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Abstract: Neuroevolutionary models are used to predict magnetic hysteresis for barium hexaferrites
(to predict magnetic hysteresis for barium hexaferrites). Magnetic hysteresis for a specific set of sam-
ples of barium hexaferrite doped with titanium were measured experimentally at room temperature
and reported before. Neural networks are trained using these experimental data in order to generate
magnetization and predict magnetic hysteresis for various concentrations of titanum. We present
the prediction for various methods of neural calculations and the deviations from actual data results
were negligible. Finally, the predictions of magnetic hysteresis are summerized for the titanume
concentration between 0.0 and 1.0.

Keywords: magnetic hysteresis; barium hexaferrites; magnetization; neuroevolutionary models;
neural networks

1. Introduction

The advancement in technology is due to advancement in science and material sci-
ence. Magnetic materials have been extensively used and investigated over the years.
The hexaferrite, first discovered in the 1950s, has been developed and used as significant
electronic materials in the previous decades. They played a vital role in the advancement
of technology and industry [1]. These ferrites are magnetic ceramics formed from iron
oxides combined chemically with one or more other metals and have a cubic or hexago-
nal crystal structure [2,3]. The hexaferrite forms a group of complex oxides and can be
categorized based on chemical composition and crystal structure [4]. The ferromagnetic
and ferrimagnetic materials show a nonlinear relation between the magnetization M of the
sample and the applied H. The hysteresis loop displays the magnetization M of the sample
with the variation of the applied field H. From the hysteresis loop, important character-
istic parameters of the material can be derived. These parameters include the saturation
magnetization Ms, the remnant magnetization or the remanence Mr, and the coercive field
Hc, which defines the magnetic hardness of the material [5]. Many research works were
carried out to investigate the influence of the dopants on the magnetic properties of M-type
hexaferrite [6–12]. Magnetic hysteresis of magnetic materials has a major effect on devices
that contain these magnetic materials. These devices include power systems since it is
related closely to residual flux in transformer cores. In addition to other devices that contain
a magnetic core, such as recording equipment and actuators. Therefore it is very important
to develop a method for predicting the hysteresis of the magnetic material. There are two
methods to simulate hysteresis loops: Physical method and phenomenological method. In
either method the results should reflect properly the magnetic properties of the material.
There are several reported works that have simulated hysteresis loops. More generally,
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the complication of the preparation method for some hexagonal ferrites could lead to less
information about magnetic properties. A computer model for hysteresis can be of great
help in this case. Artificial Neural Networks have been used for many years to compute
the magnetic properties of nonlinear materials [13–16]. Xu et al. used feed forward NN
that were trained to generate symmetrical magnetic hysteresis loops with accuracy [17].
Madayam et al. studied hysteresis for the ferromagnetic materials with modeling that
included the radial function approach by breaking the B-H loop into three regions: The
initial magnetization, the falling, and the rising branches [18]. Saliah and Lowther reported
principles of radial basis functions (RBF) and cerebpllum manipulator control (CMAC)
neural networks and demonstrated their capabilities with magnetic hysteresis behavior
identification, verifying their work by numerical examples [19]. I. Kucuk measured dy-
namics hysteresis for soft magnetic toroids wound cores made from SiFe thin strips over a
wide frequency range [20]. A dynamical hysteresis loop prediction model developed using
a neural network genetic algorithm from measurements with an acceptable prediction
capability for hysteresis loops of toroidal cores was also reported [20]. Kuezmann and
coworkers introduced a neural network model for magnetic hysteresis based on the func-
tion approximation capability of NN. Their work described the behavior of ferromagnetic
materials in the rolling and transverse direction of an isotropic material [21]. Akharzadeh
et al. showed that NNs can be used to predict the satisfactory features of some observed
hysteric behavior and therefore NNs can be used for many interesting applications [22].

