
symmetryS S

Article

Principal Component Wavelet Networks for Solving Linear
Inverse Problems

Bernard Tiddeman 1,* and Morteza Ghahremani 2

����������
�������

Citation: Tiddeman, B.; Ghahremani,

M. Principal Component Wavelet

Networks for Solving Linear Inverse

Problems. Symmetry 2021, 13, 1083.

https://doi.org/10.3390/sym13061083

Academic Editor: Lorentz JÄNTSCHI

Received: 18 February 2021

Accepted: 1 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK
2 A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70150 Kuopio, Finland;

morteza.ghahremani@uef.fi
* Correspondence: bpt@aber.ac.uk

Abstract: In this paper we propose a novel learning-based wavelet transform and demonstrate its
utility as a representation in solving a number of linear inverse problems—these are asymmetric
problems, where the forward problem is easy to solve, but the inverse is difficult and often ill-posed.
The wavelet decomposition is comprised of the application of an invertible 2D wavelet filter-bank
comprising symmetric and anti-symmetric filters, in combination with a set of 1× 1 convolution
filters learnt from Principal Component Analysis (PCA). The 1 × 1 filters are needed to control
the size of the decomposition. We show that the application of PCA across wavelet subbands
in this way produces an architecture equivalent to a separable Convolutional Neural Network
(CNN), with the principal components forming the 1× 1 filters and the subtraction of the mean
forming the bias terms. The use of an invertible filter bank and (approximately) invertible PCA
allows us to create a deep autoencoder very simply, and avoids issues of overfitting. We investigate
the construction and learning of such networks, and their application to linear inverse problems
via the Alternating Direction of Multipliers Method (ADMM). We use our network as a drop-in
replacement for traditional discrete wavelet transform, using wavelet shrinkage as the projection
operator. The results show good potential on a number of inverse problems such as compressive
sensing, in-painting, denoising and super-resolution, and significantly close the performance gap
with Generative Adversarial Network (GAN)-based methods.

Keywords: deep learning; wavelet networks; ADMM; PCA

1. Introduction

Linear inverse problems occur frequently in image processing applications. These are
asymmetrical problems, in which the forward solution is well defined and straightforward
to compute, but the inverse problem is often ill-posed and difficult to compute. The goal
is to estimate an underlying (uncorrupted) signal x, given a set of noisy measurements y,
with noise n that have undergone some known linear transformation A i.e.,

y = Ax + n. (1)

One standard approach to solving such problems, which are typically ill-posed, in-
volves regularising the problem using a signal prior φ(x) i.e.,

argmin
x

1
2
||y− Ax||22 + λφ(x), (2)

where λ is a non-negative weighting term. Generally the signal prior is intended to
encourage sparsity of x in some basis, such as a wavelet domain [1–5]. Such hand designed
priors have certain advantages, for example they form a convex optimisation problem
with global optimality, and provide various theoretical guarantees. Unfortunately such

Symmetry 2021, 13, 1083. https://doi.org/10.3390/sym13061083 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7570-1192
https://orcid.org/0000-0001-6423-6475
https://doi.org/10.3390/sym13061083
https://doi.org/10.3390/sym13061083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13061083
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13061083?type=check_update&version=2

Symmetry 2021, 13, 1083 2 of 17

priors are often too generic to constrain the problem, and can result in noise like images or
other artefacts.

In this paper, we first explore previous work related to solving linear inverse problems,
and possible image representations that could help to support their solution. Then we
introduce the Principal Component Wavelet Networks, and demonstrate that this relatively
simple approach can produce results that are comparable to the state-of-the-art, with a
fixed training cost and are robust to over-fitting.

2. Literature Review
2.1. Deep Learning Based Techniques

To overcome the disadvantages of hand-crafted features, several learning based meth-
ods have been proposed. Most of these are designed for specific purposes, such as in-
painting [6], image denoising/structured recovery [7], compressive sensing [8], super
resolution [9,10] and deblurring [11]. Recently adversarial learning with deep neural net-
works has been applied to many of these problems with impressive results. OneNet is a
particular example designed to solve such linear inverse problems in general [12]. OneNet
combines a classifier with an auto-encoder, which is trained to project perturbed images
back to their ground truth, and to classify perturbed/unperturbed images. The network is
used as the projection operator in an alternating direction method of multipliers (ADMM)
based technique. They demonstrated good results on a number of inverse problems. The
training of the projection operator uses two discriminator networks (in the latent and
image spaces) to distinguish perturbed from unperturbed images. They alternate training
of the projection operator (to project “fake” unperturbed images into the space of unper-
turbed images) with training of the discriminator (to detect projected images from original,
unperturbed images). Hence it is a form of Generative Adversarial Network (GAN).

GANs are known to be challenging to train [13,14], as they are prone to local minima,
and are sensitive to the perturbations introduced in the training phase. Recently, various
approaches have been proposed to speed up the optimisation using projection-based
operators. Differential unrolled ADMM (DU-ADMM) has been proposed [15], which
improves on the original OneNet, showing faster convergence and a reduction in overfitting
during training. In a similar vein, Reference [16] used projected gradient descent (PGD)
to allow a significant speed up in the convergence, by removing the need to compute
the Jacobian of the gradient. Nevertheless, the training still requires generating artificial
perturbed images, which the system learns to project back into the original so could be
prone to bias due to the choice of perturbations. The system also requires learning many
layers and parameters, which could lead to overfitting.

In this paper we show that a much simpler system can achieve results that improve
on the original OneNet results in the majority of experiments, and improve on DU-ADMM
on 3 tasks out of 8, with an unsupervised deterministic learning algorithm and very
short training times. It is important to note that we use a “traditional” soft-thresholding
projection operator, rather than a deep learning/GAN-based projection operator. We
simply learn a more suitable wavelet decomposition for representing the dataset. As such,
this work bridges the gap between traditional approaches and GAN-based approaches,
and raises important questions relating to the relative importance of algorithm choice vs
data representation.

