mathematics and physics. Jackson [1,2] was the first to consider the certain
application of g-calculus and introduced the g-analog of the derivative and integral. Very
recently, several authors published a set of articles [3-13] in which they concentrated
upon the classes of g-starlike functions related to the Janowski functions [14] from some
different aspects. Further, a recently published survey-cum-expository review paper by
Srivastava [15] is very useful for scholars working on these topics. In this review paper,
Srivastava [15] gave certain mathematical explanation and addressed applications of the
fractional g-derivative operator in Geometric Function Theory. In the same survey-cum-
expository review paper [15], the trivial and inconsequential (p, q) variations of various
known g-results by adding an obviously redundant parameter p were clearly exposed (see,
for details, [15] p. 340).

In this article, motivated essentially by the above works, we shall define a new subclass
of meromorphic multivalent functions by using the g-difference operator and Janowski
functions and study its geometric properties, such as sufficient and necessary conditions,
coefficient estimates, growth and distortion theorems, radius of starlikeness and convexity,
partial sums and closure theorems.

Let M, denote the class of meromorphic multivalent functions of the form

fz)=zP+ Y a2 (peN={1,23---}),
n=1
which are analytic in the punctured open unit disk D* = {z € C: 0 < |z| <1} = D\ {0}

with a pole of order p at the origin.
A function f(z) € M) is said to be the meromorphic p-valent starlike function of order

Re{—z}rég)} >0 (0o <p)

oif
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for all z € D*. We denote this class by MS} (o).
A function f(z) € M, is said to be the meromorphic p-valent convex function of order

o if ()
zf"(z
re{-(1+ L E ) >0 0so<p)
@) ’
for all z € D*. We denote this class by MCy (o).

For two functions, f(z) and g(z), which are analytic in D, we can say that g(z) is
subordinate to f(z) and denote ¢(z) < f(z) (z € D), if there exists a Schwarz function
w(z), analytic in D with w(0) = 0 and |w(z)| < 1 (z € D), such that g(z) = f(w(z))
(z € D). Further, if f(z) is univalent in D, then we have the following equivalence:

8(2) < f(z) (z€D)+=g(0)=f(0) and g(D)C f(D).

A function ¢(z) is said to be in the class P[A, B], if it is analytic in D with ¢(0) = 1 and

1+ Az
1< <
9(z) < 5, (F1=B<AsD),
equivalently, we can write
p(z) -1 | _,
A=By(z)|
Let g € (0,1) and define the g-number [A]; by
1—gh
Wy=1 T8 (re0)
Yilgb =14+ 4+ +q"! (A=neN).

Particularly, when A = 0, we write [0]; = 0.

Definition 1. For g € (0,1), the g-difference operator Dy of a function f(z) is defined by

provided that f'(0) exists.
From Definition 1, we observe that

lim Dyf(z) = lim LS _ oy

g—1- —1- (g—1)z

for a differentiable function f(z).
For f(z) = z P + Y5 anz" € My, we can see that

Dyf(z) = [~ qu1+2 nlganz" 1 (z #0),

1—q7P
1—q

— 1—qP —
where [—plq = = —q P[plqand [p]; = ﬂq =14+g+¢*+--+g" L
We now define a new subclass X, ;(«, A, B) of M}, as the following.

Definition 2. For g € (0,1),« > 1and —1 < B < A = 1, a function f(z) € M) is said to
belong to the class L 4(x, A, B), if it satisfies

1 (quf(Z) . FDifE) ) 1+ Az
T—a\[-plaf(x)  “[=plgl-p—1lgf(x) ) " 1+Bz’
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or equivalently
zD;f(z) o zzDgf(z) B (1 —tx)
[=plqf(2) [;P];([*)P*l]qf(Z) o <1 (zeD). (1)
z V4 Z z
(1-a)A-B ( e ~® [mq[hqf(z))
2. Main Results
Theorem 1. Let1l <a <1 — ﬁ and
f2) =27+ Y anz" (an 20) € M)
n=1
Then f(z) € Lpq(a, A, B) if
Y (=) A+ A)[=plgl—p =1y — (1 + B)[n)g([—p — g — a[n — 1)) ax
n=1
S (1—a)(B—-A)[=plyl—p—1l4 )

