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Abstract: Swarm-based algorithm can successfully avoid the local optimal constraints, thus achieving
a smooth balance between exploration and exploitation. Salp swarm algorithm (SSA), as a swarm-
based algorithm on account of the predation behavior of the salp, can solve complex daily life
optimization problems in nature. SSA also has the problems of local stagnation and slow convergence
rate. This paper introduces an improved salp swarm algorithm, which improve the SSA by using the
chaotic sequence initialization strategy and symmetric adaptive population division. Moreover, a
simulated annealing mechanism based on symmetric perturbation is introduced to enhance the local
jumping ability of the algorithm. The improved algorithm is referred to SASSA. The CEC standard
benchmark functions are used to evaluate the efficiency of the SASSA and the results demonstrate
that the SASSA has better global search capability. SASSA is also applied to solve engineering
optimization problems. The experimental results demonstrate that the exploratory and exploitative
proclivities of the proposed algorithm and its convergence patterns are vividly improved.

Keywords: swarm-based algorithm; salp swarm algorithm; single objective optimization; symmetric
perturbation; simulated annealing; engineering optimization problems

1. Introduction

The purpose of optimization is to find all possible results in a search space and to
select the optimal solution according to conditions and parameters. Optimization has been
pre-applied to engineering and scientific disciplines, such as chemistry [1], engineering
design [2] and information systems [3]. The problems related to these fields are complex in
nature and difficult to optimize, which is the basis for developing different meta-heuristic
algorithms to find the optimal solution.

There are two kinds of meta-heuristic algorithms: algorithms based on a single solu-
tion and algorithms based on swarm solution. The algorithm based on a single solution
selects a candidate solution from all possible solution sets, and the selected candidate
solution is evaluated repeatedly until the desired optimization result is achieved. The
advantage of this approach is that it is faster to execute because of its lower complexity.
However, its disadvantage is that it may get stuck in the local area, which results in the
failure to obtain the global optimal solution. Popular methods belonging to this category
include the mountain climbing algorithm [4], tabu search [5], etc. In contrast, swarm-based
algorithms consider all possible solutions rather than a single candidate solution. Algo-
rithms based on a swarm solution are divided into two categories, evolutionary algorithm
and swarm intelligence algorithm. Evolutionary algorithms follow a mechanism inspired
by biological evolution, including four operators—random selection, reproduction, re-
combination and mutation—and include the genetic algorithm [6], differential evolution
(DE) [7], etc. Swarm intelligence algorithm is a kind of algorithm based on population,
which is evolved from social behavior. It realizes the swarm behavior of all kinds of
creatures in nature, such as birds, ants, gray wolves, and bees. This approach has been
welcomed by researchers for its wide range of applications, ease of understanding and
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implementation, and ability to solve many complex optimization problems in real life.
Widely used swarm intelligence algorithms include particle swarm optimization (PSO) [8],
ant colony optimization (ACO) [9], whale optimization algorithm (WOA) [10], grey wolf
optimization (GWO) [11], and artificial bee colony algorithm (ABC) [12]. Some scholars
have improved such algorithms and applied them to practical optimization problems. Sun
Xingping [13] proposed an improved NSGA-III that combines multi-group coevolution
and natural selection. Liu Yang [14] improved the particle swarm optimization algorithm
and applied it to the mine water reuse system. Shen Yong [15] improved the JSO algorithm
and applied it to solve the constraint problem.

The engineering optimization problem is a constrained optimization problem, and it
is one of the most important challenges in practical problems. The main purpose is to solve
the problems with constraints in real life and optimize its economic indicators or various
parameters. In real life, many engineering optimization problems have complex constraints,
and it turns out that they simply add constraints on the basis of functional problems, but
they are very difficult in actual operations. Some of these constraint conditions are simple
intervals, but more are composed of linear equations, which make the solution space
very complicated. Traditional classical algorithms, such as Newton’s method, elimination
method, and constraint variable rotation method, statically make dynamic problems and
can handle these constraint problems to a certain extent. However, due to the complexity of
the objective function of many practical constraint optimization problems, these traditional
algorithms often do not work well. In recent years, experimental research has found that
the swarm intelligence algorithm has unique advantages, so many scholars apply it to
solving engineering optimization problems.

Salp swarm algorithm (SSA) [16] is a new meta-heuristic intelligent algorithm pro-
posed by S. Mirjalili in 2017. In algorithm iteration, leaders lead followers and move
towards food in a chain behavior. In the process of movement, the leaders are guided
by the food source (i.e., the current global optimal solution) to make global exploration,
while the followers make full local exploration, which greatly reduces the situation of
getting stuck in the local area. Because of its simple structure, fast convergence speed and
few control parameters, many scholars have studied and improved it and applied it to
different fields. Sayed [17] proposed an SSA algorithm based on chaos theory to solve
SSA algorithm’s disadvantage that it is prone to fall into local optimal and slow conver-
gence. Ibrahim [18] used the global convergence of PSO to propose a hybrid optimization
algorithm based on SSA and PSO. Faris [19] used crossover operators to replace average
operators and proposed a binary SSA algorithm with crossover. Liu Jingsen [20] proposed
a leader–follower adaptive SSA algorithm and applied it to engineering optimization
problems. Nibedan Panda [21] proposed an SSA algorithm based on space transformation
search and applied it to the training of neural networks.

In order to improve the optimization ability of SSA, extending the application of
algorithm of space, this paper proposes an improved salp swarm algorithm(SASSA) based
on the simulated annealing (SA) [22]. First, logistic mapping was used to initialize the
population to enhance the diversity of the initial population. Secondly, the symmetric
adaptive division of the population was carried out to balance the development and
exploration ability of the algorithm. Finally, the simulated annealing mechanism based
on symmetric perturbation was introduced into the salp swarm algorithm to improve
the performance of the existing algorithm. The performance of the above algorithms was
evaluated on the benchmark function, and the new algorithm was compared with the
original salp swarm algorithm and other popular meta-heuristic algorithms. The main
work we did is as follows:

1. We proposed an improved salp swarm algorithm based on the idea of a simulated
annealing algorithm.

2. We tested the improved algorithm on the benchmark function.
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3. The advantages of the improved algorithm were verified, and the results evaluated by
the original salp swarm algorithm and other meta-heuristic algorithms on benchmark
functions such as GWO and WOA are compared.

4. The improved algorithm was applied to solve engineering optimization problems to
prove its ability and effectiveness in solving practical problems.

