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Abstract: There are some classes of methods for solving integral equations of the variable boundaries.
It is known that each method has its own advantages and disadvantages. By taking into account
the disadvantages of known methods, here was constructed a new method free from them. For
this, we have used multistep methods of advanced and hybrid types for the construction methods,
with the best properties of the intersection of them. We also show some connection of the methods
constructed here with the methods which are using solving of the initial-value problem for ODEs
of the first order. Some of the constructed methods have been applied to solve model problems. A
formula is proposed to determine the maximal values of the order of accuracy for the stable and
unstable methods, constructed here. Note that to construct the new methods, here we propose to
use the system of algebraic equations which allows us to construct methods with the best properties
by using the minimal volume of the computational works at each step. For the construction of
more exact methods, here we have proposed to use the multistep second derivative method, which
has comparisons with the known methods. We have constructed some formulas to determine the
maximal order of accuracy, and also determined the necessary and sufficient conditions for the
convergence of the methods constructed here. One can proved by multistep methods, which are
usually applied to solve the initial-value problem for ODE, demonstrating the applications of these
methods to solve Volterra integro-differential equations. For the illustration of the results, we have
constructed some concrete methods, and one of them has been applied to solve a model equation.

Keywords: Volterra integral equation; multistep method with constant coefficients; degree and sta-
bility; advanced multistep methods; hybrid method; multistep second derivative methods; necessary
condition for the convergency

1. Introduction

It is known that many problems of the natural sciences are reduced to the solving of
integral equations of variable boundaries, which are called integral equations of Volterra
type. Vito Volterra (proud Italian) fundamentally investigated these equations and also
reduced the mathematical models of many problems of the natural sciences to solve these
integral equations. As is known, to solve Volterra integral equations is one of the basic
directions in modern mathematics. For objectivity, let us note that scientists have met with
the need to solve integral equations with variable boundaries before Vito Volterra (see, for
example, [1–6]). Now, let us consider the following integral equation of Volterra type:

y(x) = f (x) +

β(x)∫
α(x)

K(x, s, y(s))ds, xε[x0, X]. (1)
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One of the popular Volterra integral equations can be written as:

y(x) = f (x) +
x∫

x0

K(x, s, y(s))ds, x0 ≤ s ≤ x ≤ X. (2)

This equation is taken as known, if given the functions f (x) and K(x, s, z).
Suppose that the given functions f (x) and K(x, s, z) are sufficiently smooth and

Equation (2) has the unique solution y(x), which is defined on the segment [x0, X]. It
follows that the solution y(x) is also a sufficiently smooth function. For the construction
of numerical methods to solve Equation (2), let us divide the segment [x0, X] to N equal
parts by using nodes xi+1 = xi + h (i = 0, 1, . . . , N). Here, 0 < h is the step size.

As is known, for the solving of Equation (2) there are numerous methods constructed
by different authors. There exists one-step and multistep methods constructed for the
solving of Equation (2). Let us note that some authors, for the solving of Equation (2), have
proposed to use the spline function or collocation methods (see, for example, [7–11]).

There are many works dedicated to the solving of integral equations, which have used
the quadrature methods (in [12] for the calculation of definite integrals proposed to use
the new way). Note that for solving Volterra integral equations, many authors constructed
methods which are different from the above noted (see, for example, [13–16]). It is known
that in this case the number of calculations increases when going from the current point
to the next. By taking into account this property, in [13] they have constructed a method
which is released from the indicated disadvantages. By generalization of this method,
here we have constructed more exact stable methods, which we have applied to solve
Equation (2). For the presentation of the essence of these methods, let us consider the
partial case of Equation (2) which is obtained when replacing K(x, s, y) = ϕ(s, y). In this
case Equation (2) can be written as the following:

y(x) = f (x) +
x∫

x0

ϕ( s, y(s))ds. (3)

It is not hard to understand that solving this equation is equivalent to solving the
following initial-value problem for ODEs of the first order:

y′(x) = f ′(x) + ϕ(x, y(x)), y(x0) = f (x0). (4)

It follows from here that the solution of the integral equation of (3) and the initial-value
problem (4) can be found by one and the same method. It is not the only case, when the
initial-value problem for ODEs and Volterra integral equations can be solved by one and
the same methods. To show this, let us consider the following case, when the function of
K(x, s, y) is degenerate and can be presented in the following form:

K(x, s, y) =
m

∑
j=1

aj(x)bj(s, y). (5)

By taking this in Equation (2), we receive:

y(x) = f (x) +
m

∑
j=1

aj(x)vj(x).

The function vj(x), j = 0, 1, . . . , m can be determined as the solution of the
following problem:

vj
′(x) = bj(x, y(x)), vj(x0) = 0 (j = 1, 2, . . . , m). (6)
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It is clear that by solving the system of ODEs (6), one can find the values of the function
y(x) at the nodes (mesh points) by using the solution of the system (6). Note that in this
case this system of ODEs and the integral equation of (2) can be solved by one and the
same methods. Thus, there are some domains in which the integral equation of (2) and
the initial-value problem for ODEs can be solved by one and the same methods. Here,
it is shown that this domain can be extended and the error received in this case can be
estimated (see, for example, [17–19]).

It is not difficult to prove that by using the Lagrange interpolation polynomial the
function K(x, s, y) can be presented as:

K(x, s, y) =
k

∑
j=1

lj(x)bj(s, y) + Rk(x), (7)

where lj(x) (i = 1, 2, . . . , m) are the basic Lagrange function and Rm(x) is the remain-
der term. By comparison of the equality of (5) and (7) we receive some connection
between them.

2. Construction of Multistep Methods to Solve Both Equations (2) and (4)

Let us note that the known multistep method with constant coefficients can be applied
to solve the Volterra integral equation. In the result of which, one can constructed by the
following method (see, for example, [17–19]):

k

∑
i=0

αiyn+i =
k

∑
i=0

αi fn+i + h
k

∑
i=0

k

∑
j=i

β
(j)
i K

(
xn+j, xn+i, yn+i

)
. (8)

For the construction methods with the improved properties, here we have used the
generalization of the multistep methods, which can be written as the following (see, for
example, [20–28]):

m

∑
i=0

αiyn+i = h
k

∑
i=0

βiy′n+i (n = 0, 1, . . . , N − l; l = max(m, k)). (9)

For the value m ≥ k from the method of (9), it follows the known multistep methods,
but for the value m < k it follows advanced methods (formally), but in reality these
methods do not depend on each other. Therefore, each of them is an independent object
of investigation. The stable advanced method is more accurate (p ≤ k + l + 1, for k ≥ 3l,
and m = k− l, here, p is the degree and k is the order of finite-difference method (9)) (see,
for example, [23,24]). Let us note that by Dahlquist’s laws, there exists stable methods
of type (8) which have the degree pmax = 2[k/2] + 2. Here, we use the conceptions of
the stability, degree, and order, defined by Dahlquist (see, for example, [21–28]). By the
above-described way, we find that the stable methods of the advanced type are more exact
than the stable multistep methods. However, unstable multistep methods are more exact
than the advanced method. Namely, p ≤ 2k for method (8) and p ≤ 2k− l for method (9).

Advanced methods have been constructed by Kouella for the calculation of the return
of Holliley’s comet. Note that some advanced concrete methods have been constructed
by known scientists such as Laplace, Steklov, etc. However, all stable advanced methods
constructed by different specialists had the degree p ≤ 2[k/2] + 2. That is, they obeyed
the law of Dahlquist. The advantages and disadvantages of advanced methods have been
shown in [23,24], and for the correction of some of the disadvantages of the advanced
method there have been constructed special predictor–corrector methods (see, for exam-
ple, [29]). Note that if m > k in this case method (9) will be explicit and the maximal value
for stable explicit methods can be found by the formula p ≤ m. Thus, it is proven that
stable advanced methods are more exact than the explicit and implicit methods of type (9).
Now, let us investigate these methods by using their other properties.
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If method (9) is applied to solve the problem (4), then we receive:

m

∑
i=0

αi(yn+i − fn+i) = h
k

∑
i=0

βi ϕn+i. (10)

where fm = f (xm), ϕm = ϕ(xm, ym), and αj, βi (j = 0, 1, . . . , m; i = 0, 1, . . . , k) are the
coefficients of method (10) or (9).

