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Abstract: Opuntia ficus-indica is a cactaceous plant native to America but, nowadays, widely found
worldwide, having been the most common domesticated species of cactus grown as a crop plant
in semiarid and arid parts of the globe, including several Mediterranean basin countries. Opuntia
ficus-indica can be regarded as a medicinal plant, being source of numerous bioactive phytochemicals
such as vitamins, polyphenols, and amino acids. The urgent need for therapeutic treatments for the
COronaVIrus Disease 19 (COVID-19), caused by the Severe Acute Respiratory Syndrome (SARS)-
Coronavirus (CoV)-2, justifies the great attention currently being paid not only to repurposed antiviral
drugs, but also to natural products and herbal medications. In this context, the anti-COVID-19 utility
of Opuntia ficus-indica as source of potential antiviral drugs was investigated in this work on the
basis of the activity of some of its phytochemical constituents. The antiviral potential was evaluated
in silico in docking experiments with Mpro, i.e., the main protease of SARS-CoV-2, that is one of
the most investigated protein targets of therapeutic strategies for COVID-19. By using two web-
based molecular docking programs (1-Click Mcule and COVID-19 Docking Server), we found, for
several flavonols and flavonol glucosides isolated from Opuntia ficus-indica, good binding affinities
for Mpro, and in particular, binding energies lower than −7.0 kcal/mol were predicted for astragalin,
isorhamnetin, isorhamnetin 3-O-glucoside, 3-O-caffeoyl quinic acid, and quercetin 5,4′-dimethyl
ether. Among these compounds, the chiral compound astragalin showed in our in silico studies
the highest affinity for Mpro (−8.7 kcal/mol) and also a low toxicity profile, emerging, thus, as an
interesting protease inhibitor candidate for anti-COVID-19 strategies.

Keywords: plant drugs; Opuntia ficus-indica; SARS-CoV-2; COVID-19; docking; energy minimization;
pandemic; therapeutic

1. Introduction

Opuntia ficus-indica, also known as Indian fig and nopal cactus [1], is a dicotyledonous
angiosperm cactaceous plant widespread worldwide in tropical and subtropical regions,
including those surrounding the Mediterranean sea, with semi-arid and arid climates [2].
Recently, Opuntia ficus-indica’s nutritional and health benefits have been suggested due
to its phytochemical composition particularly rich in polyphenols, which are the main
compounds responsible for antioxidant properties of plant extracts [3], but also in vitamins
and amino acids [3–6]. Opuntia ficus-indica is a fast-growing and productive plant [7,8] with
potential utility in biogas [9] and biofuel [10] production, rehabilitation of degraded soils,
and desertification/climate change mitigation, with important consequent environmental
benefits [11–13]. Fruits and cladodes are widely used for human nutrition [14–16], with the
latter also largely being used as livestock forage in South America and Africa [17,18].
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Owing to the biomedically-relevant properties of Opuntia cactuses, it is worth men-
tioning that several plant extracts and Opuntia-isolated compounds are endowed with
antimicrobial, antioxidant, anti-inflammatory, antidiabetic, neuroprotective [3,19–29], and
antiviral [30,31] properties. Not less importantly, some phytochemicals isolated from nopal
cactus waste peels showed anti-pneumonia properties [32]. In particular, the Opuntia-
derived compounds extracted in ethyl acetate phase included astragalin, isorhamnetin,
isorhamnetin-3-O-glucoside, and quercetin 5,4′-dimethyl ether, with the latter exerting the
most relevant activity against the pneumonia pathogen investigated [32].

Three deadly RNA viruses of the family of Coronaviridae have emerged in the last
eighteen years: SARS-CoV-1 (also known simply as SARS-CoV), MERS-CoV, and SARS-
CoV-2. These coronaviruses (CoVs) can cause severe pneumonia in infected patients that
can be lethal in several cases. SARS-CoV-2 is causing the current pandemic of COronaVIrus
Disease 19 (COVID-19) which has provoked enormous sanitary as well social and economic
impacts on the globe [33]. Prophylactic [34] and therapeutic strategies are currently under
investigation worldwide, and among the latter, old antiviral drug repurposing [35,36] is
one of the main ways to respond to the urgency of an effective anti-COVID-19 therapy.
Drug repurposing, in fact, involves drugs already known and in use for other pathologies
and for which safety has already been assessed previously [35]. Similarly, plant extracts
or isolated compounds already used as dietary supplements or ingredients of traditional
medicine are attracting much interest in the therapy of SARS-CoV-2 [37,38].