The following sections are organized as follows: Section 2 introduces the background
and principle of salp swarm algorithm; Section 3 introduces the improvement process and
steps of the algorithm in detail. Section 4 describes the experimental equipment, environ-
ment, reference function and required parameters and gives the experimental results and
statistical comparison with other algorithms; Section 5 introduces the application of the
algorithm in solving engineering optimization Problems. The last section summarizes the
conclusion of this paper and gives the future research direction.

2. Salp Swarm Algorithm
2.1. Principle of Bionics

Salps are sea creatures with transparent, pail-shaped bodies. Their body structure
are highly similar to those of jellyfish. During movement, salps provide a reverse thrust
by drawing water from their surroundings through their barrel-shaped bodies. The body
tissues of salp are so fragile that it is difficult for them to survive in the experimental
environment. Therefore, it is not until recent years that some breakthroughs have been
made in the study of this species, among which the most interesting one is the group
behavior of salp.

The group behavior of salp is not distributed in a “group” mode but is often connected
end to end to form a “chain” that moves sequentially, as shown in Figure 1. The salp chain
also has a leader, which has the optimal judgment on the environment, often staying at
the head of the chain. But unlike other groups, the leader no longer directly affects the
movement of the whole group, but only directly affects the movement of the second salp
next to him, and the second salp directly affects the third salp, and so on. This method
is similar to a more rigorous and detailed hierarchy, each individual is only affected by
the “directly leader” and cannot be over-managed. Therefore, the influence of the leader
on the lower salps is sharply reduced layer by layer. The lower salps can easily retain
their diversity rather than blindly move towards the leader. Since the salps follow the
movement pattern in succession, the salps other than the leaders are collectively referred
to as followers in this paper.

Figure 1. Salp group.
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2.2. The Flow of SSA

The optimization of the salp swarm algorithm is as follows [23,24]:
Firstly, population initialization. N is the population size of the salp and D is the

spatial dimension. Food exists in space, F = [F1, F2, . . . , FD]T. The upper and lower bounds
of the search space are ub = [ub1, ub2, . . . , ubD] and lb = [lb1, lb2, . . . , lbD]. Then initialize
the position of the salp xi

j in a random manner, i = 1, 2, . . . , N, j = 1, 2, . . . , D.

xi
j = rand(N, D) ∗ (ub(j)− lb(j)) + lb(j) (1)

The second is to update the position of the leader. The leader is responsible for finding
food and directing the actions of the entire team. Therefore, the leader’s position update
follows the following formula:

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0.5

Fj − c1
((

ubj − lbj
)
c2 + lbj

)
, c3 < 0.5

(2)

where x1
j represents the leader position, Fj is the food position, ubj and lbj are the bound.

The control parameters include c1, c2 and c3, among which c2 and c3 are random numbers
within [0, 1], c2 controls the step size and c3 controls the direction. c1 is the primary control
parameter, which balances the exploration and development capabilities of the algorithm
during iteration. In order to make the algorithm perform a global search in the first half
of iteration and accurate development in the second half, the value of the c1 follows the
following formula:

c1 = 2e−(4l/Max_Iteration)2
(3)

where l is the current iteration and Max_Iteration is the maximum iteration.
Last update the position of the follower. The follower’s position is only related to its

initial position, motion speed and acceleration in the process of motion. The motion pattern
conforms to Newton’s law of motion. Therefore, the moving distance R of the follower can
be expressed as:

R =
1
2

at2 + v0t (4)

Time t is the difference value of iteration times, so t = 1; v0 is the follower initial speed
which is 0; a is the acceleration of the follower of that iteration, and the calculation formula
is a = (vfinal − v0)/t. Since the follower only follows the movement of the preceding salp

close to itself, the movement speed v f inal =
(

xi−1
j − xi

j

)
/t, where it is known that t = 1

and v0 = 0, therefore:

R =
1
2

(
xi−1

j − xi
j

)
(5)

Therefore, the update of follower position follows the following formula:

xi′
j = xi

j + R =
1
2

(
xi

j + xi−1
j

)
(6)

where, xi′
j is the position of the i-th follower in the j-th dimensional space before the update,

and xi
j is the position of the follower after the update. The steps of salp swarm algorithm

are shown in Algorithm 1:
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Algorithm 1 Salp Swarm Algorithm.
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Randomly initialize the population according to Equation (1). The fitness value of 
each salp individual is calculated, and the optimal individual is selected as the food 
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if (i < = N/2) do 
Update the position of leader according to Equation (2). 
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Update the position of follower according to Equation (6). 

end if 
end for 
Calculate the fitness value of individual population and the food source location is 
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l = l + 1. 

end while 
end 

3. The Improvement of Salp Swarm Algorithm 
3.1. Population Initialization Based on Logistic Mapping 

The core of the swarm intelligence algorithm is the continuous iteration of 
population, so the initialization of the population has a direct impact on the final solution 
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are basically random population initialization, which is greatly affects its performance. 
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mapping, etc. Through comparative study, logistic mapping is used to perform 
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3. The Improvement of Salp Swarm Algorithm
3.1. Population Initialization Based on Logistic Mapping

The core of the swarm intelligence algorithm is the continuous iteration of population,
so the initialization of the population has a direct impact on the final solution and also
affects the optimization ability. The more abundant and diverse the initialized population
is, the more favorable it will be to find the global optimal solution of the population [25].
Without the help of prior knowledge, most swarm intelligence algorithms are basically
random population initialization, which is greatly affects its performance.

The chaotic sequence has the characteristics of ergodicity and randomness, and the
population initialization by chaotic sequence can have better diversity. The chaotic se-
quences commonly used at present are iterative mapping, tent mapping, logistic map-
ping, etc. Through comparative study, logistic mapping is used to perform population
initialization in this paper.