Let us input m = k. In this case, for the value αk 6= 0, we receive the implicit method if
βk 6= 0. If we compare these methods, then we find that the explicit (βk = 0) methods can
be applied to solve some problems. However, in the application of implicit methods arises
some difficulties for elimination, of which here it is proposed to use the predictor–corrector
methods. Now, let us consider the application of the advanced methods. For this, we have
k = m + l and αk−l 6= 0. In this case, method (10) can be written as:

m

∑
i=0

αi(yn+i − fn+i) = h
m−1

∑
i=0

βi ϕn+i + h
m+l

∑
i=m

βi ϕn+i. (11)

In the application of this method arises some difficulties related to the calculation of
the second part, which is located on the right hand side of the equality of (11).

It is evident that for the calculation of the second sum on the right hand side of
equality (11), we need to define the values yn+m, yn+m+1, . . . , yn+m+l . This difficulty can
be solved by using some methods for the calculation of values yn+m+j (0 ≤ j ≤ l). For
this aim, one can use the predictor–corrector methods. Let us note that if method (11) is
implicit, then it will take place that l = 0. In this case, one can also use predictor–corrector
methods (see [29]). For the sake of objectivity, let us note that for using method (11), one
can use the same predictor–corrector method in both the cases l = 0 and l 6= 0. Therefore,
in the using of method (11), additional difficulties do not arise for the case l > 0.

Let us note that method (10) can be applied to the solving of Equation (2), from the
results of which one can receive the following:

m

∑
i=0

αi(yn+i − fn+i) = h
k

∑
i=0

k

∑
j=i

β
(j)
i K

(
xn+j, xn+i, yn+i

)
. (12)

It is clear that this method can be written as method (11), and in the application of
them to solve some problems can be used in the above-described way. Therefore, let us
consider the determination of the values of the coefficients αi, β

(j)
i (i, j = 0, 1, . . . , k), as

the basic properties of the multistep methods depend on the values of their coefficients. For
this aim let us suppose that by any methods we have found the values of the coefficients
αi, β

(j)
i (i, j = 0, 1, . . . , k), by the choosing of which method (12) can have the degree of p.

The conception of degree can be defined by the following way:

Definition 1. The integer p is called the degree for method (12), if the following holds:
m

∑
i=0

αi(y(xn+i)− f (xn+i)) = h
k

∑
i=0

k

∑
j=i

β
(j)
i K

(
xn+j, xn+i, y(xn+i)

)
+ O

(
hp+1

)
, h→ 0. (13)

where y(xm) is the exact value of the solution of the problem (2) at the point xm (m ≥ 0).

By the above-described way we have constructed methods (8) and (12) to solve the
Volterra integral equation of the second kind, presented by the equation of (2). It is known
that both theoretical and practical interests are stable methods with a high order of accuracy.
Therefore, let us define the maximum values of the degree for the methods (8) and (12).
For this, let us consider the following theorem:
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Theorem 1. If the methods (8) and (12) have the degree of p and p1, respectively, then 1 ≤ p ≤ 2k
and 1 ≤ p1 ≤ k + m.

If methods (8) and (12) are stable, then the following holds:

1 ≤ p ≤ 2[k/2] + 2, 1 ≤ p1 ≤ k + l + 1 (if m = k− l and k ≥ 3l).

Proof. It is obvious that the theorem also holds in the case K(x, s, y) = ϕ(s, y). In this case,
methods (8) and (12) will match with method (9) (and in the case m = k). By Dahlquist’s
rule we find that p1 ≤ k + m, and the method with the degree pmax = m + k (and also
for the case m = k) is unique. If these methods are stable, then there are methods with
the degree:

p ≤ 2[k/2] + 2, p1 ≤ k + l + 1,

for all the values of K. �

Generally speaking, there is no uniqueness for the methods of type (8) and (12) from
the corresponding conditions (see [20,23]).

From here we find that the local truncation error for this method can be presented
as O

(
hp+1). It is not difficult to understand that the equality of (13) will also hold in the

case when K(x, s, y) = ϕ(s, y). In this case we find that the integral equation of (2) will
be same with the equation of (3) (see, for example, [1,30–34]). By the above-described
way we have proved that the solution of the integral equation of (3) coincides with the
solution of the initial-value problem for ODEs of the first order, which have been written
as the problem of (4). It follows that to the solving of the Equation (3) can been applied the
methods constructed for solving the initial-value problem for ODEs. Taking into account
that in the method of (12) one can replace the function of K(x, s, y) with the function of
ϕ(s, y), then we find that in this case from method (12) one can receive the following:

m

∑
i=0

αiyn+i =
m

∑
i=0

αi fn+i + h
k

∑
i=0

k

∑
j=i

β
(j)
i ϕ(xn+i, yn+i). (14)

If in the method of (14) we use the next replacement:

k

∑
j=i

β
(j)
i = βi (i = 0, 1, . . . , k), (15)

then the receiving method will be same as method (10).
If we assume that the coefficients βi (0 ≤ i ≤ k) are known, then it follows that

(15) is the system of linear algebraic equations. Note that the solution of this system
is not unique. Generally speaking, finding the solution of system (15) is not difficult.
As seen from here, the value of the degree p is independent from the coefficients of
β
(j)
i (i, j = 0, 1, . . . , k). Let us prove that the value of p depends on the values of the coef-

ficients of αi, βi (i = 0, 1, . . . , k). To illustrate this, here we propose to use the following
Taylor series:

y(x + ih) = y(x) + ihy′(x) +
(ih)2

2!
y′′ (x) + · · ·+ (ih)p

p!
yp(x) + O

(
hp+1

)
, (16)

y′(x + ih) = y′(x) + ihy′′ (x) +
(ih)2

2!
y′′′ (x) + · · ·+ (ih)p−1

(p− 1)!
yp(x) + O(hp). (17)
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By taking into account these series in (14), we receive the following:

m
∑

i=0
αi(y(x + ih)− f (x + ih))− h

k
∑

i=0
βi ϕ(x + ih) =

m
∑

i=0
αi((y(x)− f (x) + h(

m
∑

i=0
iαi −

k
∑

i=0
βi)(y(x)− f (x))′

+h2
(

m
∑

i=0

i2
2! αi −

k
∑

i=0
βi

)
(y(x)− f (x))′′ + · · ·+ h

(
m
∑

i=0

i2
2! αi −

k
∑

i=0

ip−1

(p−1)! βi

)
(y(x)− f (x))p

+O(hp+1) = 0

(18)

where x = x0 + nh is a fixed point and (y(x)− f (x))(j) = ϕj(x, y)(j = 0, 1, . . . , p)
(it follows from here the equality which is similar to Equation (4)).

Suppose that the following equalities hold:

m

∑
i=0

αi = 0;
k

∑
i=0

βi =
m

∑
i=0

iαi;
k

∑
i=0

iβi =
m

∑
i=0

i2

2!
αi, . . . ,

k

∑
i=0

ip−1

(p− 1)!
βi =

m

∑
i=0

ip

p!
αi. (19)

Then, from (18), we receive the following:

m

∑
i=0

αi(y(x + ih)− f (x + ih))− h
k

∑
i=0

βi ϕ(x + ih) = O(hp+1), h→ 0, (20)

where x = x0 + nh is a fixed point.
In this case we find that the method of (14) has the degree of p. Now, let us prove

that if the asymptotic equality of (20) holds, then the system of algebraic Equation (19) will
have a solution. It is not hard to understand that, if the asymptotic equality of (20) holds,
then we find that the following also holds:

m
∑

i=0
αi(y(x)− f (x)) + h(

m
∑

i=0
iαi −

k
∑

i=0
βi)(y′(x)− f ′(x)) + h2(

m
∑

i=0

i2
2! αi −

k
∑

i=0
iβi)(y′′ (x)− f ′′ (x)) + · · ·

+ hp(
m
∑

i=0

ip

p! αi −
k
∑

i=0

ip−1

(p−1)! βi)(y(p)(x)− f (p)(x)) = 0
(21)

Let us consider the following notation:

z(x) = y(x)− f (x).