2.2. Image Representations

An appropriate image representation can be important to the success of an algorithm.
Various image representations exist, such as the spatial and Fourier domain, various
wavelet domain representations (such as continuous and discrete) and scattering wavelets,
among others. Other representations are less explicit, but exist nevertheless, such as in
Deep CNNs in the intermediate stages of auto-encoder networks.

Wavelet transforms generally filter an image with multiple versions of a single
“mother” wavelet function that has been dilated and rotated in multiple directions. The

Symmetry 2021, 13, 1083 3 of 17

wavelet subbands and/or low-pass filtered image may be kept at full resolution [17], or
subsampled, typically by powers of 2 in x and y e.g., [18]. Decimation of both the low-
pass and high pass filtered images provides a compact representation, but is known to
lead to artefacts in the reconstruction. Various over-complete wavelet bases (or wavelet
frames) have been proposed previously, such as double-density wavelets [19], dual-tree
wavelets [20] or a combination of both [21]. The disadvantage of using a highly redundant
representation is that it grows in size exponentially with the depth of the network.

Convolutional Neural Networks (CNNs) follow a similar pattern, but with some
notable differences, including:

1. The filters are learnt from the data, rather than hard coded, usually by a back-
propagation algorithm.

2. The number of filters is generally much larger than in wavelet analysis.
3. The high-pass subbands are themselves subjected to further rounds of filtering.
4. Non-linear components are generally introduced, such as ReLU activation functions

and max pooling operators.
5. Inversion generally requires the training of a separate decoder network, although

reversible networks do exist [22].

Scattering networks are another approach to bridging the gap between CNNs and
wavelet analysis [23]. In scattering networks a set of oriented complex Mortlet wavelets
of different scales are applied to the image, then the complex magnitude of the resulting
subbands is found. The process can be repeated on these in a hierarchy. Finally the
magnitude subbands of all levels are smoothed and subsampled to represent the image.
The resulting representation has good shift and rotation invariance. One disadvantage of
scattering networks for the proposed application to linear inverse problems, is the lack of
a simple, direct, inversion algorithm. Scattering networks have been inverted by direct
optimisation [24], by learning a reconstructing generative network [25] and by a hybrid
algorithm [24]. The generative network approach appears the most promising from the
perspective of solving linear inverse problems, but the reconstruction results exhibit some
artefacts, and they haven’t yet been evaluated for solving linear inverse problems of the
type described here.

Various combinations of wavelet analysis and PCA have been proposed previously, but
not the particular structure proposed here. The application of PCA to (decimated) wavelet
transforms has been used frequently e.g., [26–28]. In those examples, PCA is applied to
the whole wavelet transformed image (after suitable scaling of the subbands) or to each
subband independently, so for the purposes of PCA each image or subband constitutes a
‘point’ in the high dimensional space to which PCA is applied. In this work, PCA is applied
to ‘fibres’ in the partially decomposed space i.e., the values across channels at a particular
2D location. Performing PCA in this way produces a decomposition algorithm identical
in structure to convolutional neural networks, where the mean subtraction becomes the
bias and the 2D convolutional filters are a linear combination of the selected wavelet filters.
Given the success of CNNs in solving a wide range of problems, we believe it is informative
to consider different learning algorithms within the successful CNN structure.

PCANet is another related approach, used to create 2D filters by applying PCA to over-
lapping patches extracted from the training images [29,30]. In this approach, the extracted
patches first have the mean removed and PCA is applied to the resulting image stack to
learn convolutional filters corresponding to the first N principal components. The process
can be repeated on each of the resulting subbands in a hierarchy. When combined with
binary hashing and blockwise histograms they achieved state of the art results on a number
of image recognition tasks. The resulting decomposition and processing with PCANet is
different to typical CNN architectures, with separate subbands treated independently in
lower levels of the decomposition. PCANet also offers no reconstruction algorithm, which
is essential to the application explored here. The architecture proposed here is therefore
more closely related to standard CNN architectures, but with a different learning strategy

Symmetry 2021, 13, 1083 4 of 17

(PCA rather than backpropagation). Nevertheless, the success of PCANet demonstrates
that alternative approaches are still worth exploring.

3. Aims and Contributions

We aim to bridge the gap between wavelet transforms and CNNs. We propose to use a
set of predetermined wavelet filter banks combined with low-pass filters and then proceed
to the learning phase using multiple applications of principal component analysis (PCA)
to learn 1× 1 convolution filters. For the filter bank, we focus in this paper on separable
derivative of Gaussian filters. The final resulting filters after application of PCA are not
necessarily separable, and can represent a range of other functions. Unlike traditional
wavelet transforms, we filter all subbands (channels) with our filter bank at every level. The
use of a bank of filters helps to stabilise the reconstruction, but can result in an explosion
in the number of subbands as the depth of the network increases. We control the growth
in the number of channels by using PCA across channels to learn 1× 1 filters that can
compress the data.

The contributions of this work include:

• The introduction of Principal Component Wavelet Networks (PCWNs) and the demon-
stration that the resulting architecture is equivalent to a CNN.

• An inversion algorithm, which allows the trained networks to be used as an autoencoder.
• An example application to linear inverse problems, where the proposed networks

show good potential, outperforming the original OnetNet [12] on 6 out of 9 tasks
and showing state-of-the-art performance for a general purpose solution on three
tasks (superresolution for face images, and pixelwise inpaint denoising and scattered
inpainting on ImageNet).

It is worth noting that, although the structure of the final network is equivalent to a
CNN, the training of the proposed network does not involve backpropagation or stochastic
optimisation. The simple, forward, deterministic nature of the training algorithm makes
the network fast to learn. The use of PCA, which is based on a Gaussian distribution model,
leads to an algorithm which is robust against over-fitting, which is a problem with GAN-
based methods (as shown in Figure 1). The considerable improvement in ADMM using
an L1-norm regulariser based on our decomposition, compared to simpler wavelet-based
techniques, indicates an interesting direction of research for novel learning algorithms
within the CNN data structure.