The logistic mapping mathematical formula [26] is:

yi
j+1 = pyi

j

(
1− yi

j

)
(7)

where p is an adjustable parameter, usually set to 4. i = 1, 2, . . . , N represents the population
size, j = 1, 2, . . . , D represents the ordinal number of chaotic variables. After logistic
mapping, the initialization formula of the population becomes:

xi
j = yi

j ∗ (ub(j)− lb(j)) + lb(j) (8)

3.2. Symmetric Adaptive Population Division

In the basic SSA, the number of follower and leader is half of the population of salps,
which causes the algorithm to search asymmetry: in the early iteration, the number of
leaders is small and the ratio is low, which leads to insufficient global search and easy
to fall into local extremum. However, in the late iteration, the number of followers is
small, which leads to insufficient local search and low optimization accuracy. In response
to this problem, literature [18] proposed a leader-follower adaptive adjustment strategy.
This paper proposes a symmetric adaptive division population according to this strategy,
which adjusted the number of leaders of the salp to have an adaptive decreasing trend
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as the number of iterations increases, while the number of followers shows the adaptive
increasing trend. This will make the algorithm focus more on global breadth exploration
in the early stage, and more in-depth mining near the optimal value in the later stage,
thus improving the optimization accuracy. The improved symmetric adaptive population
division calculation formula is as follows:

Introduce the control factor ω:

ω = b·(−k·rand() + tan
(

π

4
− πl

4·Max_Iteration

)
) (9)

where l is the current iteration number and Max_Iteration is the maximum iteration number,
and b is the proportion coefficient, which is used to avoid the imbalance of proportion. k is
the disturbance deviation factor, and the decreasing ω value is disturbed in combination
with the rand function.

The modified number of leaders per iteration is ω·N, and the number of followers is
equal to 1−ω·N.

3.3. Simulated Annealing Mechanism Based on Symmetric Perturbation

The simulated annealing algorithm was first proposed by Metropolis and Kirkpatrick [27].
The simulated annealing algorithm originates from the principle of solid annealing [28].

The core of simulated annealing algorithm is to generate a new solution based on the
current solution in some way, and accept the new solution with a certain probability, so as
to enhance the local jumping out ability of the algorithm, and keep the algorithm still has a
strong diversity in the later iteration.

The generation of new solutions is particularly important in simulated annealing.
Based on the simulated annealing algorithm, this paper introduces symmetric perturbation
to generate new solutions. Symmetric perturbation refers to the mapping of the position
of the new solution to the current optimal position in the symmetrical interval. The
symmetrical interval is determined by the product of the current temperature and the
random number mapped to the dimensional space.

The flow of simulated annealing mechanism based on symmetric perturbation is as
follows:

(1) Initialization: set the initial temperature T, initial solution S and the maximum
number of iterations Max_Iteration.

(2) for l = 1, 2, ..., Max_Iteration steps (3) to (6).
(3) Perturb the current solution S to obtain the new solution S′. The formula is

as follows:

S′ = T × rnd(1, d)/normrnd(1, d) + S (10)

(4) Calculate incremental df = f (S′) − f (S), where df is the evaluation function.
(5) According to the Metropolis criterion, the sampling formula is as follows:

P =

{
1, d f < 0;

e−
d f
T , d f ≥ 0.

(11)

If df < 0, accept the new solution; otherwise, accept the new solution with probabil-

ity e−
d f
T .

(6) If the termination condition is satisfied, the current solution is the optimal solution
and output, then stop the algorithm; otherwise, go back to step (2) after reducing the
temperature. The termination condition is usually a continuous number of new solutions
that have not been accepted or have reached the termination temperature.

3.4. Improved Salp Swarm Algorithm

As mentioned above, the salp swarm algorithm has issues related to slow convergence
speed and low optimization accuracy. SASSA introduced a logistic chaotic map to initialize
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the population, which enriched the diversity of the population. The symmetric adaptive
population division strategy is introduced to balance the development and exploration
ability of the algorithm. Finally, the simulated annealing mechanism based on symmetric
perturbation is introduced to accept the inferior solution with a certain probability, and
the hybrid operation in the genetic algorithm is used. Hybridization means that the new
solution and the old solution produced by simulated annealing are hybridized in proportion
to obtain the final new solution. The new solution not only retains the advantages of the
old solution but also reduces the influence of perturbation error. The hybridization formula
is as follows:

S′ =
(
1−
√

c
)
× S +

√
c× S′ (12)

where c is a random number between 0 and 1.
The flow chart of SASSA algorithm is shown in Figure 2:

Figure 2. Flow chart of improved salp swarm algorithm based on the simulated annealing (SASSA).

The steps of SASSA are shown in Algorithm 2:
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Algorithm 2 SASSA.
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of O(N*D); 
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3.5. Complexity Analysis

According to Algorithm 2, in each iteration, the population initialization, leader
position update, follower position update and food source position update of SASSA
algorithm are all serial. The population, dimension and iteration number are N, D and M
respectively, then the time complexity of SASSA algorithm is as follows:

(1) Leader position initialization, follower position initialization and salp position cor-
rection based on the upper and lower bounds were performed with a complexity
of O(N*D);

(2) During the leader position Update, the number of leaders is ω·N, so the complexity
is O(ω*N*D);

(3) During the follower position update, the number of followers is (1 − ω)·N, thus the
complexity is O((1 − ω)*N*D);

(4) In the simulated annealing stage, the time complexity is O(k*N*D), where k is the
number of times that the algorithm perturbed the solution in the simulated anneal-
ing mechanism.
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The time complexity of SASSA algorithm is O(N*D) + O(ω*N*D) + O((1 − ω)*N*D) +
O(k*N*D) = O(C*N*D). The total time complexity is O(C*N*D*M), and C is constant.

Similarly, the time complexity of the basic SSA is the same. Therefore, the algorithm
proposed in this paper is equivalent to the original algorithm in time complexity, and the
execution efficiency does not decrease.

4. Benchmark Function Experiments

In this section, we will test the algorithm’s performance through 21 benchmark func-
tions and compare the results with other algorithms.

4.1. Benchmark Function

We used the reference function selected from the literature [29,30] to test the per-
formance of the algorithm. The function equation is shown in Tables 1–3, where Dim
represents the dimension of the function, Range is the upper and lower bound and fmin
represents the optimal value. In general, we use these test functions to minimize. These
functions can be divided into unimodal benchmark functions, multimodal benchmark
functions and fixed-dimension multimodal benchmark functions. Unimodal function
can evaluate the ability of algorithm development. Multimodal benchmark functions
can test the exploration ability of the algorithm and the ability to jump out of the local
optimum. Fixed-dimension multimodal benchmark functions can evaluate the compre-
hensive ability of the algorithm. Therefore, if we select these to test the algorithm, we can
satisfy different types of problems and comprehensively evaluate the performance of the
optimized algorithm.

Table 1. Unimodal benchmark functions.