It is known that if z(x) is a sufficiently smooth function, then z(x), z′(x), . . . , zp(x)
is the independent linear system, if z(j)0 (0 ≤ j ≤ p). If we take this into account in the
equality of (21), then from that it follows the system of (19). It follows from here that
the fulfillment of the condition (19) for the coefficients of method (14) is necessary, and
is a sufficient condition for the holding of the asymptotic equality of (20). Thus, we have
proved the following lemma:

Lemma 1. In order for the method of (14) to have a degree p, the satisfaction of its coefficients by
the system of algebraic Equation (19) is necessary and sufficient.

In the system of (19) there are k + m + 2 unknowns and p + 1 equations. Equation (19)
is a system of linear algebraic equations and in the case p + 1 = k + m + 2, the determinant
of this system is nonzero (in this case receiving the Vandermond determinant). As was
noted above, the condition αm 6= 0 must hold. By taking into account this condition, we
receive p+ 1 = k+m+ 2. It follows that p ≤ k+m. In the case m = k, from here we receive
Dahlquist’s rule, which can be written as p ≤ 2k (pmax = 2k or pmax = k + m). One can
prove that the method with the degree pmax = k + m is unique (see, for example, [33–36]).
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Comment 1. In the above-described method for the comparison of the advanced and multistep
methods, we usually use the values of the variables m and k. Note that the advanced methods can
not be received from the multistep methods. For the proving of this, let us consider the following
k-step methods:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiy′n+i. (22)

We usually suppose that αk 6= 0, which has a relation with finding the value yn+k
as the solution of the finite-difference equation of (22). From here, we find that in the
case αk = 0, the equality (22) is transferable to the other class method. As was noted, if
method (22) is stable and αk 6= 0, then p ≤ 2[k/2] + 2, and there are stable methods with
the degree pmax = 2[k/2] + 2 for all the values of the order k.

Note that here we used the following definition for the stability:

Definition 2. Method (9) is called stable if the roots of the following polynomial

ρ(λ) = αmλm + αm−1λm−1 + · · ·+ α1λ + α0

lie inside the unit circle, on the boundary of which there are no multiply roots.

Comment 2. As was noted above for method (9), the condition p ≤ k + m holds. If m = k − l
(l > 0 ) then we receive p ≤ 2k − l. However, if method (9) is stable, then p ≤ k + l + 1. It is not
hard to understand that the linear parts of the methods, which are investigated here, are the same.
Therefore, the conception of stability for them is defined in one and the same way. It follows from
here that the methods (9) and (22) are independent from each other, because these methods are the
independent objects of research.

For the construction of methods with a high order of accuracy or higher degrees, the
hybrid method is often used (see, for example, [37–43]). Therefore, let us consider the
following paragraph.

3. Construction of a Generalized Hybrid Method and Its Application

Let us remember some of the popular methods, which have been applied to solve the
problem (4). Among of them are the Euler methods (explicit and implicit) and trapezoidal
and midpoint rules. The midpoint rule differs from others in that this method uses
the calculation of variables of the type y(xn + h/2). This variable can be written in a
more general form as y(xn + νih), (|νi| < 1, i = 0, 1, 2, . . . , k). By the generalization of
the midpoint rule, one can construct the following hybrid method:

k

∑
i=0

αi(yn+i − fn+i) = h
k

∑
i=0

βi ϕn+i+νi (|νi| < 1, i = 0, 1, 2, . . . , k). (23)

In the work of [42], they constructed a hybrid method with the degree pmax = 4,
which can be received from method (23) in the case k = 1. However, from the multistep
method (22) for the case k = 1, one can receive the method with the degree pmax = 2. By
simple comparison, we find that the hybrid methods can be taken as the perspective. From
Equation (23) one can receive the midpoint rule, which can be taken as the explicit method.
It is known that this method has the degree p = 2. However, as was noted above from the
method of (22), one can receive the explicit method with the degree pmax = 1 for k = 1.
This comparison shows that the hybrid methods have some advantages over all the known
methods. Note that some hybrid methods have the extended region of stability and all the
methods investigated here are linear multistep methods; therefore, the linear part of these
methods has the same properties. It follows that the conception of stability and degree
can be defined in the same way for all linear methods. Let us note that the values of the
coefficients αi (i = 0, 1, . . . , k) can be different from the corresponding coefficients of the
other methods.
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Now, let us define the values of the coefficients αi, βi, νi(i = 0, 1, . . . , k). To this end,
let us use the following Taylor series:

y′(x + lih) = y′(x) + lihy′′ (x) +
(lih)

2

2!
y′′′ (x) + · · ·+ (lih)

p−1

(p− 1)!
yp(x) + O(hp) (24)

By taking into account Equations (16) and (24) in the method of Equation (23),
we receive:

k
∑

i=0
(αi(y(x + ih)− f (x + ih))− hβi ϕ(x + (i + vi)h, y(x + (i + vi)h))

=
k
∑

i=0
αi(y(x)− f (x)) + h

k
∑

i=0
(iαi − βi)(y′(x)− f ′(x)) + h2

k
∑

i=0
( i2

2! αi − liβi)(y′′ (x)

− f ′′ (x)) + · · ·+ hp
k
∑

i=0
( ip

p! αi −
lp−1
i

(p−1)! βi)(y(p)(x)− f (p)(x)) + O(hp+1) = 0

(25)

where x = x0 + nh is a fixed point and li = i + νi (i = 0, 1, . . . , k).
By using the discussion, which we have used in the investigation of method (9),

and taking into account the comparison of asymptotic equality (18) with asymptotic
equality (25), we receive the following system for finding the determined values of the
coefficients αi, βi, νi(i = 0, 1, . . . , k) :

k

∑
i=0

αi = 0;
k

∑
i=0

βi =
k

∑
i=0

iαi;
k

∑
i=0

(i + νi)βi =
m

∑
i=0

i2

2!
αi, . . . ,

k

∑
i=0

(i + νi)
p−1

(p− 1)!
βi =

m

∑
i=0

ip

p!
αi. (26)

This is a nonlinear system of algebraic equations. In this system there are 3k + 3
unknowns, but the amount of equations in this system is equal to p + 1. Note that this is
a nonlinear system of algebraic equations, because defining the exact solution of such a
system is not easy. By taking this into account, scientists proposed to use some numerical
methods for solving them. For this, they used Mathcard 2015. Note that by using the
approximate solution of system (26), they have constructed some methods with the degree
of p. The application of some of them to solving model problems has shown that in reality,
the received results correspond to the results received by the methods with a degree less
than p. Therefore, finding a private solution of system (26) is very important. Let us note
that these results correspond to the theoretical.

The system of (26) to remember the nonlinear system of algebraic equations is used
for finding the coefficients of the Gauss method. Therefore, some solutions of this system
will be also solutions of the corresponding Gauss system which is used for finding Gauss
nodes and coefficients (see, for example, [43–49]).