In this context, considering the previously ascertained utility of Opuntia ficus-indica
plant extracts or isolated compounds as antiviral and anti-pneumonia agents, the potential
of some of the same identified molecules was tested in the present in silico study as
inhibitors of Mpro (Figure 1). In fact, the main protease of SARS-CoV-2 represents one of
the most attractive targets for COVID-19 drug development due to the absence of this type
of proteins in humans and its essential role in viral replication [39].
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Figure 1. Photograph of Opuntia ficus-indica (fruits and cladodes, photograph taken by G. Roviello in Aversa, Italy) and
schematic representation of the main strategy of the present study: literature data analysis and selection of Opuntia
phytochemicals, followed by their computational evaluation as potential anti-COVID-19 drugs using Mpro as SARS-CoV-2
protein target.
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2. Methods
2.1. Molecular Docking Studies

For the computational studies, we used the 3D structure of Mpro with an unliganded
active site (PDB ID: 6Y84), downloaded from the Protein Data Bank [40]. The structures for
the natural compounds (Figure 2) investigated as protease ligands were retrieved by us
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, all links mentioned in
this work were accessed on 11 December 2020), whilst those not present in PubChem were
drawn with the molecular editor of 1-Click Mcule (Mcule Inc., Palo Alto, CA, USA) [41–44],
an online docking platform making use of AutoDock Vina [45], by which the docking
experiments herein described were performed. For the molecular dockings, we used, as
atomic coordinates of the binding site, X: 9.204, Y: −4.557, and Z: 19.602, which were
previously reported in the literature for the binding center [46], and we set the size of
the binding site as 22 Angstrom. The docking poses with the most negative docking
scores (kcal/mol), corresponding to the highest binding affinities, were selected for further
analysis (Table 1). To validate the docking method, we applied it to other literature dockings
having Mpro as a protein target [47], and used the N3 inhibitor as a reference compound
(Figure 2), finding that the resulting scores were in line with those previously reported for
ligands like the phenolic diterpene carnosol [46], bictegravir, and other molecules docked to
the same protease [48]. We made use of the molecular graphics program embedded in 1-Clik
Mcule for structural visualization of protein–ligand complexes and to obtain the snapshots
of Figure 3A,B, while we obtained the protein–ligand interaction diagrams reported in the
same figure (Figure 3C,D) and in Figure 4 by ProteinsPlus (https://proteins.plus/) or PLIP
(Protein–Ligand Interaction Profiler, https://plip-tool.biotec.tu-dresden.de/) [49,50]. For
the N3 inhibitor/astragalin-bound Mpro structural comparison (Figure 3E), we made use
of the matchmaker tool embedded in UCSF Chimera [51]. To this scope, we compared the
structure with PDB ID: 6LU7 (containing the N3 inhibitor) and the best pose obtained from
the docking of Mpro with astragalin.

2.2. COVID-19 Docking Server Studies

The docking of astragalin with Mpro was repeated with the COVID-19 Docking
Server [52], a user-friendly platform realized by Kong et al. for docking peptides and
antibodies, but also small organic compounds, against some of the main COVID-19-related
proteins investigated by implementation of Autodock Vina and CoDockPP [45,52–55].
The ligand file in mol2 format was obtained, starting from informative details on astra-
galin found in Pubchem (https://pubchem.ncbi.nlm.nih.gov, PubChem CID 5282102)
and using the online tool available at the link: http://pasilla.health.unm.edu/tomcat/
biocomp/convert. We selected, in the COVID-19 Docking Server [52], (for ligand prepa-
ration, PDB IDs and description of protein targets, scoring and docking procedures see
https://ncov.schanglab.org.cn/index.php) as ‘Computational Type’: 1-molecule Docking
and as coronavirus protein target: ‘Main protease’. After the docking run, the server
provided the pose views for the different binding modes and the corresponding binding en-
ergy (score value, kcal/mol) and scoring function (RF-Score, pKd) values. The server used
as binding center coordinates: x = −10.85; y = 12.58; z = 68.72 and as target the structure:
6LU7, edited by the developers of the COVID-19 Docking server (the inhibitor N3 [56] was
removed). Astragalin-Mpro complex was visualized in the structure viewer of the COVID-
19 Docking Server and UCSF Chimera software [51]. Listed values of score values and RF
score values corresponding to the top 10 poses for the complex in Table 2 were obtained as
output of the docking experiment performed by the COVID-19 Docking Server (and they
were found at https://ncov.schanglab.org.cn/dojmol.php?dir=202012310146538026).