Function Dim Range fmin

F1(x) = ∑n
i=1 x2

i
N [−100, 100] 0

F2(x) = ∑n
i=1|xi|+

n
∏
i=1
|xi| N [−10, 10] 0

F3(x) = ∑n
i=1(∑

i
j−1 xj)

2 N [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} N [−100, 100] 0

F5(x) =
[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

N [−30, 30] 0

F6(x) = ∑n
i=1([xi + 0.5])2 N [−100, 100] 0

F7(x) = ∑n
i=1 ix4

i + random[0, 1] N [−128, 128] 0

4.2. Experimental Settings

All the tests were carried out under the same conditions. The population size was
30, and the maximum number of iterations was set to 500. Each benchmark function was
run independently 30 times to mitigate the effect of randomness on the test results. The
experiment was conducted on an Intel I7 processor and a computer with 16G memory. The
system was macOS Catalina, and the test software was MATLAB R2020a. Based on the
mean and standard deviation (Std) of fitness, values without loss of generality were used
to evaluate performance.

4.3. Results Analysis

In this section, the test results are displayed in tables and images in an intuitive
manner. The improved algorithm is compared with the SSA and several recently successful
meta-heuristic algorithms, namely the moth flame optimization (MFO) [31], GWO and
WOA. As can be seen from Table 4, in the unimodal benchmark function f 1–f 7, except for
f 5, SASSA achieved good results. Among them, in f 1, f 2, f 3 and f 4, SASSA has obvious
advantages in mean value, Std and lowest value. In the f 7 function, the results of GWO are



Symmetry 2021, 13, 1092 10 of 24

very close to the improved algorithm but inferior to the improved algorithm in terms of
lowest value. In terms of f 6 function, the performance of the improved algorithm is only
moderate. As for the f 5 function, the result of the improved algorithm is worse than that of
the GWO and the WOA but it obtains the best result in terms of the lowest value.

Table 2. Multimodal benchmark functions.

Function Dim Range fmin

F8(x) = ∑n
i=1−xi sin

(√
|xi|
)

N [−500, 500] −418.9829 × 5

F9(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

N [−5.12,
5.12] 0
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Table 3. Fixed-dimension multimodal benchmark functions. 

Function Dim Range fmin 

𝐹𝐹14(𝑥𝑥) = � 1
500

+ ∑ 1
𝑗𝑗+∑ (𝑀𝑀𝑖𝑖−𝑀𝑀𝑖𝑖𝑖𝑖)62

𝑖𝑖=1

25
𝑗𝑗=1 �

−1
  2 [−65, 65] 1 

𝐹𝐹15(𝑥𝑥) = 4𝑥𝑥12 − 2.1𝑥𝑥12 + 1
3
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10

𝑖𝑖=1
 4 [0, 10] −10.5363 

4.2. Experimental Settings 
All the tests were carried out under the same conditions. The population size was 30, 

and the maximum number of iterations was set to 500. Each benchmark function was run 
independently 30 times to mitigate the effect of randomness on the test results. The 
experiment was conducted on an Intel I7 processor and a computer with 16G memory. 
The system was macOS Catalina, and the test software was MATLAB R2020a. Based on 
the mean and standard deviation (Std) of fitness, values without loss of generality were 
used to evaluate performance. 

4.3. Results Analysis 
In this section, the test results are displayed in tables and images in an intuitive 

manner. The improved algorithm is compared with the SSA and several recently 

N [−32, 32] 0

F11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 N [−600, 600] 0
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4.3. Results Analysis 
In this section, the test results are displayed in tables and images in an intuitive 

manner. The improved algorithm is compared with the SSA and several recently 

N [−50, 50] 0

Symmetry 2021, 13, 1092 10 of 25 
 

Table 2. Multimodal benchmark functions. 

Function Dim Range fmin 
𝐹𝐹8(𝑥𝑥) = ∑ −𝑥𝑥𝑖𝑖 sin(�|𝑥𝑥𝑖𝑖|)𝐼𝐼

𝑖𝑖=1   N [−500, 500] −418.9829 × 5 
𝐹𝐹9(𝑥𝑥) = ∑ [𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]𝐼𝐼

𝑖𝑖=1   N [−5.12, 5.12] 0 

𝐹𝐹10(𝑥𝑥) = −20𝑒𝑒𝑥𝑥𝑝𝑝(−0.2�1
𝐼𝐼
∑ 𝑥𝑥𝑖𝑖2𝐼𝐼
𝑖𝑖=1 ) −

                     𝑒𝑒𝑥𝑥𝑝𝑝(1
𝐼𝐼
∑ cos(2𝜋𝜋𝑥𝑥𝑖𝑖)𝐼𝐼
𝑖𝑖=1 ) + 20 + 𝑒𝑒  

N [−32, 32] 0 

𝐹𝐹11(𝑥𝑥) =
1

4000
� 𝑥𝑥𝑖𝑖2

𝐼𝐼

𝑖𝑖=1
−� cos(

𝑥𝑥𝑖𝑖
√𝑓𝑓

)
𝐼𝐼

𝑖𝑖=1
+ 1 N [−600, 600] 0 

 
𝐹𝐹12(𝑥𝑥) = 𝜋𝜋

𝐼𝐼
{10 sin(𝜋𝜋𝑦𝑦1) + ∑ (𝑦𝑦𝑖𝑖 − 1)2𝐼𝐼−1

𝑖𝑖=1 [1 +
                    10 sin2(𝜋𝜋𝑦𝑦𝑖𝑖 + 1)] + (𝑦𝑦𝐼𝐼 − 1)2} +
                     ∑ 𝜇𝜇(𝑥𝑥𝑖𝑖 , 10,100,4)𝐼𝐼

𝑖𝑖=1   
𝑦𝑦𝑙𝑙 = 1 + 𝑀𝑀𝑖𝑖+1

4
  

𝜇𝜇(𝑥𝑥𝑖𝑖 , 𝑟𝑟, 𝑘𝑘,𝑛𝑛) = �
𝑘𝑘(𝑥𝑥𝑖𝑖 − 𝑟𝑟)𝑚𝑚                  𝑥𝑥𝑖𝑖 > 𝑟𝑟
0                      − 𝑟𝑟 < 𝑥𝑥𝑖𝑖 < 𝑟𝑟
𝑘𝑘(−𝑥𝑥𝑖𝑖 − 𝑟𝑟)𝑚𝑚           𝑥𝑥𝑖𝑖 < −𝑟𝑟

 

 

N [−50, 50] 0 

 
𝐹𝐹13(𝑥𝑥) = 0.1{sin2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑖𝑖 − 1)2[1 +𝐼𝐼

𝑖𝑖=1
                     sin2(3𝜋𝜋𝑥𝑥𝑖𝑖 +  1)] + (𝑥𝑥𝐼𝐼 − 1)2[1 +
                     sin2(2𝜋𝜋𝑥𝑥𝐼𝐼)} + ∑ 𝜇𝜇(𝑥𝑥𝑖𝑖 , 5,100,4)𝐼𝐼

𝑖𝑖=1   
 

N [−50, 50] 0 

Table 3. Fixed-dimension multimodal benchmark functions. 