Figure 1. Examples of Blockwise Inpainting, where GAN based methods can be prone to overfitting
but our network is not. Rows from top to bottom: original images; the masked input images; the
outputs of OneNet [12] showing evidence of overfitting; the results of our network. The figures show
the PSNR of the output images. We have reproduced the examples selected by the authors of [12]
using their code [31]. The OneNet examples in [15] show similar problems for blockwise inpainting.

Symmetry 2021, 13, 1083 5 of 17

4. Method: Decomposition, Training and Reconstruction
4.1. Decomposition Algorithm

In this section we describe the algorithms for constructing, training and reconstructing
a PCWN decomposition. At each level in the decomposition, each channel first undergoes
convolution with each filter in the selected filter-bank. For the rest of this paper we use
separable filters based on approximations to zeroth, first and second derivatives of a
Gaussian. Each is applied along either the x or y direction, leading to nine output channels
per input channel. We typically use a stride of two, although other options are possible.
This gives rise to:

tl+1(9z + 3j + i) = Gx
i ∗ Gy

j ∗ sl(z), (3)

where tl+1(9z + 3j + i) is the decomposition tensor channel ‘9z + 3j + i’ at level ‘l + 1’ of
the decomposition prior to PCA processing, sl(z) is the decomposition tensor channel z at
level l of the decomposition following PCA processing (or the input), Gx

i and Gy
j are 1D

Gaussian derivatives in direction x and y of order i and j respectively, where i ∈ 0, 1, 2 and
j ∈ 0, 1, 2.

After filtering, the channels are projected into the learnt principal component subspace,
which forms a weighted sum sl(z) of the channels within the subband, tl(i) along with a
bias term representing subtraction of the mean i.e.,

sl(z) = bl(z) +
Zl

∑
i=0

Wl(z, i)tl(i). (4)

Here Wl(z, i) is the ith component of the zth principal component at level l in the
decomposition and Zl is the number of channels before projection into the PCA subspace.
The bias term bl(z) is equivalent to the dot product of the negative of the mean, ml(i), with
the principal component:

bl(z) = −
Zl

∑
i=0

Wl(z, i)ml(i). (5)

Adding this term after taking the dot product is equivalent to subtracting the mean
for level l, ml(i), before taking the dot product with Wl(z, i).

4.2. Training Algorithm

To learn the PCA decomposition for level l, we iterate through the training set and
iteratively decompose using the specified filters and PCA parameters up to level ‘l− 1’. We
then filter with the specified filters at level l. We form the mean vector across channels as:

ml(z) =
1

KXlYl

K

∑
k=0

Xl

∑
x=0

Yl

∑
y=0

tl(x, y, z), (6)

where the sum is over all K training images and all pixels in the Xl by Yl subband images.
The covariance matrix is similarly formed from the sum of outer-product matrices of these
vectors, i.e., if the tl are considered as row vectors:

Cl(z, w) =
1

KXlYl − 1

K,Xl ,Yl

∑
k,x,y

d(z)Td(w) (7)

where d(q) = tl(x, y, q)−ml(q). The above sum can be factored into:

1
KXlYl − 1

K,Xl ,Yl

∑
k,x,y

tl(z)
Ttl(w)

− KXlYlml(z)
Tml(w)

, (8)

which allows a single pass algorithm per layer of the network. The processing of a single
fibre (the vector of values at a specific 2D location) is illustrated in Figure 2.

Symmetry 2021, 13, 1083 6 of 17

Figure 2. Illustration of the accumulation of the sum of ‘fibres’ and their outer products used to
compute the mean and covariance matrix in a single pass through all images per output layer.

Eigenanalysis of the covariance matrix Cl gives the principal components in the
orthonormal matrix Wl and their variances in the diagonal matrix Λl :

Cl = WlΛlWt
l . (9)

We order the eigenvectors according to the size of their corresponding eigenvalues,
which give the variances along each component. We then drop those with the smallest
value according to some criteria, such as: percentage of variance explained; a fixed network
architecture; or maximum number of desired channels.

An example of the outputs of each step in the first layer decomposition is shown in
Figure 3. The filter bank and 1× 1 filters are combined into a single 2D convolutional tensor.
The result of applying the filter learnt at each level of the decomposition is shown in Figure 4.
The output at each level can be combined with an optional non-linear activation function.

Figure 3. An example of the first stage of the decomposition. First, each channel is filtered with each
of the specified filter banks. Second, a set of 1× 1× channels filters (learnt from PCA) are applied to
reduce the number of channels. It is clear that most of the power is concentrated in a small set of
channels. After the application of PCA the number of channels is reduced and the remaining ones
are generally those with more of the signal energy.

Symmetry 2021, 13, 1083 7 of 17

Figure 4. An example of multiple stages of the decomposition. The decomposed image tensor is fil-
tered with the convolutional filter formed from the combined filter bank and PCA filters. An optional
non-linear activation function can be applied to the output at each stage. Although many of the
channels may provide a small amount of the signal energy, the redundancy is significantly reduced
with the application of PCA.

4.3. Reconstruction Algorithm

The reconstruction algorithm performs the decomposition steps in reverse. Starting at
the lowest level, first the inverse of any non-linear activation function needs to be applied.
Then the channels (now principal component weighting images) sl are used to reconstruct
approximations t′l to the original subband images tl using:

t′l(z) = ml(z) +
Tl

∑
i=0

Wl(i, z)sl(i). (10)

where ml(z) is the corresponding mean for channel z of level l of the decomposition, Tl is
the number of principal components that were retained for level l, and Wl(i, z) is the zth
component of the ith principal component at level l in the decomposition.