To solve system (26) is more simple than the corresponding Gauss system, and usually
by the solution of (26) one can construct hybrid methods which are different from Gauss
methods. By taking into account these properties, here we have proposed to construct
stable methods with high degrees. For this, let us consider the following method:

k

∑
i=0

αiyn+i =
k

∑
i=0

αi fn+i + h
k

∑
i=0

βi ϕn+i + h
k

∑
i=0

γi ϕn+i+νi . (27)

One can consider this method as the linear combination of methods (10) and (23). It is
easy to prove that the system of algebraic equations which has been constructed for finding
the coefficients of method (27) can be constructed as the linear combination of systems
(26) and (19), respectively. By the generalization of the system (26) or (19), we receive the
following system of algebraic equations:

k
∑

i=0
αi = 0;

k
∑

i=0
(βi + γi) =

k
∑

i=0
iαi;

k
∑

i=0
(iβi + liγi) =

m
∑

i=0

i2
2! αi, . . . ,

k
∑

i=0

(
(i)p−1

(p−1)! βi +
lp−1
i

(p−1)! γi

)
=

m
∑

i=0

ip

p! αi, (li = i + νi, 0 ≤ i ≤ k).
(28)
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By taking into account the series (16), (17), and (24) in the equality of (27), one can
receive the system of (28), in the case when the method will have the degree of p. Now, let
us investigate the solvability of the system (28).

As was noted above, the system (28) is nonlinear, therefore to find the exact solution of
that is perhaps not always possible. Hence, let us consider an investigation of the system of
(28). In this system participates 4k + 4 unknowns and p + 1 nonlinear algebraic equations.
Let us consider the case p + 1 ≤ 4k + 4. Note that without breaking the generality one can
take αk = 1. By taking this into account, let us investigate the system of (28) for p ≤ 4k + 2.
It is clear that in the case of k = 1, there does not arise a question on the stability of the
methods of type (27). Let us in the system of (28) take k = 1. In this case, from system (28)
we receive the following (by taking into account the condition α1 = 1, we receive α0 = −1):

β0 + γ0 + β1 + γ1 = 1; β1 + l j
0γ0 + l j

1γ1 = 1/(j + 1) (1 ≤ j ≤ 5). (29)

By using the solution of system (29) one can construct the following method:

yn+1 = yn + h
(
y′n+1 + y′n

)
/12 + 5h

(
y′n+β + y′n+1−β

)
/12, β =

(
5−
√

5
)

/10. (30)

This method has the degree p = 6. Similar investigations have been given by some
authors (see, for example, [32,39–42,45]). For the application of this method to solve
Equation (2), it can be presented in the following form:

yn+1 − fn+1 = yn − fn + h(K(xn+1, xn+1, yn+1) + K(xn+1, xn, yn) + 2K(xn, xn, yn))/24
+5h

(
K
(

xn+1, xn+β, yn+β

)
+ K

(
xn+β, xn+β, yn+β

)
+ K

(
xn+1, xn+1−β, yn+1−β

)
++ K

(
xn+1−β, xn+1−β, yn+1−β

))
/24.

(31)

In the construction, method (30) has used the solution of system (29) and the solution
of system (15) by the addition of the following:

k

∑
j=1

γ
(j)
i = γi (i = 0, 1, . . . , k). (32)

By this way one can construct the following multistep hybrid method:
k
∑

i=0
αi(yn+i − fn+i) = h

k
∑

i=0

k
∑
j=i

β
(j)
i K

(
xn+j, xn+i, yn+i

)
+

+h
k
∑

i=0

k
∑
j=i

γ
(j)
i K

(
xn+i+νj , xn+i+νi , yn+i+νi

)
, (|νi| < 1; i = 0, 1, . . . , k)

(33)

by taking into account the solutions of the systems (15) and (32).
Hence, note that method (31) can be received from the method of (33) as the partial

case. The solution of systems (15) and (32) is not unique, and the order of accuracy of
method (33) is independent from the solution of mentioned systems. As was proved above,
the exactness of the methods of type (33) depends on the values of the coefficients βi, γi,
and νi (i = 0, 1, . . . , k), which can be found as the solution of system (28).

For the construction of methods of type (33), with high accuracy, let us consider the
case of k = 2.

At first, let us define the values of αi(i = 0, 1, 2) by taking into account that the con-
structed method must be stable. It is clear that in this case the roots of the following polynomial:

λ2 + α1λ + α0 = 0

must satisfy the condition of stability. Here, we have considered the following variant:

α1 = 0, α0 = −1, α2 = 1.
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In this case, by using the solution of nonlinear system (28) and taking into account the
solution of systems (15) and (32), one can construct the following method:

yi+2 = yi + h
(
9y′i+2 + 64y′i+1 + 9y′i

)
/90 + 49h

(
y′n+1+α + y′n+1−α

)
/90, α =

√
21/7. (34)

For the application of this method to solve nonlinear Volterra integral equations of
second order, that can be modified as following:

yi+2 = yi + fi+2 − fi + h(9K(xi+2, xi+2, yi+2) + 32K(xi+2, xi+1, yi+1) + 32K(xi+1, xi+1, yi+1) + 5K(xi+1, xi, yi)
+4K(xi, xi, yi))/90 + 49h(K(xn+2, xn+1+α, yn+1+α)

+K(xn+1+α, xn+1+α, yn+1+α)) + K(xn+1, xn+1−α, yn+1−α) + K(xn+1−α, xn+1−α, yn+1−α))/180
(35)

It is not difficult to prove that the method of (34) can be presented in another form,
which will be different from the formula (35). As was noted above, for the construction
of more exact methods one can use advanced (forward-jumping) methods. However,
some specialists, for the construction of more exact methods, proposed using the multistep
second derivative methods with constant coefficients. For receiving some information
about these methods, one can use the content of the following section.

4. On Some Properties of Multistep Second Derivative Methods with
Constant Coefficients

In the last sections, we have given some information about advanced methods which
have comparisons with multistep methods. Note that multistep second derivative methods
can also be the advanced type. By taking into account this property, let us consider the
following multistep second derivative methods, which are fundamentally investigated by
some authors (see, for example, [46–48]):

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiy′n+i + h2
k

∑
i=0

γiy
′′
n+i. (36)

This method, after application to the solving of problem (2), can be presented as
the following:

k

∑
i=0

αi(yn+i − fn+i) = h
k

∑
i=0

k

∑
j=i

β
(j)
i K

(
xn+j, xn+i, yn+i

)
+ h2

k

∑
i=0

k

∑
j=i

γ
(j)
i G

(
xn+j, xn+i, yn+i

)
(37)

where the function of G(x, x, y) is defined as: G(x, x, y) = d
dx K(x, s, y(s))

∣∣∣s=x.
Depending on the used way to construct method (37), the function G(x, z, y) can be
defined in another form, but the received results of which will be the same with the method
of (37). It follows to note that if in method (37) we input K(x, s, y) = ϕ(s, y), then method
(36) can be received from method (37) as the partial case.

To explain the above description, it is enough to apply methods (36) and (37) to solve
the following problem:

y′ = ϕ(x, y), y(x0) = y0, x0 ≤ x ≤ X.