Function Dim Range fmin 

𝐹𝐹14(𝑥𝑥) = � 1
500

+ ∑ 1
𝑗𝑗+∑ (𝑀𝑀𝑖𝑖−𝑀𝑀𝑖𝑖𝑖𝑖)62

𝑖𝑖=1

25
𝑗𝑗=1 �

−1
  2 [−65, 65] 1 

𝐹𝐹15(𝑥𝑥) = 4𝑥𝑥12 − 2.1𝑥𝑥12 + 1
3
𝑥𝑥16 + 𝑥𝑥1𝑥𝑥2 − 4𝑥𝑥22 + 4𝑥𝑥24  2 [−5, 5] −1.0316 

𝐹𝐹16(𝑥𝑥) = [1 + (𝑥𝑥1 + 𝑥𝑥2 + 1)2(19 − 14𝑥𝑥1 + 3𝑥𝑥12 − 14𝑥𝑥2 +
                     6𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22)] × [30 + (2𝑥𝑥1 − 3𝑥𝑥2)2 × (18 −
                     32𝑥𝑥1 + 12𝑥𝑥12 + 48𝑥𝑥2 − 36𝑥𝑥1𝑥𝑥2 + 27𝑥𝑥22)]  

2 [−2, 2] 3 

𝐹𝐹17(𝑥𝑥) = −� 𝑐𝑐𝑖𝑖𝑒𝑒𝑥𝑥𝑝𝑝(−� 𝑟𝑟𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑗𝑗)2
3

𝑗𝑗=1
)

4

𝑖𝑖=1
 3 [1, 3] −3.86 

𝐹𝐹18(𝑥𝑥) = −∑ 𝑐𝑐𝑖𝑖𝑒𝑒𝑥𝑥𝑝𝑝(−∑ 𝑟𝑟𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑗𝑗)26
𝑗𝑗=1 )4

𝑖𝑖=1   6 [0, 1] −3.32 
𝐹𝐹19(𝑥𝑥) = −∑ [(𝑋𝑋 − 𝑟𝑟𝑖𝑖)(𝑋𝑋 − 𝑟𝑟𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−15

𝑖𝑖=1   4 [0, 10] −10.1532 
𝐹𝐹20(𝑥𝑥) = −∑ [(𝑋𝑋 − 𝑟𝑟𝑖𝑖)(𝑋𝑋 − 𝑟𝑟𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−17

𝑖𝑖=1   4 [0, 10] 10.4028 

𝐹𝐹21(𝑥𝑥) = −� [(𝑋𝑋 − 𝑟𝑟𝑖𝑖)(𝑋𝑋 − 𝑟𝑟𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−1
10

𝑖𝑖=1
 4 [0, 10] −10.5363 

4.2. Experimental Settings 
All the tests were carried out under the same conditions. The population size was 30, 

and the maximum number of iterations was set to 500. Each benchmark function was run 
independently 30 times to mitigate the effect of randomness on the test results. The 
experiment was conducted on an Intel I7 processor and a computer with 16G memory. 
The system was macOS Catalina, and the test software was MATLAB R2020a. Based on 
the mean and standard deviation (Std) of fitness, values without loss of generality were 
used to evaluate performance. 

4.3. Results Analysis 
In this section, the test results are displayed in tables and images in an intuitive 

manner. The improved algorithm is compared with the SSA and several recently 

N [−50, 50] 0

Table 3. Fixed-dimension multimodal benchmark functions.

Function Dim Range fmin

F14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1 2 [−65, 65] 1

F15(x) = 4x2
1 − 2.1x2

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2
2 [−5, 5] −1.0316

Symmetry 2021, 13, 1092 10 of 25 
 

Table 2. Multimodal benchmark functions. 

Function Dim Range fmin 
𝐹𝐹8(𝑥𝑥) = ∑ −𝑥𝑥𝑖𝑖 sin(�|𝑥𝑥𝑖𝑖|)𝐼𝐼

𝑖𝑖=1   N [−500, 500] −418.9829 × 5 
𝐹𝐹9(𝑥𝑥) = ∑ [𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]𝐼𝐼

𝑖𝑖=1   N [−5.12, 5.12] 0 

𝐹𝐹10(𝑥𝑥) = −20𝑒𝑒𝑥𝑥𝑝𝑝(−0.2�1
𝐼𝐼
∑ 𝑥𝑥𝑖𝑖2𝐼𝐼
𝑖𝑖=1 ) −

                     𝑒𝑒𝑥𝑥𝑝𝑝(1
𝐼𝐼
∑ cos(2𝜋𝜋𝑥𝑥𝑖𝑖)𝐼𝐼
𝑖𝑖=1 ) + 20 + 𝑒𝑒  

N [−32, 32] 0 

𝐹𝐹11(𝑥𝑥) =
1

4000
� 𝑥𝑥𝑖𝑖2

𝐼𝐼

𝑖𝑖=1
−� cos(

𝑥𝑥𝑖𝑖
√𝑓𝑓

)
𝐼𝐼

𝑖𝑖=1
+ 1 N [−600, 600] 0 

 
𝐹𝐹12(𝑥𝑥) = 𝜋𝜋

𝐼𝐼
{10 sin(𝜋𝜋𝑦𝑦1) + ∑ (𝑦𝑦𝑖𝑖 − 1)2𝐼𝐼−1

𝑖𝑖=1 [1 +
                    10 sin2(𝜋𝜋𝑦𝑦𝑖𝑖 + 1)] + (𝑦𝑦𝐼𝐼 − 1)2} +
                     ∑ 𝜇𝜇(𝑥𝑥𝑖𝑖 , 10,100,4)𝐼𝐼