Next these images are processed in blocks of 9 (for our typical case of 9 construction filters)
to reconstruct the matching channel at level ‘l − 1’. One way to do this is to construct the filter
matrix Φ corresponding to the one dimensional forward filtering (including the stride, border
handling etc.) and calculate the least squares inverse (Moore–Penrose pseudo-inverse) Φ′:

Φ′ = (ΦtΦ)−1Φt. (11)

This is applied along rows and then columns to recreate the channel at the higher
level in the decomposition. Another option is to find a set of reconstruction filters with
compact support. These form a set of transpose convolution filters that are separable in x
and y. An example set of forward and inverse filters is given in Table 1. The entire process
for constructing the decompostion and reconstruction networks is outlines in Algorithm 1.

The architecture of the complete network is shown in Figure 5. Examples of reconstructed
images with linear and non-linear activation functions (a simple tanh activation function on the
decomposition, and atanh on the reconstruction), and varying compression levels (100%, 50%
and 25%) for the linear models are shown in Figure 6.

Symmetry 2021, 13, 1083 8 of 17

Algorithm 1: Overview of the training algorithm
Input: Training images, Ii, number of levels, L, percent variance to retain at each

level, k, activation function, f
Output: The trained networks
create an empty (decomposition) network;
create an empty (reconstruction) inverse network;
for l ← 0 to L do

create zero matrix Cl ;
create zero vector ml ;
for I ∈ Ii do

if l > 0 then
sl−1 = network(I);

else
sl−1 = I;

end
calculate tl using Equation (3);
add to ml in Equation (6);
add to Cl in Equation (8);

end
calculate ml using Equation (6);
calculate Cl using Equation (8);
calculate Wl and Λl = using eigen analysis on Cl (Equation (9));
sort Wl by order of Λl and retain those that explain k% of variance;
calculate bias using Equation (5);
create filters by combining Wl and the filterbank (Equations (3) and (4));
create and append a new convolutional layer with filters, the bias and
activation function to the network;

create and prepend a new activation layer to the inverse network using the
inverse activation function ;

create and prepend a new 1× 1 convolution layer to the inverse network using
WT

l with bias ml (Equation (10)) ;
create and prepend a new transpose convolutional layer implementing
Equation (11) to the inverse network;

end

Figure 5. Architecture of the simple example network used in this paper.

Symmetry 2021, 13, 1083 9 of 17

Figure 6. Example reconstructions with different variations on the architecture. The top row shows
the original image. The second row shows the reconstruction using a decomposition that retains 100%
of the information (the decomposition is the same size as the input images) and a linear activation
function. The third row shows the results of retaining 100% of the data and using a non-linear
activation function (tanh on the decomposition and atanh on the reconstruction). The fourth and
fifth rows use a linear activation function and retain 50% and 25% respectively. The PSNR is shown
for each reconstructed image.

Table 1. Table showing the coefficients of the construction (G∗) and reconstruction (H∗) filters used in this paper.

Filter Filter Coefficients

G0 × 16 1 4 6 4 1
G1 × 4 0 −1 2 −1 0
G2 × 2 0 1 0 −1 0
H0 × 16 0 0 1 8 14 8 1 0 0
H1 × 128 −1 −8 −20 −56 170 −56 −20 −8 −1
H2 × 256 1 8 30 136 0 −136 −30 −8 −1

4.4. Discussion of Architecture

The above process allows us to construct CNNs using a very simple yet effective
learning process. The learnt network is generic, rather than trained for any specific problem,
but is optimal in the sense of minimizing the information loss at each level subject to an
orthogonal decomposition. The filters in our method are derived from a local linear model
of separable convolution operators and they are not necessarily constrained to be separable.
For example the Laplacian can be approximated by the sum of two separable derivative
filters, but is not itself separable. As we are forming linear combinations of filtered images
via the use of PCA, the resulting filters can include the derivatives steered in different
directions (as they span the first and second derivative steerable filter bases), Laplacian
and other common filters. In fact, for small filters, such as 3× 3 commonly used in CNNs,
the space of such filters lies in an eight dimensional space, which is spanned by the nine
filters used in this work, so the system can learn any 3× 3 filter. In this work we extend the
low-pass filter in order to make the wavelet functions used smoother, which is known to
lead to fewer reconstruction artefacts in wavelet processing.

The network can incorporate non-linear elements, such as activation functions between
networks, max pooling layers, batch normalisation etc. There is no dependency on learning
(as there is for back propagation), but some of these elements make inversion difficult or

Symmetry 2021, 13, 1083 10 of 17

impossible. For the work described here we focus on linear inverse problems, we need
to be able to perform the inverse transform and so leave investigation of these aspects to
future work. The structure used in this paper is shown in Figure 5. A simplified table of
the layers is shown in Table 2. For the most part the algorithm can be implemented using
standard layers (e.g., in Tensorflow Keras). The filters can be applied either separably or pre-
calculated into three dimensional (width× height× channels) filters for the construction.
Symmetric padding is used to handle the borders. For the reconstruction, transpose
convolution is used. Due to the use of some anti-symmetric 1D filters, we need to first
apply the inverse PCA decomposition to reconstruct the set of original filtered channels.
This allows us to use anti-symmetric border padding for the correct handling of the borders
of the anti-symmetric filtered channels (performed using regular symmetric padding and
multiplication by a mask of mostly 1’s and −1’s for the anti-symmetric padding values)
(Code available from https://github.com/bptiddeman/PCWN.git or as a Google Colab
demo https://colab.research.google.com/drive/1bRji-34Icy8serMzxZ0r-S2FqVOfgw2-?
usp=sharing) (accessed on: 17 February 2021).

Table 2. This table shows the structure of our convolutional network.