2.3. LogP, Druglikeness, PAINS, and Toxicity Predictions

LogP values (as consensus LogP) were predicted by SwissADME software (http:
//www.swissadme.ch/ [57]), together with druglikeness and PAINS scores.

https://pubchem.ncbi.nlm.nih.gov/
https://proteins.plus/
https://plip-tool.biotec.tu-dresden.de/
https://pubchem.ncbi.nlm.nih.gov
http://pasilla.health.unm.edu/tomcat/biocomp/convert
http://pasilla.health.unm.edu/tomcat/biocomp/convert
https://ncov.schanglab.org.cn/index.php
https://ncov.schanglab.org.cn/index.php
https://ncov.schanglab.org.cn/dojmol.php?dir=202012310146538026
http://www.swissadme.ch/
http://www.swissadme.ch/
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The latter of these were identical to those obtained by us using the PAINS Remover
software (http://cbligand.org/PAINS/) to remove pan-assay interference compounds
(PAINS) [58] among the phytochemicals under investigation.

To analyze the plant-derived compounds of the present work, we submitted to the
PAINS Remover server their structure data as ‘.sdf’ or ‘.mol’ format. Toxicity properties
of astragalin were predicted with ADMETlab (http://admet.scbdd.com/calcpre/calc_cf_
single_mol) using the isomeric SMILES format for the compound found in the PubChem
database: C1=CC(=CC=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O[C@H]4[C@@H]([C@H]
([C@@H]([C@H](O4)CO)O)O)O)O.

3. Results and Discussion

Mpro (also called 3CLpro) protease is considered an attractive protein target in COVID-
19 drug discovery and, in particular, for the screening of compounds that could inhibit the
replication of coronaviruses [39]. The SARS-CoV–2 protease shares more than 95% identity
with SARS-CoV-1 Mpro [59] and has a fundamental role in the life cycle of coronaviruses.
No similar homologues are present in humans, rendering it a first-choice target in selective
anti-COVID-19 therapy, and noteworthily, some of the repurposed drugs [35] used for
COVID-19 therapy are protease inhibitors [60]. Based on the prominent role of Mpro as a
SARS-CoV–2 target, 10 phytochemicals (Figure 2) identified in Opuntia ficus-indica were
docked to the Mpro structure with Mcule-1-Click [41,44], a docking server powered by
Autodock Vina [45].

Five of the studied phytochemicals (from two phytochemical families: polyphenol
acids and flavonoids) were endowed with a high affinity towards Mpro, with binding
energy values lower than −7.0 kcal/mol associated with the top ranked poses, as reported
in Table 1.

In particular, astragalin showed, in silico, the highest affinity score (with a binding
energy of −7.9 kcal/mol computed for the top scoring pose, Table 1) and, thus, the most
stable complex for Mpro. The predicted stability was also higher than that previously
reported for the protease N3 inhibitor [61]. Interestingly, astragalin showed higher affinity
than both commercial anti-COVID-19 drugs, like chloroquine, and natural molecules
supposed to fight against the SARS-CoV-2 infection, like artemisinin and hesperidin, that
showed binding energies ranging from −4.1 to −5.8 kcal/mol as emerged from previous
computational studies on Mpro inhibitors [62]. Other good binding energy scores were
predicted for isorhamnetin, quercetin 5,4′-dimethyl ether, and isorhamnetin 3-O-glucoside,
as well as for 3-O-caffeoyl quinic acid (−7.1 kcal/mol, for the top ranked pose).

http://cbligand.org/PAINS/
http://admet.scbdd.com/calcpre/calc_cf_single_mol
http://admet.scbdd.com/calcpre/calc_cf_single_mol
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Table 1. Binding affinities of Opuntia-derived compounds to Mpro. Compound structures were found
in the PubChem database (https://pubchem.ncbi.nlm.nih.gov/), from which SMILES strings were
extracted, or drawn in 2D using the molecular editor of Mcule 1-Click docking platform [44] and
docked against the crystal structure of unliganded SARS-CoV-2 main protease (PDB ID: 6Y84). The
binding energy (BE) values (scores of top ranked poses and averages of the top four poses± standard
deviation, in kcal/mol) are listed below.