In this case we receive:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βi ϕn+i + h2
k

∑
i=0

γign+i, (38)

k

∑
i=0

αiyn+i = h
k

∑
i=0

k

∑
j=i

β
(j)
i ϕn+i + h2

k

∑
i=0

k

∑
j=i

γ
(j)
i gn+i, (39)

where the function g(x, y) is defined as g(x, y) = ϕ′x(x, y) + ϕ′y(x, y)ϕ(x, y).
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It is evident that if we take

k

∑
j=i

β
(j)
i = βi;

k

∑
j=i

γ
(j)
i = γi (i = 0, 1, 2, . . . , k), (40)

then from the formula (39) follows method (38). Therefore, to define the values of the
coefficients β

(j)
i , γ

(j)
i (i, j = 0, 1, 2, . . . , k), one can use the system (40), and the sys-

tem of equations, which are independent from the determination of the coefficients
βi, γi (i = 0, 1, 2, . . . , k), participate in the formula of (36). By taking this into account, let
us consider the definitions of the values of the coefficients αi, βi, γi (i = 0, 1, 2, . . . , k). To
this end, one can use the scheme which was used in the construction of system (28). In this
case, the system of algebraic equations for finding the values of the coefficients αi, βi, γi in
one variant can be written in the following form:

k

∑
i=0

αi = 0;
k

∑
i=0

βi = iαi;
k

∑
i=0

iβi +
k

∑
i=0

γi =
m

∑
i=0

i2

2!
αi, . . . ,

k

∑
i=0

il

l!
βi +

k

∑
i=0

il−1

(l − 1)!
γi =

m

∑
i=0

il+1

(l + 1)!
αi, (l = 2, 3, . . . , p). (41)

Note that the system of (28) is nonlinear, but system (41) is linear. By taking into
account that the determinant of system (41) is nonzero, we find that if the amount of the
unknowns and of the equations are the same, then we find that system (41) has a unique
solution. Note that the amount of unknowns in system (41) is equal to 3k + 3, but the
amount of equations is equal to p + 1. It follows that if p < 3k + 1 then the system of (41)
will have any solution, but in the case p = 3k + 1, the corresponding solution of system (41)
will be unique. It follows from here that pmax = 3k + 1. Note that the degree p for method
(36) can be defined as follows (see, for example, [46–48]):

Definition 3. The integer p is called the degree for method (36) if the following holds:

k

∑
i=0

(αiy(x + ih)− hβiy′(x + ih)− h2γiy′′ (x + ih)) = O(hp+1), h→ 0. (42)

Let us note that this and definition 1 are the same.
It is not difficult to prove that if method (36) is stable then the relationship between k

and p (order and degree) can be presented as p ≤ 2k + 2, and there exists stable methods
with the degree p = 2k + 2 for all the values of k (order). For the value k = 1 we find
that the maximal value for stable and unstable methods are the same; in other words,
3k + 1 = 2k + 2 for k = 1. Note that in this case (k = 1) there are not any unstable methods,
so the one-step method satisfies the condition of stability. By simple comparison we find
that the stable methods of type (27) are more exact than the stable methods of type (39),
but application of hybrid methods of type (23) or (27) is more difficult. Note that these
difficulties are related to the calculation of the values yn+i+νi (i = 0, 1, . . . , k). It is evident
that for the calculation of these values arises the necessity to construct a special method for
calculating them. Therefore, to give some advantages of these methods are difficult.

If there exist methods for calculations of the values yn+i+νi (i = 0, 1, . . . , k), then
the methods of hybrid types will have some advantages. It is not difficult to prove that
the hybrid methods constructed by using the methods of type (38) will be more exact
than the known methods, but will have a more complex structure. As was noted above,
the system (41) is linear; therefore, the system (41) can be solved by using the known
methods. However, in the increasing the values of order k the values of the calculation
in the determination of the values of the coefficients αi, βi, γi (i = 0, 1, 2, . . . , k) also
increase. For decreasing the values of the calculation works, here we have proposed a
new way for the calculation of the values of the coefficients αi, βi, γi (i = 0, 1, 2, . . . , k)
(see [49]). To this end, we required analyticity from the solution of the considered problem.
In the work of [48], they proposed a way by which the condition of analyticity of the



Symmetry 2021, 13, 1087 12 of 23

solution could be simplified and replaced with the conditions that usually are used in
other works (see, for example, [48]). For the method to have a degree of p one can use the
following way, which is received by using the above-mentioned results:

α0 = −ρ0 + ρ1 − ρ2 + · · ·+ (−1)k−1ρk−2 + (−1)kρk−1,

αi =
k−1

∑
j=i−1

(−1)j−i+1(j + 1)j(j− 1) . . . (j− i + 2)ρj/i!; i = 1, 2, . . . , k.

β0 = δ0 − δ1 + δ2 + · · ·+ (−1)k−1δk−1 + (−1)kδk,

βi =
k

∑
j=1

(−1)j−1 j(j− 1) . . . (j− i + 1)δj/i!; i = 1, 2, . . . , k. (43)

γ0 = l0 + l1 − l2 + · · ·+ (−1)k−1lk−1 + (−1)klk,

γi =
k

∑
j=1

(−1)j−1 j(j− 1) . . . (j− i + 1)lj/i!; i = 1, 2, . . . , k.

The variables ρi, δi, li (i = 0, 1, 2, . . . , k) can be defined from the following system
of linear algebraic equations.

j

∑
i=0

ciρj−i +
j

∑
i=1

(−1)j−i+1li−1/(j− i + 1) = δj, j = 0, 1, . . . , k; ρk = 0, (44)

j+k

∑
i=j+1

ciρj+k−i +
j

∑
i=j

(−1)ili+k−1/i = 0, j = 0, 1, . . . , k;

j+2k

∑
i=j+k−1

ciρj+2k−i +
j+2k

∑
i=j+k

(−1)ilj+2k−i/i = 0; j = 1, 2, . . . , k;

3k+1

∑
i=2k+2

ciρ3k+1−i +
3k+1

∑
i=2k+1

(−1)il3k+1−i = C,

where C is the constant for the coefficient of the main leading term in the expansion of the er-
ror of method (39), but the coefficients ci (i = 0, 1, . . .) are defined by the following formula:

ci =
1
i!

1∫
0

u(u− 1) . . . (u− i + 1)du; (i = 1, 2, . . .), c0 = 1, c1 = 1/26, c2 = − 1
12

, . . .

It is easy to prove that the coefficients can be calculated by the following formula:

cm =
m

∑
i=1

(−1)i−1cm−i/(i + 1) (m ≥ 1, c0 = 1).

Note that someone may think that finding a solution to systems (43) and (44) is more
difficult than finding the solution to system (41). However, it is not. As is known, scientists
have mostly constructed stable methods, considering that they are convergent. By taking
this into account, we find that, basically, one can assume that the values of the quantities
ρi (i = 0, 1, . . . , k− 1) are known. In this case, we find that to solve the system of (44)
is simplified. As a result of which, we obtain the actual solution of one system, which is
system (43). By using this solution in the system of (42) we can compute the values of
the unknowns δj (j = 0, 1, . . . , k). By using these values one can find the values of the
coefficients αi, βi, γi (i = 0, 1, 2, . . . , k). Taking into account the solution of the systems
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(42) and (43), here we have constructed stable methods with the degree p = 8 for k = 3.
The constructed stable method with the degree p = 8 can be written as the following:

yn+3 = (yn+2 + yn+1 + yn)/3 + h
(
10, 781y′n+3 + 22, 707y′n+2 + 16, 659y′n+1 + 4285y′n

)
/27, 216

−h2(2099y′′n+3 − 7227y′′n+2 − 2853y′′n+1 − 979y′′n
)
/45, 360 + 3h9y(9)n /156, 800 + O

(
h10). (45)

Let us consider a comparison of the hybrid method of type (34) with method (45).
These methods have the degree p = 8 and are stable. Note that method (34) has the order
of k = 2, but method of (45) has the order k = 3. It follows that for using method (45) we
must know the values (yn, yn+1 and yn+2) but for using method (34) we must know two
values (yn and yn+1). For the application of method (45) it is necessary to use one explicit
method as the predictor formula. However, for the application of method (34) to solve
some problems, it needs to use two methods for the calculation of the values of the type
y(xm ± νh) (|ν| < 1). If in the method of (36) or (38) we input k = 2 then the degree for the
stable methods will hold the condition of p ≤ 6. It follows that to give some advantages of
any of these methods is difficult. Each of them has its own advantages and disadvantages.
Now let, us apply method (45) to solve a Volterra integral equation. In this case we receive
the following:

yn+3 = (yn+2 + yn+1 + yn)/3 + fn+3 − ( fn+2 + fn+1 + fn)/3 + h(10, 781K(xn+3, xn+3, yn+3)
+11, 707K(xn+3, xn+2, yn+2) + 11, 000K(xn+2, xn+2, yn+2) + 8659K(xn+2, xn+1, yn+1)

+8000K(xn+1, xn+1, yn+1) + 2185K(xn+2, xn, yn) + 2100K(xn, xn, yn)/27, 216
−h2(2099G(xn+3, xn+3, yn+3)− 7000G(xn+3, xn+2, yn+2)− 227G(xn+2, xn+2, yn+2)

−1453G(xn+2, xn+1, yn+1)− 1400G(xn+1, xn+1, yn+1)− 9006(xn+1, xn, yn)
−79G(xn, xn, yn))/45, 360

(46)

It is not easy to determine the value of yn+3 by method (46), so, as in this case, we
receive the nonlinear algebraic equation. For solving this equation, here we propose to use
the predictor–corrector methods (see, for example, [29]). To this end, one can use the stable
explicit methods as the predictor methods. In this case, the degree for this method will
satisfy the condition p ≤ 6, but method (46) has the degree p = 8. It follows that for the
construction of methods with suitable accuracy, the condition k ≥ 4 must be held. However,
one can use the suitable stable explicit method (46) as the predictor and corrector method.