Input Size Type/Stride Filter Shape

64× 64× 3 Subtract mean 64× 64× 3
64× 64× 3 Conv2D/s2 5× 5× 3× 12

32× 32× 12 Conv2D/s2 5× 5× 12× 48
16× 16× 48 Conv2D/s2 5× 5× 48× 192
8× 8× 192 Conv2D/s2 5× 5× 192× 768
4× 4× 768 Decomposition -

4× 4× 768 Activation -
4× 4× 768 Conv2DTranspose/s2 9× 9× 768× 192
8× 8× 192 Conv2DTranspose/s2 9× 9× 192× 48

16× 16× 48 Conv2DTranspose/s2 9× 9× 48× 12
32× 32× 12 Conv2DTranspose/s2 9× 9× 12× 3
64× 64× 3 Add mean 64× 64× 3
64× 64× 3 Reconstruction -

4.5. Computational Complexity

The computational complexity of the proposed training algorithm is related to the
size of the training set, T, the number of levels in the decomposition, L, the number of
pixels in each level, Nl , and the number of channels retained in each level, Cl . For one
level of the decomposition, the algorithm requires O(TN2

l C2
l + N3

l C3
l) operations, with the

first term resulting from the building of the covariance matrix, and the second term from
the Eigenanalysis step of the PCA that is required once per level. The total complexity is
found by summing these terms over all levels, O(∑L

l (TN2
l C2

l + N3
l C3

l)). Comparison of this
complexity to training a deep learning projection operator is difficult. The deep learning
projectors extend the training set by introducing image perturbations, thus effectively
increasing T, whereas the PCWN training only requires the original unperturbed images.
The PCWN requires a known, fixed number of operations, whereas for stochastic, gradient-
based optimisation methods the convergence requires a variable number of iterations
to reach a minimum, depending on the characteristics of the problem. For example,
OneNet [12] used between 10 K and 80 K iterations on batches of 25 to 32 images. As
an indication of the comparative training cost, training onenet on the celeb-a dataset for
6000 iterations on our GPU server using a single GPU (Tesla P100-PCIE-16GB) required over
52 h and was far from converging. The DU-ADMM authors recommend 100,000 iterations
in their code, which would take over a month to train on our system. In contrast, we were
able to train our system in 4 h for the celeb-a dataset (200 K images), or 15 h for the entire
ImageNet training partition (1.2 M images) on the same platform.

https://github.com/bptiddeman/PCWN.git
https://colab.research.google.com/drive/1bRji-34Icy8serMzxZ0r-S2FqVOfgw2-?usp=sharing
https://colab.research.google.com/drive/1bRji-34Icy8serMzxZ0r-S2FqVOfgw2-?usp=sharing

Symmetry 2021, 13, 1083 11 of 17

4.6. Implementation

The construction algorithm was implemented in Tensorflow 2 using the Keras interface
with a number of custom layers. Custom layers were required in particular to handle border
symmetry/anti-symmetry correctly for exact reconstruction of the downsampled wavelet
filters. The ADMM implementation was adapted from the OneNet implementation [31].
The system was first implemented using Google Colab for development and collaboration,
then exported to a Python script for running on our GPU server, a 32-core system with
48 Gb of system RAM, 2 GP100GL graphics cards, each with 16 Gb of VRAM.

5. Example Application: Linear Inverse Problems
Integration with ADMM

ADMM is a standard method for solving linear inverse problems. The minimisa-
tion problem (Equation (2)) is split into a number of sub-problems, which are solved
iteratively i.e.,

xk+1 = argmin
x

ρ

2
||x− zk − uk||2 + λφ(x), (12)

zk+1 = argmin
z

1
2
||y− Az||2 + ρ

2
||xk+1 − z− uk||2, (13)

uk+1 = uk + zk+1 − xk+1. (14)

The approach to solving Equation (12), involves the constraint φ(x), which is usually
taken to be a constraint intended to encourage sparsity of x in some suitable domain, often
taken as minimisation of the L1 norm in that domain i.e.,

x′k+1 = argmin
x′

ρ

2
||x′ − z′k − u′k||2 + λ|x′|1, (15)

where primes denote the change to a suitable domain, typically a wavelet domain. The
solution to the above minimisation is the proximal function for the L1 norm, which is found
by applying the soft-thresholding operator

x ← sgn(x)max(0, |x| − ρ

λ
) (16)

to z′k + u′k. Hence the update to x is given by soft thresholding in a domain where the
signal is expected to be sparse. In this work we use our PCWN as the sparse domain, as
described in the preceding section. Equation (13) can be solved directly:

zk+1 = (At A + ρI)−1(Aty + ρ(xk+1 − uk)
)
. (17)

For problems such as inpainting (pixelwise, scattered, or blockwise), matrix A is
a diagonal masking matrix containing 0 for missing data or 1 for included data. For
super-resolution Equation (17), A is taken to be a non-overlapping blockwise averaging
matrix. For compressive sensing, matrix A is a random matrix of size m× d for images
size d (d = pixels× channels) where we use m

d = 0.1. In this work we follow [12] and use
conjugate gradient solvers for simplicity for all problems. In each iteration, the solver is
“warm started” with the solution from the previous iteration and usually converges quickly.

In previous work, such as OneNet [12], the solution was initialised with the least-
squares solution to:

x0 = arg minx||Ax− y||2. (18)

In this work, we experiment with an alternative initialisation, using the mean image
learnt from the training set as the starting point. The reasoning being that where there is
missing data, particularly structured data such as faces, the mean may provide a better
approximation than the least-squares solution. This change seems to benefit face images,
where the mean is an average, blurry face, but is less helpful with more highly varied

Symmetry 2021, 13, 1083 12 of 17

datasets, such as ImageNet, where the mean is essentially just a grey image. That said, the
solution should converge to the solution independently of the initialisation [32], although
better initialisation leads to reaching the optimal value more quickly and so prevents the
optimisation stopping before the minimum is reached.

6. Experiments

We evaluated our method against a number of existing general purpose solutions,
namely the original OneNet solution [12], the more recent Differential Unrolled ADMM
(DU-ADMM) version of OneNet [15] and the general purpose wavelet based method [32].