Compound Name
Mpro

BE of Top
Scoring Pose

Mpro

BE-Average
Score

Standard
Deviation

Reference
on Compound
Detection in
Opuntia spp.

sinapic acid −6.1 −5.7 0.2 Elkadi et al. [32]

ferulic acid −5.7 −5.65 0.05 Guevara-Figueroa
et al. [63]

ferulic acid hexoside −6.8 −6.625 0.178 Elkadi et al. [32]
3-O-caffeoyl
quinic acid −7.1 −6.925 0.249 Elkadi et al. [32]

quinic acid −5.7 −5.25 0.36 Ammar et al. [64]
caffeic acid −5.7 −5.625 0.083 Ammar et al. [64]

isorhamnetin −7.3 −6.625 0.536 Elkadi et al. [32]
isorhamnetin
3-O-glucoside −7.5 −6.75 0.46 Guevara-Figueroa

et al. [63]
quercetin

5,4′-dimethyl ether −7.3 −6.375 0.683 Elkadi et al. [32]

astragalin −7.9 −7.2 0.4 Elkadi et al. [32]
N3 inhibitor [61] −7.6 Bharadwaj et al. [61]

We examined the astragalin–protease complex structure for the pose with the lowest
binding energy by the ProteinPlus software and noticed that the plant compound was
involved in multiple H-bonding, with residues Phe140 and Glu166 of the viral protein, two
main amino acid residues also involved in the interaction of N3 inhibitor with the same
protease target [56,65]. Interestingly, these two residues were also previously associated
with the interaction of other molecules investigated as anti-COVID-19 drugs and endowed
with Mpro inhibitory activity [66,67].

Multiple H-bonding was also predicted by ProteinPlus in the cases of 3-O-caffeoyl
quinic acid and SARS-CoV-2 Mpro Cys145, Ser144, His163, Leu141, and Thr26 (Figure 4A),
as well of isorhamnetin with protease Gln189, Thr26, and Asn142 residues (Figure 4B).

Isorhamnetin 3-O-glucoside and quercetin 5,4′-dimethyl ether were predicted to bind
Mpro not only by means of the molecule H-bonding with Thr26, Thr24, Gln189, Leu141,
Gly143, Asn142 (isorhamnetin 3-O-glucoside), His41, and Asn142 (quercetin 5,4′-dimethyl
ether), but also due to the hydrophobic contacts with Thr25 and His41, respectively
(Figure 4C,D).

In our prediction, isorhamnetin formed H-bonds with three protease residues, while
its glucoside form interacted with six amino acids involving three additional H-bonds, as
we expected for its more highly hydroxylated nature, and the hydrophobic interaction with
Thr25 (Figure 4C,D).

Comparing isorhamnetin and quercetin 5,4′-dimethyl ether, the latter was involved
in a hydrophobic interaction with protease His41, while the former, with an additional
phenolic OH, showed a higher propensity for H-bonding (Figure 4B,D). Nevertheless, the
overall binding energies (BE for the top-ranked poses and BE-average scores) that emerged
from our simulation for the complexes formed by these two compounds with Mpro were
quite similar, as shown in Table 1.

https://pubchem.ncbi.nlm.nih.gov/
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ferulic acid hexoside −6.8 −6.625 0.178 Elkadi et al. [32] 
3-O-caffeoyl quinic acid −7.1 −6.925 0.249 Elkadi et al. [32] 

quinic acid −5.7 −5.25 0.36 Ammar et al. [64] 
caffeic acid −5.7 −5.625 0.083 Ammar et al. [64] 

isorhamnetin −7.3 −6.625 0.536 Elkadi et al. [32] 
isorhamnetin 3-O-gluco-

side 
−7.5 −6.75 0.46 Guevara-Figueroa et al. [63] 

quercetin 5,4′-dimethyl 
ether −7.3 −6.375 0.683 Elkadi et al. [32] 

astragalin −7.9 −7.2 0.4 Elkadi et al. [32] 
N3 inhibitor [61] −7.6   Bharadwaj et al. [61] 

We examined the astragalin–protease complex structure for the pose with the lowest 
binding energy by the ProteinPlus software and noticed that the plant compound was 
involved in multiple H-bonding, with residues Phe140 and Glu166 of the viral protein, 
two main amino acid residues also involved in the interaction of N3 inhibitor with the 
same protease target [56,65]. Interestingly, these two residues were also previously asso-
ciated with the interaction of other molecules investigated as anti-COVID-19 drugs and 
endowed with Mpro inhibitory activity [66,67]. 