However there should be an agreement between calculated and measured hysteresis
and consequently magnetic properties. The effects of titanium substitution on the magnetic
and structural properties of the barium hexaferrites prepared according to the formula
BaFe12−xTixO19 with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were reported previously [23]. The main
aim of the present work is to use artificial neural networks to generate the hysteresis and
magnetic properties of these as prepared compounds and predict hysteresis and magnetic
properties even for different compositions.

The rest of this paper is organized as follows. Section 2 presents the problem formula-
tion. The proposed neuroevolutionary Model is discussed in Section 3. Section 4 discusses
the evaluation measures. Results and discussions are presented in Section 5. Finally, the
findings of this research are concluded in Section 6.

2. Problem Formulation

Many research works were executed to investigate the influence of dopants on the
magnetic properties of hexaferrite [6–12]. Magnetic hysteresis of the magnetic materials
has a significant effect on devices that contain these magnetic materials. These devices
include power systems since it is related closely to the residual flux in transformer cores.
In addition to other devices that contain a magnetic core, such as recording equipment
and actuators. Therefore it is essential to develop a method for predicting the hysteresis of
magnetic material. The hexaferrite materials show a nonlinear relation between the applied
magnetic field and the magnetization of the sample. They form a group of complex oxides
and can be classified based on the chemical composition and crystal structure [4]. The
hysteresis loop displays the behavior of the magnetization of the sample with the variation
of the applied magnetic field. From the hysteresis loop, many characteristic parameters of
the material can be derived. These parameters include the saturation magnetization Ms, the
remnant magnetization or the remanence Mr, and the coercive field, Hc, which defines the
magnetic hardness of the material [5]. The effects of titanium substitution on the magnetic
and structural properties of the barium hexaferrite prepared according to the formula
BaFe12−xTixO19 with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were reported previously [23]. The main
aim of the present work is to use Artificial Neural Networks (ANN) and experimental data
to generate the hysteresis and the magnetic properties of these as prepared compounds,
and then predict hysteresis and magnetic properties for different concentrations and even
different compositions. However, there should be an agreement between the calculated
and measured hysteresis and consequently, between measured and calculated magnetic
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properties. In this work, a proposed neuroevolutionary model will be described by a three-
component model: The neural network topology, the optimizer, and the fitness function.

3. Neuroevolutionary Model

The proposed neuroevolutionary model can be described as three main components:
The neural network topology, the optimizer, and the fitness function [24–28]. Thus we
describe each of these components.

• Neural network topology: Artificial Neural Networks (ANNs) are intelligent learning
algorithms inspired by biological neural networks. The objective of an ANN is to
perform information analysis and knowledge extraction in a way that is analogous
to the biological neurons process. The topology of the ANN can be represented as
a connected directed graph in which the artificial neurons are the nodes, and the
weighted connections are the links between the nodes. ANNs models have a layered
structure. Where it includes the input and output layers, and in between is the hidden
layer(s). Each layer consists a set of neurons, while each neuron has an activation unit.
Different activation functions could be used. Equation (1) shows the Sigmoid activa-
tion function which is selected for the proposed model:

σ(z) =
1

1 + exp(−z)
. (1)

Mainly, ANNs learn the relationships between inputs and outputs by repeatedly learn-
ing and adjusting the weights of the connections and modifying the network structure.
Training ANNs requires finding the weights by determining a loss (objective) function.
A typical multilayer perceptron neural network has an input layer I of N number
of nodes. A set of hidden layer(s) H where each hidden layer h has m number of
nodes. And an output layer O with k number of nodes. Each connection between any
two neurons i and j is associated with a weight wij. Furthermore, each neuron has
a bias value b for adjusting the output and better converge toward optimality. For
prediction, the input is fed into the hidden layer, where the output of the input layer
is represented by Oi. At the hidden layer, the output from the previous layer (input)
Oi is multiplied by the weights wij and summed out, as given in Equation (2). Where
bj is the associated bias of hidden layer:

Oj = ∑
J

WijOi + bj. (2)

The value of Oj inside the neuron is transformed using an activation function. Thus,
the output of the last hidden layer σ(Oj) will go through the output layer.