Proof. Suppose that the inequality (2) holds true. Then we have

[Pf@ ~ “Trlr 1@

B _ zDgf(2) 22DZf(z)
(1-a)4 B([—p]qf(Z) SR

[—p — 142Dy f (2) — az’Df(z) — (1 — &) [=plg[—p — Uy f(2)
(1 —a)A[=plg[—p —1af(z) = B([=p — 142Dy f (z) — 222D} f (2))
Loz1([nlg([=p = Ug —a[n = 1g) — (1 — &) [=plg[—p — 1]g)anz"
(1= a)(A=B)[=plgl—p — sz " = L1 (Bln]g([=p — Uy — a[n — 1]g) — (1 — @) A[=ply[—p — 1g)anz"
Lot ([nlg([=p — g —afn —1]g) — (1 — a)[—plg[—p — Lg)anz"**

(1= a)(A = B)[=plg[—p = 1]y = Zia (B[n]g([=p — 1]g — a[n = 1g) = (1 — @) A[=plg[—p — 1g)anz"*?
Yo (A —a)[=plg[=p — g — [n]g([=p — 1]g — a[n — 1]))anz""P
(I=a)(B—A)[=plgl—p — 1y — B (1 = 0) A[=plg[—p — 1y — B[n]g([-p — 1]y — a[n — 1]g))anz""P

<1

2Dyf(2) SO (1 g

This shows that f(z) € Zp4(a, A, B).
Conversely, let f(z) = z7P + Y7 anz"  (a, 2 0) € Xp4(a, A, B). From (1), we obtain
2D, f(2) zzDgf(z)

ol ~ A Ea-tge ~ (-9

-~ -~ zDgf(z) 2DZf(z)
(1A B([—pmz) P11 )

‘ Y1 (1= a)[=plgl=p — g — [nlg([=p — g —a[n - 1]q>)”uz"+p
(1= a)(B—A)[=plgl-p — g — 31 (1 = ) A[=plg[—p — 1]y — B[n]g([=p — 1]q — aln — 1]g))anz"*¥

<1 (3)

The inequality (3) is true for all z € D*. Thus, we choose z = Rez — 1~ and obtain
the inequality (2). The proof of Theorem 1 is completed. [J

From Theorem 1, we can easily obtain the following coefficient estimates.

— < _ 1B _
Corollary 1. Let -1 < B<ASlandl <a <1 fEv = If

fz)=z7+Y ayz" (a,n20) €Zp4(a, A B),

n=1
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then
(1—a)(B—A)[=plgl—p —1lg
2, < n=1,2---).
S TR AP Ty~ (Bl (p = Ty —ali— 1) | )
The results are sharp for the function given by
- (1= a)(B—A)[=plgl—p — 1]y
z)=zF+ z".
& =)+ A ply[—p ~ Ty~ L+ Bl ([—p 1y~ alr — 1)
— < _ __1+tB
Theorem 2. Let -1 < B<ASlandl <a <1 FES If
flz)=z"P+ ) a,z" (an 20) € Zpy(a, A B),
n=1
then, for 0 < |z| = r < 1, it is asserted that
1 1
= _ < < =
e (1=)(B—A)[—p
T = : (4)
L A=+ A)=ply— (1 +B)
The results are sharp for the function
- (1—a)(B—A)[-ply
z)=z P+ Z.
/e (=) T+ A)[ply~ (17 B)
Proof. Let -
fz)=2z""+) a,2" (an 20) € £pq(a, A, B).
n=1
Then, by applying the triangle inequality, we have
(o] 1 (o]
lf(z)] = |z7F + Zanz” < Tt Zan|z]”
n=1 ‘Z| n=1
Since |z| = r < 1, we can see that #" < r. Thus, we have
If(Z)<l+ria ()
= rp n
n=1
and
1 e
f(z) 2 r—p—rZan. (6)