It is obvious that someone can propose a way to increase the accuracy of the calculated
values yn+3, which differ from the above description. Note that similar difficulties arise in
the application of the quadrature method to solve the nonlinear Volterra integral equations.

Thus, we have shown that by using the properties of the investigated problem one can
choose a suitable method. Lately, the specialists have predominantly used hybrid methods.
Here, we have a comparison of the same numerical methods by using the conception
stability, degree, and the volume of the computational works on each step. However, some
authors, for the comparison of numerical methods, use the conception of the region of
stability. This question can be solved by taking into account the results received when
using predictor–corrector methods. Usually, the values found by the predictor–corrector
methods are used for the definition of the boundaries for the step size h > 0.

As is known, for the construction of the multistep methods are usually given the
amount of mesh points. Therefore, to find some relation between the order k and the degree
p for the investigated multistep methods is very important. It is known that one of the
important questions in the investigation of multistep methods is defining the necessary
conditions for their convergence. These conditions for method (36) and the methods which
are received from that as partial cases, for example, method (22), have been investigated
by Dahlquist (see, for example, [27]). By taking this into account, in the next section let us
define the necessary condition for the convergence of method (33), which was received by
the application of method (27) to solve Volterra integral equations.

5. The Conditions Imposed on Coefficients of Method (33)

Let us suppose that method (33) is convergence and prove that the following condi-
tions are satisfied.
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A. The coefficients αi, βi, γi, νi (i = 0, 1, . . . , k) are real numbers and αk 6= 0;
B. The characteristic polynomials:

ρ(λ) ≡
k

∑
i=0

αiλ
i; δ(λ) ≡

k

∑
i=0

βiλ
i; γ(λ) ≡

k

∑
i=0

γiλ
i;

have no common factor different from the constant;
C. The conditions P ≥ 1 and δ(1) + γ(1) 6= 0 hold.
The necessity of the condition αk 6= 0 is proved above. Therefore, condition A is

obvious. Let us consider condition B and suppose otherwise. It follows that the polynomials
have a common factor, which differs from the constant. Denote that by ϕ(λ). Then, one can
write ϕ(λ)const, and by the E, denote the shift operator. In this case, the following holds:

Eiy(x) = y(x + ih) or ∑k
i=0 αiyn+i = ∑k

i=0 αiy(x + ih) = ∑k
i=0 αiEiy(x), here

x = x0 + nh is a fixed point.
It is easy to see that one can write the following:

EjEiK(xn, xn, yn) = K
(
xn+j, xn+i, yn+i

)
= K(xn+i + (j− i)h, xn+i, yn+i) (47)

If for the fixed point x = xn + ih, passing the limit to respect the first argument, then
we receive:

lim
h→0

K(x + (j− i)h, x, y(x)) = K(x, x, y(x)).

By using this in the equality of (47) we receive:

lim
h→0

EjEiK(xn, xn, yn) = EiK(xn, xn, yn).

Hence, x = xn + ih is fixed.
If we use these properties in the following expression:

lim
h→0

k

∑
i=0

k

∑
j=i

β
(j)
i K(xn+j, xn+i, yn+i) =

k

∑
i=0

k

∑
j=i

β
(j)
i K(xn+i, xn+i, yn+i). (48)

By taking into account the systems of (15) and (32) in the equality of (48), we receive:

k

∑
i=0

k

∑
j=i

β
(j)
i K(xn+j, xn+i, yn+i) =

k

∑
i=0

βiK(xn+i, xn+i, yn+i) + O(h).

Thus, we find that method (33) can be written as:

k

∑
i=0

αi(yn+i − fn+i)− h
k

∑
i=0

βiK(xn+i, xn+i, yn+i)− h
k

∑
i=0

γiK(xn+i+νi , xn+i+νi , yn+i+νi ) = O(hr), (r > 1) (49)

From here we receive:

ρ(E)(yn − fn)− hδ(E)K(xn, xn, yn)− hγ(E)K(xn, xn, yn) = 0. (50)

By the above-described way, we prove that the finite-difference Equations (33) and (50)
are equivalents. Note that Equation (49) is homogeneous, therefore the solvability theorem
for the finite-difference Equations (33) and (50) are the same. By this assumption, we find
that the polynomials ρ(λ), δ(λ), and γ(λ) have the common factor, which is denoted by
ϕ(λ). If we use the function ϕ(λ) in the equality of (50), then we receive:

ϕ(E)(ρ1(E)(yn − fn)− hδ1(E)K(xn, xn, yn)− hγ1(E)K(xn, xn, yn)) = 0. (51)
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By using the condition ϕ(λ) 6= const, in the equality of (51) we receive the following:

ρ1(E)( yn − fn)− hδ1(E)K(xn, xn, yn)− hγ1(E)K(xn, xn, yn) = 0, (52)

where ϕ(λ)ρ1(λ) = ρ(λ); ϕ(λ)δ1(λ) = δ(λ); ϕ(λ)γ1(λ) = γ(λ).
By the simple comparison of Equations (50) and (52) we find that these equations are

equivalents. Note that the finite-difference Equation (50) has the order of k, and the order
of Equation (52) satisfies the condition k1 < k (k1- is the order of Equation (52)). It is known
that for the k1- initial values the finite-difference Equation (52) has the unique solution. It
is easy to prove that in this case the solution of the Equation (51) will be unique for the k1-
initial values (k1 < k satisfies). It is known that the finite-difference equation of the order k
has a unique solution if it must be given k- initial values (solvability theorem). Obtaining a
contradiction shows that the condition of B takes place. Now, let us prove the validity of
the condition C.

It is evident that Equation (50) can be written as:

ρ(E)(y(x)− f (x)) = O(h), (53)

where x = x0 + nh is fixed. If, here, we pass the limit for the h→ 0 , then we receive:

ρ(1) = 0, (54)

so y(x) f (x). This condition is called the necessary condition for the convergence of method
(33). By taking the equality of (50), we receive the following:

(E− 1)ρ1(E)(yn − fn)− h(δ(E) + γ(E))K(xn, xn, yn) = 0

or,
ρ1(E)(yn+1 − yn − fn+1 + fn)− h(δ(E) + γ(E))K(xn, xn, yn) = 0. (55)

By changing the meaning of variable n from zero to m and summing the received
equalities, one can find the following:

ρ1(E)(ym+1 − y0 − fm+1 + f0) = (δ(E) + γ(E))h
m

∑
l=0

K(xl , xl , yl). (56)

If, here, we pass the limit for h→ 0 , and take into account the equality of (48), then
we receive:

ρ1(1)(y(x)− y0 − f (x) + f0) = (δ(1) + γ(1))
x∫

x0

F(x, s, y(s))ds, (57)

where x = x0 + mh is a fixed point.
By the comparison of Equation (57) with Equation (2) and taking into account y(x0) =

f (x0), we receive:
ρ1(1) = δ(1) + γ(1). (58)

By using ρ(1) = 0, one can write:

ρ1(λ) =
ρ(λ)− ρ(1)

λ− 1
.