For face images we trained and tested our method on the Labelled Faces in the Wild
(LFW) dataset [33], testing on 300 images, 200 images were reserved for tuning (unused)
and the remaining 12,733 images were used for training. The images had the central 50%
square (containing the face) cropped and were then downsampled to 64× 64. We used
100 iterations for all methods. For blockwise and scattered inpainting, and super-resolution
we used λ = 0.1 and ρ = 0.0005. For pixelwise inpaint denoising with 10% noise we used
λ = 0.6 and ρ = 0.003. For compressive sensing we used λ = 0.1 and ρ = 0.005.

We compared our results with those of the other methods presented in [15]. For these
results the systems were trained on images of 73,678 people and tested on 500 random
images from the MS-Celebs-1M dataset. We elected not to use the MS-celeb-1M dataset
due to ethical concerns around privacy, which led to the datasets’ website being with-
drawn [34]. Although we train and test on different image sets, we believe the results are
comparable because:

• The face images used previously for testing and training were a random subset of
the dataset, so even if we used the same dataset they wouldn’t necessarily be the
same images.

• They are both celebrity face images, of the same resolution, scraped off the web, so
should be comparable.

• Deep learning usually benefits from using more data (to avoid overfitting), so arguably
we are setting ourselves a harder task or, alternatively, demonstrating that our method
is more resistant to overfitting.

We also test our method on images in the ImageNet 2012 dataset downsized to
64× 64 pixels [35]. We train our model on the full training set and test on 3000 images.
We compare with the results published in [12] (for CS) and [15] (for BI, SI, PID, and
SR). Although we use the same dataset as those authors, again there is some uncertainty
about the specific test images used, so the results should be taken as indicative of the
general performance. For blockwise and scattered inpainting, and super-resolution we
used λ = 0.1 and ρ = 0.002. For pixelwise inpaint denoising with 10% noise we used
λ = 0.3 and ρ = 0.004. For compressive sensing we used λ = 0.1 and ρ = 0.004.

Results

The quantitative results on face images are presented in Table 3 and examples are
shown in Figures 7 and 8. We follow previous authors and use the Peak Signal-to-Noise
Ratio (PSNR) to assess our results. PSNR is defined as:

PSNR = 20 log10

(
MAX
RMS

)
where RMS is the root mean squared error and MAX is the maximum intensity in each
channel (usually 255 in images, or 1.0 in intensity normalised images). We report the mean
and standard deviation PSNR across the test images to allow meaningful comparison
between methods. Our method performs best on the super-resolution task, and better than
or equivalent to the original OneNet on Blockwise Inpainting (BI) and Pixelwise Inpaint
Denoising (PID) problem, but slightly worse than DU-ADMM. For compressive sensing
(CS), quantitative results on face images were not presented previously for face images.

Symmetry 2021, 13, 1083 13 of 17

Figure 7. Example results from our network on the blockwise (BI), scattered (SI) and pixelwise
denoise (PID) inpainting problems after 100 iterations. Columns from left to right: original image, BI
input, BI output, SI input, SI output, PID input and PID output. The figures show the Peak Signal to
Noise Ratio (PSNR) of the output image.

Figure 8. Example results from our network on the compressive sensing (CS) and super resolution
(SR) problems on Labelled Faces in the Wild images after 100 iterations. Columns from left to right:
original image, CS output, SR input, SR output. The figures show the PSNR of the output image.

Symmetry 2021, 13, 1083 14 of 17

Table 3. The results of our method compared to other methods on face images, including GAN based
approaches (DU-ADMM and OneNet) for Blockwise Inpainting (BI), Super Resolution (SR), Pixelwise
Inpainting Denoising (PID), Compressive Sensing (CS) and Scattered Inpainting (SI). Figures show
the mean and standard deviation Peak Signal to Noise Ration (PSNR) across the test set.

Method BI SR PID CS SI

DU-ADMM 28.59± 2.3 28.19± 3.1 26.87± 1.2 - 30.66± 1.9
OneNet 24.4± 2.4 27.15± 1.9 25.39± 1.6 - 25.23± 2.4
Wavelet 17.70± 1.9 28.66± 1.7 20.81± 1.0 - 28.60± 2.4
Ours 27.7± 2.3 29.98± 2.2 25.32± 0.9 23.6± 1.9 29.60± 2.3

For ImageNet images, we trained our model on the entire training set of 1.2 M images
and tested on a separate set of 3000 random images from the validation partition. The
quantitative results are presented in Table 4. Example qualitative results for the inpainting
problems (blockwise inpaint (BI), scattered inpaint (SI) and pixelwise inpaint denoising
(PID)) are shown in Figure 9 and for compressive sensing (CS) and super resolution (SR)
are shown in Figure 10.

Table 4. The results of our method compared to other methods on ImageNet, including GAN based
approaches (DU-ADMM and OneNet) for Blockwise Inpainting (BI), Super Resolution (SR), Pixelwise
Inpainting Denoising (PID), Compressive Sensing (CS) and Scattered Inpainting (SI). Figures show
the mean and standard deviation Peak Signal to Noise Ration (PSNR) across the test set.

Method BI SR PID CS SI

DU-ADMM 26.59± 3.0 26.38± 2.5 24.91± 1.8 - 27.92± 2.5
OneNet 22.25± 2.9 26.11± 3.0 25.44± 1.8 27.34± 5.2 22.85± 2.6
Wavelet 19.33± 2.9 26.70± 2.4 20.18± 1.5 13.79± 3.7 27.65± 2.8
Ours 26.09± 2.3 23.1± 2.9 27.87± 2.8 25.73± 2.0 28.04± 2.3

Figure 9. Example ImageNet results from our network on the blockwise (BI), scattered (SI) and
pixelwise denoise (PID) inpainting problems after 100 iterations. Columns from left to right: original
image, BI input, BI output, SI input, SI output, PID input and PID output. The figures show the
PSNR of the output image.