From Theorem 1, we know that

hgk

l((1 —a)(1+ A)[=plgl—p —1g — A+ B)[n]g([-p — g — a[n —1]5))an

S (1=a)(B—=A)[=plgl=p -1

It is easy to see that the sequence

{(1 —a)(L+A)[-pll-p—-1 -1+ B)[”]q([—l’ 1]y —afn - 1]11)}

n
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is an increasing sequence with respect to n(n = 1). Thus,
(1= + A plylp =1y = 1+ B~ Tly) L
<Y (- @)1+ A plylp Uy — (14 B)rlg([—p 1)y — aln — 1))

which shows that
()

§ 0 (-RE= A,
2= A=+ Al — 1+ B)

Substituting from (7) into the inequalities (5) and (6), we obtain the required results. The
proof of Theorem 2 is completed. O

— < — 4B _
Theorem 3. Let -1 < B<AZlandl <a <1 (1+A)[—p]q'1f

fz) =277+ Y a?" (8, 20) €Zp4(a, A B),

n=1

then, for 0 < |z| = r < 1, it is asserted that

1 1
~[=Plo g —n =D f (@) = ~ [Pl + T
where Ty is given by (4).

Proof. Let .
f2) =2+ Y anz"  (an 20) €Zp4(a A B).

n=1

Then, from Definition 1, we can write
Dyf(z) = [-plgz P~ Ty 2 Jganz"™

For |z| =r < 1, we have

|Dgf(2)| = ‘[ gz 7 Tt Z ‘i””zn_l = _[_P]Q|r|;17+l + i[”]qan‘ 8)

n=1

Similarly, we obtain
l o
[Daf(2)| 2 _[_P]qﬂ,ﬁ - Z:l[”]qan- )
n=
Since f(z) € Xp4(«, A, B), we know from Theorem 1 that

i ((1 —a)(1+ A[’)/l[]qp]q[i’ —1 —(1+B)([-p—1]; —a[n— 1}:1)) [n]qan

s (1=a)(B=A)[=ply[—p -1y
As we know that the sequence

{ (1 —a)(1 4+ A)[—plg[—p — 1

[n]g

n=1

4+ B)([—p—1)y—afn— 1]q>}
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is an increasing sequence with respectton (n = 1). Thus, we have

(1= )1+ A)[—plglp — g — A+ B)([—p— 1) ¥ [lgan

n=1
< 3 (VO = 1By (1) = = 1)) ) g

n=1
S (1—a)(B—A)[=ply[-p— 1]

which implies that

- (1 - a)(B - A)[-pl,
Ll = T Al — A+ )

(10)

Now, the theorem is proven. [

_ _14B < <
Theorem 4. Let1l < a <1 AF A, 1<B<AS1land0=So<p. If

fz)=z7"+)Y ayz" (a,20) €Zpy(a, A B),

n=1

then f(z) is meromorphic p-valent starlike function of order o in 0 < |z| < r1, where

r{ = min inf<(p‘7)((l"‘)(1+A)[F’}q[P”q(1+B)[”]q([l’1]q“[nllq))>nip 1
1 n>1 (n+0)(1—a)(B—A)[=plgl—p -1 e

Proof. In order to prove that f(z) is the meromorphic p-valent starlike function of order o
in 0 < |z| < r1, we need only to show that

—zf'(2) _
1) —<1+Z, 0o <p.
p—0o 1-2z

—2f'(2)—pf(2)
—zf(2)+(p—20)f(2)

The subordination above is equivalent to < 1. After some calculations

and simplifications, we have

o
Y < 1. (1)
n=1 p—0

From (2), we can see that

i (1 —a)(A+A)[=plg[=p =g = A+ B)[n]g([=p = 1] — a[n — 1))
| (1=a)(B—A)[=plg[-p -1l

The inequality (11) will be true if

a, < 1.