• The optimizer: This component is responsible for finding the best possible parameters
of the neural network that minimize a predefined error criterion. Two optimizers
are used for this task: Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO). Both optimizers are selected due to their popularity in the literature and their
consideration as ones of the most well-regarded metaheuristic algorithms.

– PSO is a population-based optimization algorithm by Russell Eberhard and James
Kennedy in 1995 [29]. It represents the social behavior of the movement of a
bird flock or school of fish [30]. Like other population-based algorithms, PSO
initializes a preliminary population for the first generation representing the initial
set of potential solutions which are called particles [31]. It then tries to search for
the optimal solution by updating the speed and position of the set of particles
through the course of generations [32]. The algorithm keeps track of two best
fitness values: The pbest and gbest. At a specific generation, pbest is the best fitness
value corresponding to the best particle for the generation whereas gbest is the
best global fitness value obtained across all the generations reached so far [30].
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– GA is a population-based optimization algorithm by John Holland in the early
1970s [33]. It uses a population of individuals at each generation which represent
the potential solutions for the generation. It is based on evolutionary operators
which are: Selection, crossover, mutation, and elitism. The evolutionary operators
are used to find other possible solutions at the next generation in the aim of
finding the optimal solution [34]. At each generation, the fitness values of the
individuals are evaluated and are used by the evolutionary operators at the next
generation. Finally, the best individual with the best fitness value at the last
generation is selected and is considered as the solution obtained from running
the algorithm [33].

In both optimizers, the solution is represented as a vector of the parameters of the
network that will be optimized. In this case each solution is formed as a set of weights
between the input layer and the hidden layer, the weights between the hidden layer
and the output layer, and the biases of all neurons. Figure 1 illustrates the structure of
the solution in the neuroevolutionary algorithm and how it maps to the structure of
the network.

• The fitness function: This component is used to evaluate and determine the quality of
the candidate solutions which were generated by the optimizer. This value used to
by the optimizer, which in this case is either GA or PSO, to guide the search process
toward more quality solutions. In this work, MSE is used, which is widely adopted in
the literature as a cost function for different machine learning models. Therefore the
fitness function is to minimize the MSE value.

Overall, the flowchart of the neuroevolutionary algorithm can be described as shown
in Figure 2.
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Figure 1. Solution representation in the neuroevolutionary model.
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Figure 2. Flow of the main processes of the neuroevolutionary model.

4. Evaluation Measures

In order to evaluate the best generated neuroevolutionary models, the following five
evaluation measures are used:

MSE =
1
n

n

∑
i=1

(|yi − yp
i |)

2 (3)

ED =

√
n

∑
i=1

(|yi − yp
i |)2 (4)

MAE =
1
n

n

∑
i=1

(|yi − yp
i |) (5)

MMRE =
1
n

n

∑
i=1

|yi − yp
i |

yi
(6)

RMSE =

√
1
n

n

∑
i=1

(|yi − yp
i |)2. (7)

5. Results and Discussion

The magnetic properties are experimentally generated from hysteresis loops. We
reported the magnetic properties generated from the hysteresis loops of BaFe12−xTixO19
with different titanium concentration (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) and these hysteresis
loops are shown in Figure 3 [23]. The main objective of this work is to generate these
hysteresis loops of these as prepared compounds utilizing ANN for the same samples and
predict from the hysteresis loops the magnetic properties for different compositions. We
used the last 34 experimental data points to predict the corresponding values by using
trained NNs.

The neuroevolutionary model proposed in this work is implemented using Python
3.7 and EvoloPy [35]. EvoloPy is an open source library that includes nature-inspired
optimization algorithms for global optimization written in Python. Two well-regarded
algorithms are selected from EvoloPy to optimize NN, namely; GA and PSO. The number
of hidden neurons in GA and PSO is set to 2 ∗ (numbero f f eatures) + 1, which is equal
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3. In addition, the number of hidden layers is one. Both models are compared to the
classical back propagation (BP) algorithm and Linear Regression (LR). Tables 1–6 show the
evaluation measures for GA, PSO, BP, and LR based on the set of data points for the system
under study for each value of x starting from 0.0, to 1.0 with a step of 0.2. That is, a table of
results is shown for each value of x.