𝑖𝑖=1   
𝑦𝑦𝑙𝑙 = 1 + 𝑀𝑀𝑖𝑖+1

4
  

𝜇𝜇(𝑥𝑥𝑖𝑖 , 𝑟𝑟, 𝑘𝑘,𝑛𝑛) = �
𝑘𝑘(𝑥𝑥𝑖𝑖 − 𝑟𝑟)𝑚𝑚                  𝑥𝑥𝑖𝑖 > 𝑟𝑟
0                      − 𝑟𝑟 < 𝑥𝑥𝑖𝑖 < 𝑟𝑟
𝑘𝑘(−𝑥𝑥𝑖𝑖 − 𝑟𝑟)𝑚𝑚           𝑥𝑥𝑖𝑖 < −𝑟𝑟

 

 

N [−50, 50] 0 

 
𝐹𝐹13(𝑥𝑥) = 0.1{sin2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑖𝑖 − 1)2[1 +𝐼𝐼

𝑖𝑖=1
                     sin2(3𝜋𝜋𝑥𝑥𝑖𝑖 +  1)] + (𝑥𝑥𝐼𝐼 − 1)2[1 +
                     sin2(2𝜋𝜋𝑥𝑥𝐼𝐼)} + ∑ 𝜇𝜇(𝑥𝑥𝑖𝑖 , 5,100,4)𝐼𝐼

𝑖𝑖=1   
 

N [−50, 50] 0 

Table 3. Fixed-dimension multimodal benchmark functions. 

Function Dim Range fmin 

𝐹𝐹14(𝑥𝑥) = � 1
500

+ ∑ 1
𝑗𝑗+∑ (𝑀𝑀𝑖𝑖−𝑀𝑀𝑖𝑖𝑖𝑖)62

𝑖𝑖=1

25
𝑗𝑗=1 �

−1
  2 [−65, 65] 1 

𝐹𝐹15(𝑥𝑥) = 4𝑥𝑥12 − 2.1𝑥𝑥12 + 1
3
𝑥𝑥16 + 𝑥𝑥1𝑥𝑥2 − 4𝑥𝑥22 + 4𝑥𝑥24  2 [−5, 5] −1.0316 

𝐹𝐹16(𝑥𝑥) = [1 + (𝑥𝑥1 + 𝑥𝑥2 + 1)2(19 − 14𝑥𝑥1 + 3𝑥𝑥12 − 14𝑥𝑥2 +
                     6𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22)] × [30 + (2𝑥𝑥1 − 3𝑥𝑥2)2 × (18 −
                     32𝑥𝑥1 + 12𝑥𝑥12 + 48𝑥𝑥2 − 36𝑥𝑥1𝑥𝑥2 + 27𝑥𝑥22)]  

2 [−2, 2] 3 

𝐹𝐹17(𝑥𝑥) = −� 𝑐𝑐𝑖𝑖𝑒𝑒𝑥𝑥𝑝𝑝(−� 𝑟𝑟𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑗𝑗)2
3

𝑗𝑗=1
)

4

𝑖𝑖=1
 3 [1, 3] −3.86 

𝐹𝐹18(𝑥𝑥) = −∑ 𝑐𝑐𝑖𝑖𝑒𝑒𝑥𝑥𝑝𝑝(−∑ 𝑟𝑟𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑗𝑗)26
𝑗𝑗=1 )4

𝑖𝑖=1   6 [0, 1] −3.32 
𝐹𝐹19(𝑥𝑥) = −∑ [(𝑋𝑋 − 𝑟𝑟𝑖𝑖)(𝑋𝑋 − 𝑟𝑟𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−15

𝑖𝑖=1   4 [0, 10] −10.1532 
𝐹𝐹20(𝑥𝑥) = −∑ [(𝑋𝑋 − 𝑟𝑟𝑖𝑖)(𝑋𝑋 − 𝑟𝑟𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−17

𝑖𝑖=1   4 [0, 10] 10.4028 

𝐹𝐹21(𝑥𝑥) = −� [(𝑋𝑋 − 𝑟𝑟𝑖𝑖)(𝑋𝑋 − 𝑟𝑟𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−1
10

𝑖𝑖=1
 4 [0, 10] −10.5363 

4.2. Experimental Settings 
All the tests were carried out under the same conditions. The population size was 30, 

and the maximum number of iterations was set to 500. Each benchmark function was run 
independently 30 times to mitigate the effect of randomness on the test results. The 
experiment was conducted on an Intel I7 processor and a computer with 16G memory. 
The system was macOS Catalina, and the test software was MATLAB R2020a. Based on 
the mean and standard deviation (Std) of fitness, values without loss of generality were 
used to evaluate performance. 

4.3. Results Analysis 
In this section, the test results are displayed in tables and images in an intuitive 

manner. The improved algorithm is compared with the SSA and several recently 

2 [−2, 2] 3

F17(x) = −∑4
i=1 ciexp

(
−∑3

j=1 aij

(
xj − pij

)2
)

3 [1, 3] −3.86

F18(x) = −∑4
i=1 ciexp

(
−∑6

j=1 aij

(
xj − pij

)2
)

6 [0, 1] −3.32

F19(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532
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In terms of multimodal benchmark functions, it can be seen from Table 5 that the
SASSA has better results in f 8, f 9, f 10 and f 11. In f 9 and f 11, the mean value and Std can be
directly set to 0, and the Std in f 10 can also be set to 0, which indicates that the algorithm
has relatively strong stability. However, in f 12 and f 13, the performance of the SASSA
is poor.

As for the fixed-dimension multimodal benchmark functions, it can be seen from
Table 6 that the SASSA has obvious advantages in f 18, f 19, f 20 and f 21 functions and
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achieves good results in terms of mean value and lowest value. In f 14 and f 17, the
performance of the SASSA is poor, but in f 15 and f 16, the Std of the SASSA is better than
that of other algorithms in the case that the mean value of all algorithms can obtain the
lowest value, which also provides the data basis for its better stability.

Table 4. Results of unimodal benchmark functions.