Multiple H-bonding was also predicted by ProteinPlus in the cases of 3-O-caffeoyl 
quinic acid and SARS-CoV-2 Mpro Cys145, Ser144, His163, Leu141, and Thr26 (Figure 4A), 
as well of isorhamnetin with protease Gln189, Thr26, and Asn142 residues (Figure 4B). 
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Overall, despite more H-bonding interaction being observed for 3-O-caffeoyl quinic
acid, isorhamnetin, and isorhamnetin 3-O-glucoside, astragalin was predicted by Protein-
Plus to interact with Phe140 and Glu166, which are two main acceptors that have already
been described in the literature for the interaction of sugar-containing ligands with the
same target [68] and for the N3 inhibitor of Mpro [56].

However, the higher affinity for Mpro predicted for astragalin with respect to the other
natural ligands could not be fully explained by the only two H-bonds evidenced by ProteinPlus,
and thus, we decided to investigate this aspect in more detail, using the program PLIP (Pro-
tein–Ligand Interaction Profiler, https://plip-tool.biotec.tu-dresden.de/), for better describing
the interactions occurring between the protease binding site amino acids and the ligand.

Additional H-bondings with His163 and Gln189, as well as hydrophobic interactions
with Thr25 and Glu166, were revealed for astragalin in a complex with Mpro by PLIP
(Figure 3D). We superimposed and aligned the protein complex structures containing the
N3 inhibitor (PDB ID: 6LU7) and astragalin (using the best ranked pose for the docking of
the protease with the natural compound). By complex structures comparison, we observed
that the sugar moiety of astragalin, whose H-bonding with Gln189 was evidenced by PLIP
software, was found in the spatial region where the two Val3-involving amide bonds of N3
inhibitor were placed (Figure 3E), whilst the aromatic flavonol moieties lay in the region
occupied by the hydrophobic/aromatic 2-oxo-3-pyrrolidinyl and benzyl moieties of the N3
inhibitor (Figure 3E), where they formed hydrophobic interactions with Thr25 and Glu166,
as well as H-bonding with His163 (Figure 3D).

The docking experiment with astragalin was repeated using COVID-19 Docking Server [52],
a web platform for docking different classes of ligands to SARS-CoV-2-associated protein
targets. The dockings on this web-based server were performed by us choosing the exhaus-
tiveness level as 12, with a higher level of this parameter being considered to provide more
precise docking results [52]. This web-based docking platform has been carefully validated by
the developers to evaluate their docking protocols, by conducting several re-dock experiments
for those targets whose experimental complex structures were available. Most of the complex
structures, including that of the Mpro with N3 inhibitor, were reproduced by using the docking
procedure on the web server (Tables S1 and S2 in Supplementary Information of [52]).

The main results of this investigation are reported in Table 2. Interestingly, astragalin
showed a high affinity for the selected COVID-19 protein target, with binding energy scores
ranging from −6.90 to −8.70 kcal/mol and RF (pKd) scores varying between 5.40 and 6.03.

Table 2. COVID-19 Docking Server [52] analysis of astragalin-Mpro binding. Pose numbers, scoring
function (RF-Score, pKd), and binding energy (score value, kcal/mol) values are reported.

Pose n. RF-Score
(pKd)

Score Value
(Kcal/mol)

1 6.03 −8.70

2 5.95 −8.40
3 5.51 −7.60
4 5.40 −7.40
5 5.93 −7.40
6 5.68 −7.30
7 5.57 −7.00
8 5.52 −6.90
9 5.34 −6.90

10 5.48 −6.80

The binding affinity predicted for the top ranked pose of the compound-Mpro complex
(−8.7 kcal/mol) was higher than that (−7.9 kcal/mol) indicated by 1-Click Mcule (Table 1) [44],
whilst the structure of the complex (Figure 5A,B) resembled only partially that shown in
1-Click Mcule structure viewer. In the complex structure predicted by COVID-19 Docking
Server the sugar moiety replaced the astragalin phenol in the proximity of the region of the
β-sheet made of His163-Glu166, belonging to the catalytic pocket (Figure 5A,B).