Hence, we have:

ρ1(1) = lim
λ→1

ρ(λ)− ρ(1)
λ− 1

or ρ1(1) = ρ′(1).
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By taking this into account in the equality of (58), one can write the following:

ρ′(1) = δ(1) + γ(1). (59)

By comparison of equalities (54) and (58) with the first two equations of system (28),
we receive the conditions that p ≥ 1 satisfies. Now, we prove that δ(1) + γ(1) 6= 0, and
when supposing otherwise, input δ(1) + γ(1) = 0. In this case, from Equation (59) we
receive ρ′(1) = 0. Thus, by using Equation (54) we receive ρ(1) = ρ′(1) = 0. It follows
from here that λ=1 is twice the root of the polynomial ρ(λ). Now, we prove that in this case
method (33) is not convergence. To this end, we use the following error of method (33):

εm = y(xm)− ym (m = 0, 1, 2, . . .).

Let us in the equality of (33) change the approximate values ym by its exact values.
Then, we receive:

k

∑
i=0

(αi(y(xn+i)− f (xn+i))− h
k

∑
j=i

(β
(j)
i K

(
xn+j, xn+i, y(xn+i) + γ

(j)
i K

(
xn+j+νi , xn+i+νi , y(xn+i)

))
) = Rn. (60)

where Rn- is the reminder term.
If we subtract equality (33) from (60), then we receive

k

∑
i=0

(αiεn+i − h
k

∑
j=i

(β
(j)
i L(ξn+i)εn+i + γ

(j)
i L(ξn+i))εn+i+νi ) = Rn, (61)

where

Li(ξn+i) = K′y
(

xn+j, xn+i, ξn+i
)
; Li
(
ξn+i

)
= K′y

(
xn+j+νj , xn+i+νi , ξn+i

)
,

Variable ξn+i lies between the values of yn+i and y(xn+i), but ξn+i lies between the
values of yn+i+νi and y

(
xn+i+νi

)
, respectively. The Equation (61) is the nonhomogeneous

finite-difference equation. The corresponding homogeneous equation has the following
form:

k

∑
i=0

αiεn+i = 0. (62)

Let us note that one can receive Equation (62) from Equation (61) by going to the limit
as the h→ 0 .

As is known, the general solution of a homogeneous finite-difference equation with
constant coefficients can be written as the following:

εm = c1λm
1 + c2λm

2 + · · ·+ ckλm
k
(
λi 6= λj i f i 6= j

)
, (63)

where λl(l = 0, 1, . . . , k) are the roots of the characteristic polynomial ρ(λ). If we use the
condition ρ1(1) = ρ(1) = 0, we find that λ = 1 is twice the root. In this case the solution of
Equation (62) can be presented in the following form:

εm = c1 + c2m + c3λm
3 + · · ·+ ckλm

k . (64)

As follows from here, the error of the investigated method is unbounded. Hence, if in
Equation (64) we pass the limit as the step size tends to zero, (i.e., h→ 0), then we receive
εm → ∞ . By this way, we have proved that if δ(1) + γ(1) = 0, then the method does not
converge, which contradicts the assumption. Thus, we have proved that the conditions A,
B, and C take place.

Note that Dahlquist’s results can be received from the results received here. It follows
that the results obtained here are the development of Dahlquist’s rule.
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6. Remark

By establishing the direct relation between ODE and Volterra integral equations, we
have constructed numerical methods for the solving of both Volterra integral equations
and ODE. Now, we want to illustrate that one can construct simple methods for solving
ODE and the Volterra integral equation and also Volterra integro-differential equations.
For simplicity, we input f (x) ≡ 0, and in this case we have:

y(xn+1) =

xn+1∫
x0

K(xn+1, s, y(s))ds,

or,

y(xn+1) =

xn∫
x0

K(xn+1, s, y(s)ds +

xn+1∫
xn

K(xn+1, s, y(s))ds. (65)

The first integral can be presented as the following:

xn∫
x0

K(xn+1, s, y(s))ds =
xn∫

x0

K(xn, s, y(s)ds + h
xn∫

x0

K′X(ξn, s, y(s))ds (xn < ξn < xn + h).

By taking into account that the function K(x, s, y) and its derivatives are bounded,
then for the fixed point x0 + nh, we receive:

lim
h→0

xn∫
x0

K(xn+1, s, y(s))ds =
xn∫

x0

K(xn, s, y(s))ds.

By taking this in Equation (65) for the calculation of the value yn+1 ≈ y(xn+1), we
receive the following:

yn+1 = yn +

xn+1∫
xn

K(xn+1, s, y(s))ds. (66)

From here one can obtain the following methods:

yn+1 = yn + hK(xn+1, xn+1, yn+1); yn+1 = yn + hK(xn+1, xn, yn);

yn+1 = yn + hK(xn+1, xn, yn); yn+1 = yn + h(K(xn+1, xn+1, yn+1) + K(xn+1, xn, yn))/2.

By the generalization of these methods, we receive the following known quadrature
formula:

yn+1 = yn + h
1

∑
i=0

1

∑
j=i

β
(j)
i K(xn+j, xn+i, yn+i).

For the construction of methods of hybrid type it is enough to apply the midpoint rule
to the calculation of integrals. In this case, we receive:

yn+1 = yn + hK
(

xn+1, xn+ 1
2
, yn+ 1

2

)
.

By using the exact solution of Equation (2), one can write the following:

y′(x) = K(x, x, y(x)) +
x∫

x0

K′x(x, s, y(s)ds, y(x0) = 0. (67)
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If we apply the multistep method with constant coefficients to solve the problem (67),
then we receive:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiK(xn+i, xn+i, yn+i) + h
k

∑
i=0

βi

 xn∫
x0

K′x(xn+i, s, y(s))ds +

xn+i∫
xn

K′x(xn+i, s, y(s))ds

. (68)

From this equality one can write the following:

h
k

∑
i=0

βi

xn∫
x0

K′x(xn+i, s, y(s))ds =
k

∑
i=0

αiyn+i − h
k

∑
i=0

βi(K(xn+i, xn+i, yn+i) +

xn+i∫
xn

K′x(xn+i, s, y(s))ds. (69)

The right hand side of this equality results in the application of the following method:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiy′n+i, (70)

to solve the following initial value problem:

y′(x) = K(x, x, y(x)) +
x∫

xn

K′x(x, s, y(s))ds, y(xn) = yn

By taking into account that method (70) has the degree of p, then from the equality of
(69) we find that the following holds:

h
k

∑
i=0

βi

xn∫
x0

K′x(xn+i, s, y(s))ds = O(hp+1).

Thus, we prove that if method (70) has the degree of p, then method (68) has also the
degree of p.

Let us approximate the function of K′x(xn+i, s, y(s)) in the following form:

hK′x(xn+m, s, y(s)) =
k

∑
j=0

bjK
(
xn+j, s, y(s)

)
.

By using this formula, one can write the following:

h
k

∑
i=0

βi

xn+i∫
x0

K′x(xn+i, s, y(s))ds =
k

∑
i=0

βi

xn+i∫
xn

k

∑
j=0

bjK
(
xn+j, s, y(s)

)
ds.

By using some quadrature formulas for the calculation of the definite integral, one
can write:

k

∑
i=0

βi

xn+i∫
xn

k

∑
j=i

bjK
(
xn+j, s, y(s)

)
ds = h

k

∑
i=0

k

∑
j=i

β̃(j)K(xn+j, xn+i, yn+i).

If we take this in the equality of (68), then we receive the following method:

k

∑
i=0

αiyn+i = h
k

∑
i=0

k

∑
j=i

β
(j)
i K(xn+j, xn+i, yn+i),

where β
(j)
i = βi +

k
∑
j=i

β̃(j).
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This method is the same as method (8).