Function Index SASSA SSA MFO GWO WOA

f 1
Mean 1.63 × 10−127 1.70 × 10−7 1.71 × 103 1.25 × 10−27 7.63 × 10−73

Std 6.23 × 10−127 2.82 × 10−7 3.77 × 103 1.77 × 10−27 2.64 × 10−72

Lowest 1.36 × 10−142 2.64 × 10−8 0.8602 3.91 × 10−29 5.76 × 10−84

f 2
Mean 2.54 × 10−64 0.0280 1.3333 3.42 × 10−33 1.49 × 10−51

Std 1.01 × 10−63 0.1176 3.4575 4.02 × 10−33 7.71 × 10−51

Lowest 8.30 × 10−70 5.99 × 10−6 5.13 × 10−10 5.63 × 10−35 1.76 × 10−60

f 3
Mean 7.25 × 10−126 1.46 × 103 2.30 × 104 1.14 × 10−5 4.57 × 104

Std 3.56 × 10−125 676.0907 1.33 × 104 3.34 × 10−5 1.55 × 104

Lowest 2.66 × 10−139 291.4835 2.85 × 103 2.20 × 10−9 2.51 × 104

f 4
Mean 5.26 × 10−66 2.12 × 10−5 2.9135 2.72 × 10−18 4.2870

Std 2.40 × 10−65 7.82 × 10−6 5.1788 4.23 × 10−18 8.9829
Lowest 1.69 × 10−72 1.10 × 10−5 0.0034 2.58 × 10−20 2.59 × 10−4

f 5
Mean 8.2487 348.0704 6.47 × 103 6.3292 6.9341

Std 1.7800 623.0314 2.27 × 104 0.8115 0.4261
Lowest 2.57 × 10−4 0.2785 0.0147 3.7198 6.1502

f 6
Mean 2.32 × 10−7 8.26 × 10−10 3.82 × 10−13 0.0084 0.0013

Std 1.50 × 10−7 2.87 × 10−10 9.08 × 10−13 0.0461 0.0014
Lowest 8.03 × 10−8 3.56 × 10−10 4.29 × 10−15 1.28 × 10−6 2.24 × 10−4

f 7
Mean 1.03 × 10−4 0.0120 0.0084 7.93 × 10−4 0.0026

Std 9.58 × 10−5 0.0077 0.0074 5.73 × 10−4 0.0030
Lowest 2.97 × 10−7 0.0015 0.0019 1.02 × 10−4 1.21 × 10−4

Table 5. Results of multimodal benchmark functions.

Function Index SASSA SSA MFO GWO WOA

f 8
Mean −5.74 × 104 −2.64 × 103 −3.28 × 103 −2.65 × 103 −3.21 × 103

Std 1.57 × 104 312.5324 313.8152 396.5429 540.8742
Lowest −9.54 × 104 −3.54 × 103 −3.73 × 103 −3.61 × 103 −4.19 × 103

f 9
Mean 0 18.4730 20.8680 1.0448 1.1907

Std 0 7.4073 12.7232 2.2098 6.5219
Lowest 0 6.9647 7.9597 0 0

f 10
Mean 8.88 × 10−16 0.5367 0.0938 7.40 × 10−15 4.09 × 10−15

Std 0 0.8212 0.5137 1.64 × 10−15 2.35 × 10−15

Lowest 8.88 × 10−16 5.06 × 10−6 5.74 × 10−8 4.44 × 10−15 8.78 × 10−16

f 11
Mean 0 0.1993 0.1185 0.0163 0.0906

Std 0 0.1202 0.0526 0.0172 0.1492
Lowest 0 0.0443 0.0295 0 0

f 12
Mean 0.0136 0.6016 0.0622 0.0052 0.0108

Std 0.0171 0.8066 0.1713 0.0115 0.0195
Lowest 5.44 × 10−4 1.93 × 10−11 9.29 × 10−16 3.43 × 10−7 2.17 × 10−4

f 13
Mean 0.0087 0.0029 0.0026 0.0169 0.0420

Std 0.0104 0.0049 0.0047 0.0383 0.0517
Lowest 1.18 × 10−4 3.39 × 10−11 2.52 × 10−16 2.72 × 10−6 0.0027
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The Friedman test [32,33] were obtained by using the mean value of each algorithm
on all 21 test functions in Tables 4–6, and are shown in Table 7. Table 8 shows the related
statistical values of the Friedman test. If the chi-square statistic was greater than the
critical value, the null hypothesis was rejected. p represents the probability of the null
hypothesis obtaining. The null hypothesis here was that there is no significant difference in
performance among the five algorithms considered here.

Table 6. Results of fix-dimension multimodal benchmark functions.

Function Index SASSA SSA MFO GWO WOA

f 14
Mean 1.9213 1.2298 2.6093 5.6902 2.4068

Std 1.5345 0.5005 2.2834 4.6976 2.5646
Lowest 1 1 1 1 1

f 15
Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Std 3.48 × 10−12 4.15 × 10−11 6.78 × 10−11 3.17 × 10−8 3.80 × 10−10

Lowest −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

f 16
Mean 3.0000 3.0000 3.0000 3.0000 3.0001

Std 3.06 × 10−17 2.74 × 10−13 2.23 × 10−15 2.96 × 10−5 2.28 × 10−4

Lowest 3.0000 3.0000 3.0000 3.0000 3.0000

f 17
Mean −3.8616 −3.8628 −3.8625 −3.8609 −3.8550

Std 0.0446 1.14 × 10−10 0.0014 0.0030 0.0112
Lowest −3.8628 −3.8628 −3.8628 −3.8628 −3.8627

f 18
Mean −3.2760 −3.2213 −3.2197 −3.2662 −3.2238

Std 0.0862 0.0629 0.0557 0.0660 0.1044
Lowest −3.3220 −3.3220 −3.3220 −3.3220 −3.3219

f 19
Mean −10.1530 −6.8070 −7.8876 −9.2651 −8.7734

Std 4.45 × 10−9 3.3092 3.1199 2.3302 2.2810
Lowest −10.1532 −10.1532 −10.1532 −10.1528 −10.1532

f 20
Mean −10.4027 −8.3941 −7.6667 −9.9292 −7.6605

Std 5.08 × 10−9 3.2041 3.6731 1.8008 3.2626
Lowest −10.4028 −10.4028 −10.4028 −10.4027 −10.4011

f 21
Mean −10.3561 −8.8569 −7.8695 −10.0856 −6.8170

Std 0.9873 2.8998 3.5977 1.7470 3.0241
Lowest −10.5363 −10.5363 −10.5363 −10.5361 −10.5318

Table 7. The Friedman ranks (benchmark functions).

Rank Name F-Rank

0 SASSA 1.69
1 GWO 2.69
2 WOA 3.48
3 SSA 3.5
4 MFO 3.64

Table 8. Related statistical values (benchmark functions).