https://plip-tool.biotec.tu-dresden.de/
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We identified pan-assay interference compounds (PAINS) in our collection of Opuntia-
derived compounds to exclude the molecules with promiscuous behavior that, due to their
chemical structures, could lead to false positive results in different biological screening
assays. [69] To this scope, we used the PAINS Remover, a software able to identify PAINS
in screening libraries. [58]

Out of the 10 evaluated compounds, only 3-O-caffeoyl quinic acid and caffeic acid
were filtered out by the PAINS Remover and by SwissADME [57] (Figure 2), indicating
no potential PAINS in the majority of the investigated Opuntia phytochemicals, including
astragalin, the leading compound that emerged from our study (Figure 2).

The last aspect examined in the present computational study was the potential hep-
atotoxicity of the most promising Opuntia-derived compound emerging from our work,
together with other toxicity properties.

As can be seen in Table 3, there was no significant hepatotoxic effect predicted for
astragalin.

This is in accord with what has been reported previously on this flavonol glycoside,
including the astragalin hepatoprotective effect [70], and suggests that this compound
could be well-tolerated by the liver in a hypothetic therapeutic approach. Moreover, no
drug-induced mutagenicity nor any important skin sensitization was predicted (Table 3).

Table 3. Toxicity properties of astragalin predicted by ADMETlab. Notice the low toxic potential of
the Opuntia-derived compound under investigation.

Human Hepatotoxicity
(H-HT)

Skin
Sensitization

Ames Mutagenicity
(Ames)

Category * 0 0 0
Probability 0.032 0.26 0.48

* Category 0: H-HT negative (−); not-sensitizer; Ames negative (−). Category 1: H-HT positive (+); sensitizer;
Ames positive (+).

The findings of this study are interesting, opening the way to further in silico and
in vitro investigations on astragalin and, more generally, on the flavonol glycosides with
similar structures extracted from Opuntia spp. for anti-COVID-19 therapeutic approaches.

4. Conclusions

We examined 10 compounds discovered in Opuntia ficus-indica, a typical cactus plant
of common dietary and phytotherapeutic use, and found that five of them showed a good
predicted affinity for the main protease of SARS-CoV-2, a first choice target in the COVID-
19 drug discovery. Among these phytochemicals, the chiral astragalin emerged as the most
promising potential inhibitor of Mpro. This compound showed binding energy scores of
−7.9 kcal/mol and −8.7 kcal/mol (corresponding to the top scoring poses obtained by
1-Click Mcule [44] and the COVID-19 Docking Server [52], respectively), higher than the
Mpro N3 inhibitor, revealing a strong interaction with the protease target. Overall, this
chiral compound interacted with Mpro amino acids like Phe140, His163, Glu166, and Gln189
by H-bonding and with Thr25 and Glu166 by hydrophobic interactions. Interestingly, these
are also residues involved in the Mpro binding of the N3 inhibitor [56]. Moreover, our
computational studies suggested that Opuntia-derived flavonol glycosides are interesting
derivatives with low toxic potential. These natural products show good binding affinities
for Mpro, and their direct use or chemical derivatization could lead to potentially effective
treatments for COVID-19. Despite a predicted affinity for Mpro lower than astragalin,
quercetin 5,4′-dimethyl ether, a phytochemical isolated not only from Opuntia ficus-indica,
but also from other plants like Rhododendron ellipticum [71], used as folk medicine
to suppress cough [72], was an interesting candidate as an Mpro inhibitor that was still
endowed with a good binding affinity (−7.3 kcal/mol predicted for the top scoring pose).
Since Autodock Vina software tends to underestimate the binding affinity of the ligands for
the target [73], our complex could be endowed with an even lower binding energy and,
thus, a higher affinity than that computed. In other terms, our study could inspire future
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clinical trials using some of the several commercially available Opuntia ficus-indica dietary
supplements to ameliorate health conditions of COVID-19 patients, and from a molecular
perspective, it could serve as a starting point for experimental investigations directed
towards characterizing the above ligand–protease interactions and the in vitro/in vivo
anti-SARS-CoV-2 effects of the different compounds extracted from Opuntia ficus-indica and
from other Cactaceae family members.
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