7. Numerical Results

For the illustration of receiving theoretical results, let us consider the following model:

y(x) = 1 + λ

x∫
0

y(s)ds, (71)

the exact solution for which can be presented as y(x) = exp(λx), where λ = const.
This example well describes the behavior properties of the errors received in the

application of the method which we used to solve Equation (2). Note that this integral
equation has a direct relation with the following problem:

y′ = λy, y(0) = 1,

describing the behavior of the solution in the following problem:

y′ = f (x, y), y(x0) = y0,

which was fundamentally investigated by Dahlquist. Example (71) has been solved by
using the methods (31), (34), and the following:

yn+1 = yn + h(y′n+α+y′n+1−α)/2, α =
1
2
−
√

3/6. (72)

Results are tabulated in Table 1.

Table 1. The results received for the case h = 0.05 and λ = 1, 5, 10.

x

λ = 1 λ = 5 λ = 10 λ = 15

Method 34 Method 72 Method
34

Method
72

Method
34

Method
72

Method
34

Method
72

0.1 5.2 × 10−12 5.0 × 10−9 2.4 × 10−8 4.1 × 10−6 1.2 × 10−6 1.0 × 10−4 1.4 × 10−5 8.4 × 10−4

0.4 3.0 × 10−11 2.5 × 10−8 4.6 × 10−7 7.4 × 10−5 1.1 × 10−4 8.4 × 10−3 5.7 × 10−3 3.0 × 10−1

0.7 7.3 × 10−11 6.0 × 10−8 3.6 × 10−6 5.8 × 10−4 3.7 × 10−3 3.0 × 10−1 9.1 × 10−1 4.8 × 101

1.0 1.4 × 10−10 1.1 × 10−7 2.3 × 10−5 3.7 × 10−3 1.0 × 10−1 8.5 × 100 1.1 × 102 6.1 × 103

In Tables 1–5 we have tabulated the results received by the application of methods (34)
and (72) to solve example (71) for the different values of step size h > 0 and parameter λ.

Table 2. The results received for the case h = 0.05 and λ = −1, −5, −10.

x
λ = 1 λ = 5 λ = 10

Method 34 Method 72 Method 34 Method 72 Method 34 Method 72

0.1 1.9 × 10−9 5.5 × 10−7 7.9 × 10−6 4.4 × 10−4 3.5 × 10−4 1.0 × 10−2

0.4 1.7 × 10−8 3.0 × 10−6 2.3 × 10−4 8.0 × 10−3 4.7 × 10−2 7.6 × 10−1

0.7 4.2 × 10−8 7.1 × 10−6 1.9 × 10−3 6.1 × 10−2 1.7 × 100 2.7 × 101

1.0 8.3 × 10−8 1.4 × 10−5 1.2 × 10−2 4.0 × 10−1 5.1 × 101 7.6 × 102



Symmetry 2021, 13, 1087 20 of 23

Table 3. The results received for the case h = 0.01 and m = 1, 5, 10, 15.

x
λ = −1 λ = −5 λ = −10

Method 34 Method 72 Method 34 Method 72 Method 34 Method 72

0.1 1.7 × 10−9 5.0 × 10−7 9.1 × 10−5 2.9 × 10−3 5.1 × 10−4 1.0 × 10−2

0.4 8.0 × 10−9 1.5 × 10−6 2.8 × 10−5 5.6 × 10−4 3.1 × 10−5 4.4 × 10−4

0.7 1.1 × 10−8 1.9 × 10−6 2.5 × 10−6 4.9 × 10−5 6.4 × 10−7 8.0 × 10−6

1.0 1.2 × 10−8 2.0 × 10−6 1.8 × 10−7 3.4 × 10−6 1.0 × 10−8 1.2 × 10−7

Table 4. The results received for the case h = 0.01 and λ = −1, −5, −10, −15.

x
λ = −1 λ = −5 λ = −10 λ = −15

Method
34

Method
72

Method
34

Method
72

Method
34

Method
72

Method
34

Method
72

0.1 4.3 × 10−12 3.8 × 10−9 9.3 × 10−9 1.6 × 10−6 1.9 × 10−7 1.7 × 10−5 8.8 × 10−7 5.3 × 10−5

0.4 1.4 × 10−11 1.1 × 10−8 8.9 × 10−9 1.5 × 10−6 4.0 × 10−8 3.3 × 10−6 4.2 × 10−8 2.4 × 10−6

0.7 1.9 × 10−11 1.5 × 10−8 3.5 × 10−9 5.7 × 10−7 3.5 × 10−9 2.9 × 10−7 8.2 × 10−10 4.6 × 10−8

1.0 2.0 × 10−11 1.5 × 10−8 1.1 × 10−9 1.8 × 10−7 2.5 × 10−10 2.0 × 10−8 1.3 × 10−11 7.3 × 10−10

Table 5. The results received for the case h = 0.01 and λ = ±1, ±5, ±10, ±15.

x m = 1 m = 5 m = 10 m = 15 m = −1 m = −5 m = −10 m = −15

0.1 1.4 × 10−8 1.2 × 10−5 3.1 × 10−4 2.5 × 10−3 1.1 × 10−8 5.0 × 10−6 5.0 × 10−5 1.6 × 10−4

0.4 7.4 × 10−8 2.2 × 10−4 2.5 × 10−2 8.9 × 10−1 3.4 × 10−8 4.4 × 10−6 1.0 × 10−5 7.2 × 10−6

0.7 1.7 × 10−7 1.7 × 10−3 8.7 × 10−1 1.4 × 102 4.4 × 10−8 1.7 × 10−6 8.8 × 10−7 1.4 × 10−7

1.0 3.4 × 10−7 1.1 × 10−2 2.5 × 101 1.8 × 104 4.6 × 10−8 5.5 × 10−7 6.2 × 10−8 2.2 × 10−9

By the simple comparison of the received results one can argue that obtaining results
is justified. Note that the results received for the negative m (m < 0) are better than the
received results for the positive (m > 0). It follows from the fact that the exact values of
the solution will be sufficiently small for large values of the quantity of |m| (m < 0).

According to the results in Tables 1–4, we find that the results obtained by us-
ing method (34) are better. It is naturally because method (34) is more accurate than
method (72), having the degree p = 4. Note that these methods have the hybrid type. Now,
let us compare the results obtained by the hybrid and advanced methods. For this purpose,
let us solve example (71) by the application of the following method, which is received
from method (10), having the degree p = 3 :

yn+1 = yn + h
(
8y′n+1 + 5y′n − y′n+2

)
/12 (73)

Results for this method are tabulated in Table 5.
The results received by method (73) can be taken as better, which is explained by the

fact that in method (73) the information about the solution at the previous and the next
points is used.

8. Conclusions

Here, we have considered the comparison of some numerical methods, which have
been applied to solve Volterra integral equations. To this end, we used the conception of
stability and degree (order of accuracy) of the investigated methods. We also constructed
a formula by which one can define the maximal value for the degree of the stable and
unstable multistep methods having different forms (advanced, hybrid, etc.). We prove that
the multistep second derivative methods and multistep methods of hybrid type, which
have been applied to solve Volterra integral equations, are more exact than the others.
These results can be taken as the development of Dahlquist’s results, which were received
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for the multistep second derivative, and show that hybrid methods have an application
to solve Volterra integral equation of the second kind. Additionally, here we find the
necessary condition for the convergence of the methods proposed to solve Volterra integral
equations. For the investigation of the convergence of proposed methods, here we used
the theory of finite-difference equations with constant coefficients. Therefore, multistep
methods, here, are investigated in a very simple form. We prove that the initial value
problem for ODE and the Volterra integral equation can be solved by one and the same
methods. Here, algorithms have been constructed using a similar form to (50) and (51).
Some of the received results are illustrated by the model equations. The methods proposed
here are promising and we hope that they will find their followers.
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