Examining the listed results in the tables, it can be clearly noticed that the error in
terms of all measures decreases for all models when the value of x increases. Therefore, the
lowest error values are shown in Table 6. It can be noted that with the exception of the first
two cases when the value of x = 0 and x = 0.2, the GA and PSO show superior results to
BP and LR, with a slight advantage for GA. In addition, the GA model shows more stable
results compared to PSO in terms of lower stdv values.

Figures 4–9 show the actual and predicted values for the last 34 data points for the
BaFe12−xTixO19 (x = 0.8) at 1000 ◦C. using GA, PSO, BP, and LR. The approximation curves
verify that the ability of proposed algorithms to represent the behavior of the process.
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Figure 3. Hysteresis loops for the samples BaFe12−xTixO19 (x = 0.0 to 1.0) sintered at 1000 ◦C.

Table 1. Performance results for the last 34 data points for the BaFe12−xTixO19 (x = 0.0) at 1000 ◦C.
(The best result is marked in bold font).

Measures GA (AVG ± STD) PSO (AVG ± STD) BP (AVG ± STD) LR (AVG)

MSE 42.7092 ± 37.1355 54.2717 ± 47.355 15.8252 ± 5.76 × 10 −10 6.2292
ED 35.2427 ± 15.2776 38.5743 ± 19.9238 23.1961 ± 4.22 × 10 −10 14.5531

MAE 5.9611 ± 2.657 6.5329 ± 3.4595 3.0374 ± 1.28 × 10 −10 2.2364
MMRE 0.1425 ± 0.0642 0.1568 ± 0.0828 0.0773 ± 3.04 × 10 −12 0.0547
RMSE 6.0441 ± 2.6201 6.6154 ± 3.4169 3.9781 ± 7.24 × 10 −11 2.4958

Table 2. Performance results for the last 34 data points for the BaFe12−xTixO19 (x = 0.2) at 1000 ◦C.

Measures GA (AVG ± STD) PSO (AVG ± STD) BP (AVG ± STD) LR (AVG)

MSE 14.6799 ± 10.3653 35.8206 ± 22.6671 8.2693 ± 2.6395 17.6696
ED 21.3431 ± 6.9593 32.6658 ± 12.9463 16.7039 ± 2.4441 24.5105

MAE 3.6503 ± 1.2026 5.5650 ± 2.2464 2.2625 ± 0.5179 3.4388
MMRE 0.0850 ± 0.0281 0.1295 ± 0.0523 0.0543 ± 0.0116 0.0786
RMSE 3.6603 ± 1.1935 5.6021 ± 2.2203 2.8647 ± 0.4192 4.2035
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Table 3. Performance results for the last 34 data points for the BaFe12−xTixO19 (x = 0.4) at 1000 ◦C.

Measures GA (AVG ± STD) PSO (AVG ± STD) BP (AVG ± STD) LR (AVG)

MSE 2.0337 ± 1.5612 3.8184 ± 4.8935 7.0230 ± 2.6395 64.8161
ED 7.7536 ± 3.1669 9.4715 ± 6.6764 15.2776 ± 2.4441 46.9441

MAE 1.2330 ± 0.5621 1.5462 ± 1.1639 2.2241 ± 0.5179 6.8084
MMRE 0.0286 ± 0.0130 0.0360 ± 0.0271 0.0530 ± 0.0116 0.1561
RMSE 1.3297 ± 0.5431 1.6243 ± 1.1450 2.6201 ± 0.4192 8.0508

Table 4. Performance results for the last 34 data points for the BaFe12−xTixO19 (x = 0.6) at 1000 ◦C.