N < (1-a)(A+A)[=plgl=p—1]g = A+ B)[n]g([—p — 1y —af[n — 1]q)an
p—e (1—a)(B—A)[-plg[-p—1]

PRy CELAUE RS Rk TR 1 [—p—uq—a[n—uq)))nin
(1 0) (1= 2) (B~ A)[=ply [—p ~ 1], |
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Let

n = min inf(“?*ff)((l*“><1+A>[fﬂq[fpfu — (L4 B)[nlg([p 1]qa[nl]q)))nl+p )
1 n=1 (n+a)(1—a)(B— A)[—pls[~p -1, 1%,

Then, clearly, we obtain the required condition. The proof of Theorem 4 is completed. [J

_ 1+B _ < <
Theorem 5. Let1 <a <1 A =7l 1<B<AZS1land0Zo<p. If

f2)=z P+ Y anz" (a,20)€L,,(x,AB),

n=1

then f(z) is the meromorphic p-valent convex function of order o in 0 < |z| < rp, where

- — min inf(P(P—U)((l—“)“+A)[_P]q[_l’_1]q_(1+B)[”]q([_l’_l]q_"‘[”_1}q)))"1” 1
2 n21 n(n+0)(1—a)(B—A)[—pl[—p— 1], o

Proof. To prove that f(z) is the meromorphic p-valent convex function of order ¢ in
0 < |z| < rp, we need only to show that

(1 +FE) - L 1+z

, 00 <.
p—o 1—z =0sP

This subordination relation is equivalent to the inequality 7;;,{2)(1)(; (f;r jz)g;gﬁ)(z) < 1. After

some calculations and simplifications, we have
an|z|" P < 1. (12)
o)

From the inequality (2), we obtain that

i (1—a)(1+ A)[=plgl—p =g — (1 + B)[n]g([=p — 1] —a[n —1]4)
- (1—a)(B—A)[—plgl-p—1]4

The inequality (12) will be true if

ap < 1.

n(n-l—(f)a 2P < (1—a)(1+A)[-plgl—p —1]g — 1+ B)[n]g([-p — 1] — a[n —1]5)
a) " [

p(p - (1= a)(B~A)=ply[-p - 1],
or
PRt e TG TR —a[n—uq)))niv
n(n+0) (1~ ) (B~ A)[~pl[—p ~ 1y |
Let

R inf(mpv)((l«x)(HAnp]q[puq<1+B>[n1q<[p11qa[n1]q>>)niv .
S b nln+0)(t — ) (B - A)[~ply[—p ~ 1], ol

Then, we obtain the required condition. Now, Theorem 5 is proven. [

(14+2A—B)[—pl;—(1+B)
(1+24-B)[-ply

Theorem 6. Let1 < a < and -1 < B<AS1If

z)=z P+ ) a2 (4, 20) €Zpy(a, A B)
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and ;
filz)=z"+ Y az" (a,20; k=1),
n=1
then 1) .
z
>1 -
Re(fk(z)> =1 Pri1 (13)
and (@)
k\Z > Pk+1
w(5) 2 T -
where

(1—a)(1+ A)[-plgl—p—1g) = (1 + B)[k+ 1g([-p —1]5 - ‘X[k]q)'

Prr1 = (1—a)(B—A)[-plg[-p—1l "

Proof. In order to prove the inequality (13), we set

Prit {f(z) B (1 B 1 )} _ 1+ Zlfzzl anz" P + @riq Z?:kﬂ a,z" P _ 14+ w(z)
AR Pr+1 1+3YK_ auznte 1—w(z)

After some simplifications, we have

o0 +
ZU(Z) _ q)k-i-l Zn:k-‘rl anzn P
- k
2+ ZZn:1 apz" TP + Pr+1 Z:lo:k_H anz" P

and

|ZU(Z)| < kq)k-‘rl Ezo:k_t,_l an .
2- 2):71:1 An — Pr+1 ZZO:](+1 an

From (2), we know that } " ; ¢ua, < 1. The sequence {¢,} given by (15) is an
increasing sequence with respect to nand ¢, =1 (n =1,2,3,- - - ). Therefore,

k oo k 00 0
Z an + Qi1 Z ap < Z Pnan + Z Pnln = Z Pnln <1.
n=1 n=k+1 n=1 n=k+1 n=1