Symmetry 2021, 13, 1083 15 of 17

Figure 10. Example ImageNet results from our network on the compressive sensing CS problem
(300 iterations) and super resolution SR problem (100 iterations). Columns from left to right: original
image, CS output, SR input, SR output. The figures show the PSNR of the output image.

7. Conclusions and Future Work

In this paper we have proposed Principal Component Wavelet Networks (PCWN)
based on a set of specified wavelet functions and combined with PCA to learn 1× 1 con-
volution filters for data reduction. We have shown that the resulting decomposition is
identical in structure to standard CNNs and permits the option to incorporate nonlinear ac-
tivation functions. The resulting decomposition is deterministic and based on well studied
mathematical models and techniques including wavelet analysis and PCA, making it more
amenable to mathematical analysis. We have also shown how to perform (approximate)
reconstruction in order to form an easy to learn auto-encoder. We have demonstrated
the potential of the proposed technique by using it to solve linear inverse problems. Our
experimental results show improved or equivalent performance to the original general
purpose OneNet system on many of the example problems. The main advantages of the
proposed technique are a fast, simple and deterministic learning algorithm, (as opposed
to adversarial learning algorithms that are known to be challenging to train) and, with
PCA being based on a Gaussian model, is not prone to overfitting as exhibited in the
OneNet method, particularly in Blockwise Inpainting, as shown in Figure 1. Disadvantages
include slower convergence of the ADMM method and lower quality results on some
of the problems presented. Future work will include evaluating the proposed decom-
position technique for other problems, and improving the linear inverse solving system.
A significant issue with the current system is selecting suitable parameters to obtain good
results on a particular problem/image set combination. We will investigate methods for
learning good parameters from the training data. As with CNNs, there are an infinite
variety of architectures, including layers, strides, activation functions etc. which can be
varied for different problems. Here we only use a simple pyramidal architecture and
linear activation functions. We plan to investigate alternatives for both the linear inverse
problems and other common vision and image processing problems in future work. As an

Symmetry 2021, 13, 1083 16 of 17

encoder-decoder network, it also has potential for application to other common problems
such as colorization e.g., [36], classification e.g., for remote sensing [37]. As the model is
based on a well studied statistical model, it may be amenable to other techniques such
as detecting/avoiding outliers [38] or extreme values [39] which may make the systems
more robust.

Author Contributions: Software: B.T. and M.G.; methodology: B.T.; manuscript preparation: B.T.
and M.G.; experiments: B.T. and M.G. proof reading: B.T. and M.G. All authors have read and agreed
to the published version of the manuscript.

Funding: M.G. is funded by an Aberystwyth University PhD Scholarship.

Data Availability Statement: The data used is in the public domain. The code has been made
available from https://github.com/bptiddeman/PCWN.git or as a Google Colab demo https://
colab.research.google.com/drive/1bRji-34Icy8serMzxZ0r-S2FqVOfgw2-?usp=sharing (accessed on
17 February 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [CrossRef]
2. Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E.P. Image denoising using scale mixtures of Gaussians in the wavelet domain.

IEEE Trans. Image Process. 2003, 12, 1338–1351. [CrossRef]
3. Mairal, J.; Sapiro, G.; Elad, M. Learning multiscale sparse representations for image and video restoration. Multiscale Model.

Simul. 2008, 7, 214–241. [CrossRef]
4. Chan, T.F.; Shen, J.; Zhou, H.M. Total variation wavelet inpainting. J. Math. Imaging Vis. 2006, 25, 107–125. [CrossRef]
5. Dong, W.; Zhang, L.; Shi, G.; Wu, X. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive

regularization. IEEE Trans. Image Process. 2011, 20, 1838–1857. [CrossRef]
6. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544.
7. Mousavi, A.; Baraniuk, R.G. Learning to invert: Signal recovery via deep convolutional networks. In Proceedings of the 2017

IEEE international conference on acoustics, speech and signal processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017;
pp. 2272–2276.

8. Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. Reconnet: Non-iterative reconstruction of images from compressively
sensed measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 449–458.

9. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

10. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany,
2014; pp. 184–199.

11. Xu, L.; Ren, J.S.; Liu, C.; Jia, J. Deep convolutional neural network for image deconvolution. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 1790–1798.

12. Rick Chang, J.; Li, C.L.; Poczos, B.; Vijaya Kumar, B.; Sankaranarayanan, A.C. One Network to Solve Them All–Solving Linear
Inverse Problems Using Deep Projection Models. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 5888–5897.

13. Lucic, M.; Kurach, K.; Michalski, M.; Bousquet, O.; Gelly, S. Are GANs Created Equal? A Large-Scale Study. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems (NIPS’18), Montreal, QC, Canada, 3–8 December
2018; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 698–707.

14. Arjovsky, M.; Bottou, L. Towards Principled Methods for Training Generative Adversarial Networks. In Proceedings of the 5th
International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

15. Milacski, Z.A.; Póczos, B.; Lorincz, A. Differentiable Unrolled Alternating Direction Method of Multipliers for OneNet. In
Proceedings of the British Machine Vision Conference, Cardiff, UK, 9–12 September 2019.

16. Raj, A.; Li, Y.; Bresler, Y. GAN-Based Projector for Faster Recovery With Convergence Guarantees in Linear Inverse Problems. In
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November
2019; pp. 5601–5610.

17. Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 1–832.
18. Freeman, W.T.; Adelson, E.H. The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 891–906.