Measures GA (AVG ± STD) PSO (AVG ± STD) BP (AVG ± STD) LR (AVG)

MSE 1.6477 ± 0.9240 2.2519 ± 1.3558 14.9516 ± 34.4594 76.6497
ED 7.2346 ± 2.0229 8.4264 ± 2.4851 16.6192 ± 16.0609 51.0499

MAE 1.0283 ± 2.0229 1.2592 ± 0.4713 2.5134 ± 2.7871 7.7365
MMRE 0.0274 ± 0.0074 0.0331 ± 0.0122 0.0668 ± 0.0732 0.1991
RMSE 1.2407 ± 0.3469 1.4451 ± 0.4262 2.8502 ± 2.7544 8.7550

Table 5. Performance results for the last 34 data points for the BaFe12−xTixO19 (x = 0.8) at 1000 ◦C.

Measures GA (AVG ± STD) PSO (AVG ± STD) BP (AVG ± STD) LR (AVG)

MSE 0.3478 ± 0.4230 0.4428 ± 0.5276 1.1276 ± 0.1866 15.1202
ED 3.0464 ± 1.6819 3.4091 ± 1.9528 6.1670 ± 0.5844 22.6735

MAE 0.4723 ± 0.2968 0.5351 ± 0.3477 0.8666 ± 0.0855 3.3298
MMRE 0.0240 ± 0.0151 0.0273 ± 0.0177 0.0455 ± 0.0045 0.1676
RMSE 0.5225 ± 0.2884 0.5846 ± 0.3349 1.0576 ± 0.1002 3.8885

Table 6. Performance results for the last 34 data points for the BaFe12−xTixO19 (x = 1.0) at 1000 ◦C.

Measures GA (AVG ± STD) PSO (AVG ± STD) BP (AVG ± STD) LR (AVG)

MSE 0.1825 ± 0.0847 1.8900 ± 3.2491 0.8128 ± 0.0085 12.0787
ED 2.4313 ± 0.5700 6.2400 ± 5.3043 5.2569 ± 0.0277 20.2651

MAE 0.3497 ± 0.0825 1.0063 ± 0.9351 0.7389 ± 0.0048 3.0176
MMRE 0.0213 ± 0.0051 0.0612 ± 0.0567 0.0460 ± 0.0003 0.1805
RMSE 0.4170 ± 0.0978 1.0701 ± 0.9097 0.9015 ± 0.0047 3.4754
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Figure 4. Actual and predicted values for the last 34 data points for the BaFe12−xTixO19 (x = 0.0) at
1000 ◦C.
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Figure 5. Actual and predicted values for the last 34 data points for the BaFe12−xTixO19 (x = 0.2) at
1000 ◦C.
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Figure 6. Actual and predicted values for the last 34 data points for the BaFe12−xTixO19 (x = 0.4) at
1000 ◦C.
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Figure 7. Actual and predicted values for the last 34 data points for the BaFe12−xTixO19 (x = 0.6) at
1000 ◦C.
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Figure 8. Actual and predicted values for the last 34 data points for the BaFe12−xTixO19 (x = 0.8) at
1000 ◦C.
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Figure 9. Actual and predicted values for the last 34 data points for the BaFe12−xTixO19 (x = 1.0) at
1000 ◦C.

6. Conclusions

Neuroevolutionary models were used to predict magnetic hysteresis for barium
hexaferrites. Magnetic hysteresis for a specific set of samples of barium hexaferrite doped
with titanium were measured experimentally at room temperature and reported. Neural
networks were trained using 34 data experimental data points. Using the various model,
the magnetization of barium hexaferrites for various concentrations of titanium were then
calculated. The predictions for various methods of neural calculations and the deviations
from actual data results were summarized. The deviations between actual experimental
data results and the predicted ones were negligible for all models. However, the GA
method was arguably the best technique with low deviations. Finally, we conclude that the
magnetic hysteresis could be predicted for the whole set of experimental data for samples
with various titanum concentration between 0.0 and 1.0.
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