This shows that |w(z)| < 1(z € D). Now, the proof of the inequality (13) is completed.
To prove the inequality (14), we put

(1 +¢ ) fk(z) Pk _ 1+ Zﬁ:l a,z" P — Pk+1 Z;io:k+1 apz" P _ 1+ ZU(Z)
FULFE) T T+ o Ty a2 P 1—w()

After some simplifications , we find that

_ —(1+ @rr1) Kl anz" P
24 25K L anz™P — (griq — 1) L g anztP

w(z)

and -
(14 Q1) Xpgy1 an

225 qan— (@i — 1) g g an
Now, we can see that |w(z)| < 1(z € D) if

w(z)] =

k ©
Y oan+ e Y, an =1
n=1 n=k+1

The proof of Theorem 6 is completed. [
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Theorem 7. Let1 <a <1— [—1p]q' If

filz) =z P+ ) a," (an; 2 0; j=1,2) € £y4(a, A, B),

n=1
then, for 0 < A < 1, the function H(z) = Afi(z) + (1= A)fa(z) € Zp4(a, A, B).

Proof. For 0 £ A <1, we have

agk

Hiz)=Af1(z)+ (1 =AN)falz) =z P+ ) (Aay1+ (1 —A)ay2)z".

n=1

Since fi(z) (j = 1,2) € £y4(w, A, B), by Theorem 1, we have

Y (1= ) (14 A)[=plglp — g — (1+ BY[lg([—p — 1]q — aln — 1]g)) (a1 + (1 — V)ay2)

n=1
=A i((l —a)(1+A)[=plg=p =1y — A1+ B)[nlg([—p — 1g — a[n = 1]g)) ans
+(1-2) i (A=) +A)[=plgl—p — 1y — A+ B)[nlg([—p — g — a[n — 1]g)) anz

SAL—a)(B=A)[-plgl-p -1+ (1 -2 1 —a)(B—A)[—plg[—p—1l4
(1—=a)(B—A)[~plgl-p—1]g.

This shows that H(z) € X, 4(a, A, B). The theorem is provem. []

Corollary 2. Let1 <a <1 — ﬁ. If

o0
filz) =z7P+ ) a,;z" (anj20;,j=1,2,---,t) €Xp4(a, A, B),
n=1

then the function
t
F(z) = Y, Aifj(z) € Zpy(a, A,B),
j=1

where Aj = 0 and Z§:1 Aj=1

Theorem 8. Let1 <a <1 — [fp]q. If

o0
fi(z) =z7P + Y a,,;z" (anj20;, j=1,2) €Xp4(a, A B),

n=1

then, for —1 < m < 1, the function

Qu(z) = (1—m)f(z) + (1 +m)fo(z)

7 €Xp4(a, A, B).

Proof. For —1 < m £ 1, we have

Qu(z) = 1=mh) ; AtmfE) _ z P+ i (1 P+ 1+man,z>z”.
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In view of fi(z), f2(z) € Lp,4(a, A, B), by Theorem 1, we obtain

3 (1= )L+ A)-plalp = Uy = 1+ B)aly(=p = 1y~ ol = 1) (5 %01+ L5 a2

n=1 2
= 15 L (=) 1+ APl = Uy~ (14 By~ 1y el g
5 (-0 A plylp 1y (1 B) ([ 1y~ el ~ 1)z
< 21— @) (B = A)=plyl—p — Uy + 5 (1= &) (B— A) [—pl[—p — 1]

(1—a)(B—A)[=plyl—p—1lg
which shows that Q;,(z) € Xy 4(a, A, B). The proof of the theorem is completed. [

3. Conclusions

In this article, we introduce a new subclass X, ;(«, A, B) of meromorphic multivalent
functions by using the g-difference operator and Janowski functions. Some geometric prop-
erties of functions in & 4 (a, A, B), such as sufficient and necessary conditions, coefficient
estimates, growth and distortion theorems, radius of starlikeness and convexity, partial
sums and closure theorems, are studied.
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