[CrossRef]

https://github.com/bptiddeman/PCWN.git
https://colab.research.google.com/drive/1bRji-34Icy8serMzxZ0r-S2FqVOfgw2-?usp=sharing
https://colab.research.google.com/drive/1bRji-34Icy8serMzxZ0r-S2FqVOfgw2-?usp=sharing
http://doi.org/10.1109/18.382009
http://dx.doi.org/10.1109/TIP.2003.818640
http://dx.doi.org/10.1137/070697653
http://dx.doi.org/10.1007/s10851-006-5257-3
http://dx.doi.org/10.1109/TIP.2011.2108306
http://dx.doi.org/10.1109/34.93808

Symmetry 2021, 13, 1083 17 of 17

19. Kingsbury, N. Complex wavelets for shift invariant analysis and filtering of signals. J. Appl. Comput. Harmon. Anal. 2001,
10, 234–253. [CrossRef]

20. Selesnick, I.W.; Baraniuk, R.G.; Kingsbury, N.C. The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 2005,
22, 123–151. [CrossRef]

21. Selesnick, I.W. The double-density dual-tree DWT. IEEE Trans. Signal Process. 2004, 52, 1304–1314. [CrossRef]
22. Kingma, D.P.; Dhariwal, P. Glow: Generative flow with invertible 1x1 convolutions. In Proceedings of the Advances in Neural

Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 10215–10224.
23. Bruna, J.; Mallat, S. Invariant Scattering Convolution Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1872–1886.

[CrossRef]
24. Oyallon, E.; Zagoruyko, S.; Huang, G.; Komodakis, N.; Lacoste-Julien, S.; Blaschko, M.; Belilovsky, E. Scattering networks for

hybrid representation learning. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2208–2221. [CrossRef] [PubMed]
25. Angles, T.; Mallat, S. Generative networks as inverse problems with scattering transforms. arXiv 2018, arXiv:1805.06621.
26. Gupta, M.R.; Jacobson, N.P. Wavelet Principal Component Analysis and its Application to Hyperspectral Images. In Proceedings

of the 2006 International Conference on Image Processing, Las Vegas, NV, USA, 26–29 June 2006; pp. 1585–1588. [CrossRef]
27. Feng, G.C.; Yuen, P.C.; Dai, D.Q. Human face recognition using PCA on wavelet subband. J. Electron. Imaging 2000, 9, 226–233.
28. Naik, G.R.; Pendharkar, G.; Nguyen, H.T. Wavelet PCA for automatic identification of walking with and without an exoskeleton

on a treadmill using pressure and accelerometer sensors. In Proceedings of the 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1999–2002. [CrossRef]

29. Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans.
Image Process. 2015, 24, 5017–5032. [CrossRef]

30. Kong, J.; Chen, M.; Jiang, M.; Sun, J.; Hou, J. Face recognition based on CSGF (2D) 2 PCANet. IEEE Access 2018, 6, 45153–45165.
[CrossRef]

31. Rick Chang, J.; Li, C.L.; Poczos, B.; Vijaya Kumar, B.; Sankaranarayanan, A.C. OneNet Tensorflow Implementation. Available
online: https://github.com/rick-chang/OneNet/tree/master/admm (accessed on 17 February 2021).

32. Wang, Y.; Yin, W.; Zeng, J. Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput. 2019, 78, 29–63.
[CrossRef]

33. Huang, G.B.; Ramesh, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face Recognition in
Unconstrained Environments; Technical Report 07-49; University of Massachusetts: Amherst, MA, USA, 2007.

34. Harvey, A.; LaPlace, J. MegaPixels: Origins, Ethics, and Privacy Implications of Publicly Available Face Recognition Image
Datasets. 2019. Available online: https://megapixels.cc (accessed on 17 February 2021).

35. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

36. Joshi, M.R.; Nkenyereye, L.; Joshi, G.P.; Islam, S.M.R.; Abdullah-Al-Wadud, M.; Shrestha, S. Auto-Colorization of Historical
Images Using Deep Convolutional Neural Networks. Mathematics 2020, 8, 2258. [CrossRef]

37. Rajendran, G.B.; Kumarasamy, U.M.; Zarro, C.; Divakarachari, P.B.; Ullo, S.L. Land-Use and Land-Cover Classification Using a
Human Group-Based Particle Swarm Optimization Algorithm with an LSTM Classifier on Hybrid Pre-Processing Remote-Sensing
Images. Remote Sens. 2020, 12, 4135. [CrossRef]

38. Jäntschi, L. A Test Detecting the Outliers for Continuous Distributions Based on the Cumulative Distribution Function of the
Data Being Tested. Symmetry 2019, 11, 835. [CrossRef]

39. Jäntschi, L. Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions. Mathematics 2020, 8, 216.
[CrossRef]

http://dx.doi.org/10.1006/acha.2000.0343
http://dx.doi.org/10.1109/MSP.2005.1550194
http://dx.doi.org/10.1109/TSP.2004.826174
http://dx.doi.org/10.1109/TPAMI.2012.230
http://dx.doi.org/10.1109/TPAMI.2018.2855738
http://www.ncbi.nlm.nih.gov/pubmed/30028690
http://dx.doi.org/10.1109/ICIP.2006.312611
http://dx.doi.org/10.1109/EMBC.2016.7591117
http://dx.doi.org/10.1109/TIP.2015.2475625
http://dx.doi.org/10.1109/ACCESS.2018.2865425
https://github.com/rick-chang/OneNet/tree/master/admm
http://dx.doi.org/10.1007/s10915-018-0757-z
https://megapixels.cc
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.3390/math8122258
http://dx.doi.org/10.3390/rs12244135
http://dx.doi.org/10.3390/sym11060835
http://dx.doi.org/10.3390/math8020216

	Introduction
	Literature Review
	Deep Learning Based Techniques
	Image Representations

	Aims and Contributions
	Method: Decomposition, Training and Reconstruction
	Decomposition Algorithm
	Training Algorithm
	Reconstruction Algorithm
	Discussion of Architecture
	Computational Complexity
	Implementation

	Example Application: Linear Inverse Problems
	Experiments
	Conclusions and Future Work
	References