Chi-Sq’ Prob > Chi-Sq’ (p) Critical Value

24.43076923 6.55 × 10−5 9.49

According to the Friedman ranking in Table 7, SASSA can get better rank than the
original algorithms and other compared algorithm. Table 8 shows that the null hypothesis
was rejected, and thus the Friedman ranking was correct. On the whole, the SASSA
obtained better results in contrast to the SSA as well as the other compared algorithm.
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In order to better verify the algorithm’s capability, we extracted some convergent
images from 21 test functions, as shown in Figure 3. According to the convergence curve in
the figure, we can observe that SASSA has a better convergence speed in realizing functions
F3, F4, F7, F9 and F11, and other algorithms fall into local optima too early. In terms
of F5 function, although the improved algorithm does not get the best result, its initial
convergence speed is the fastest among all algorithms. As for F1 and F2, although SASSA
cannot match the GWO in the convergence speed at the beginning, its convergence speed
is greatly improved in the later stage, and better results can be explored.

Figure 3. Convergence curve of benchmark functions.
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In general, the improved algorithm SASSA can achieve good results in three kinds of
test functions. Although some test functions do not yield better solutions, they also show
convergence and stability. Therefore, it is of great significance to improve the classical salp
swarm algorithm.

5. Applications in Solving Engineering Optimization Problems
5.1. Problem Description

The engineering optimization problem is a kind of constrained optimization problem.
The constrained optimization problem is a very common planning problem in the science
and engineering fields. The corresponding description of the constrained optimization
problem is as follows [34]:

min f (x)s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,hi(x) = 0, i = m + 1, m + 2, . . . , nli ≤ xi ≤ ui, i = 1, 2, . . . , n (13)

Among them, the objective functions f (x), g1,g2, . . . ,gm and hm+1,hm+2, . . . , hn are
real valued functions in the domain, gi(x) ≤ 0, (i = 1, 2, . . . , m) means inequality constraint,
hi(x) = 0, (i = m + 1, m + 2, . . . , n) represents equality constraints. The decision variables
are x, x = (x1, x2, . . . , xn) ∈ Rn.

The core of the constrained optimization problem is to find a feasible solution in
the feasible region. If f (x∗) ≤ f (x) holds for each feasible solution x, then x∗ is the
optimal solution of the constrained optimization problem under the given constraints. If
the function of the optimization problem is linear, the optimization problem is a linear
constrained optimization problem, otherwise it is a nonlinear constrained optimization
problem. The engineering optimization problems used in this paper are all nonlinear
single-objective constrained optimization problems.

5.2. Constraint Handling

The processing of constraint conditions is the key to solving constraint optimization
problems. In function problems, these constraints determine the value range of decision
variables. In actual engineering optimization problems, these constraints are the various
objective factors that must be met to solve the target problem. In order to deal with these
constrained optimization problems, commonly used methods include rejection method,
repair method, penalty function method, etc. Continuous-time solvers is also an effective
method to deal with optimization problems with nonlinear constraints. In this method, a
virtual dynamical system along with the main system evolves and estimates the optimal so-
lution of the problem [35,36]. When dealing with engineering optimization problems with
constraints, the most common and simplest method is the penalty function method [37].
Its idea is to add a “penalty term” to the objective function of the problem and define the
constraint as a whole, it satisfies the constraints without affecting the solution, and the
problem with constraints is thus transformed into an unconstrained optimization problem.
The formula of the penalty function is as follows:

F(x) = f (x) + k1 ×
m

∑
i=1

gi(x)× b1 + k2 ×
n

∑
i=m+1

hi(x)× b2 (14)

The objective function is f (x), the inequality penalty coefficient is k1, the equality
penalty coefficient is k2, gi(x) is the inequality constraint, hi(x) is the equality constraint,
b1 and b2 are defined as follows:

b1 =

{
0, i f gi(x) ≤ 0

1, else
b2 =

{
0, i f hi(x) = 0

1, else
(15)

A penalty term is added to the objective function of the constrained optimization prob-
lem, and the constrained optimization problem is transformed into a general optimization
problem to be solved.
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5.3. Experimental Settings

In order to verify the feasibility of the SASSA, four classic engineering optimization
problems were selected for simulation to verify the performance of the algorithm in solving
constraint optimization problems. In this paper, weight minimization of a speed reducer,
gear train design problem, optimal operation of alkylation unit and welded beam design
were selected as research objects [38]. Among them, weight minimization of a speed
reducer, gear train design problem and welded beam design are problems in the field of
physical engineering design. Weight minimization of a speed reducer is to minimize the
weight, gear train design problem is to make the design more in line with requirements,
and welded beam design is to minimize the production cost. And optimal operation of
alkylation unit is a problem in the field of chemical engineering, aiming to make production
more efficient. The four questions selected cover the two fields of physics and chemistry,
and involve weight, cost, efficiency, etc., which can provide a good evaluation of the
performance of the improved algorithm. In order to objectively evaluate the performance
of SASSA, we selected SSA, GWO [39], DE [40], BBO [41], ACO and PSO for a comparison
experiment. The SSA is the basic salp swarm algorithm. By comparing with it, we can
comprehensively evaluate the optimization ability, the degree of improvement and the
field of adaptation of the improved algorithm, so as to provide a better theoretical basis
for the improvement strategy. The GWO originated from the predation of gray wolves,
it is a highly developed algorithm. The DE is a convenient and easy algorithm, and its
effectiveness has long been proven. The BBO is an evolutionary algorithm, literature
proves that the BBO algorithm is an excellent algorithm for solving engineering problems,
so comparing it with it can improve the credibility of the improved algorithm. The ACO
is a probabilistic algorithm and has a wide range of applications, comparing it with the
improved algorithm can be more beneficial to evaluate the improvement ability of the
improved algorithm.

The environment used in this experiment is: the operating system is MacOS Catalina,
the processor is I7, the memory is 16G, and the software is MATLAB R2020A. The pop-
ulation size is 30, and the maximum number of iterations is 1000. The experiment was
repeated 50 times to reduce the influence of randomness on the test results. Without loss of
generality, the performance was evaluated according to the Mean and standard deviation
of fitness values.

5.4. Results
5.4.1. Weight Minimization of a Speed Reducer

Weight minimization of a speed reducer is a typical engineering optimization problem,
and its optimization purpose is to minimize the total weight of the reducer [42]. The design
of the reducer is subject to some constraints, including the surface stress of the gear teeth,
bending stress, shaft deflection and shaft stress. Reflected in the design drawings are gear
width (b), gear modulus (m), the number of teeth on the pinion (z), the length of the first
shaft between the bearings (l1), and the length of the second shaft between the bearings
(l2)), the diameter of the first shaft d1, and the diameter of the second shaft d2, as shown
in Figure 4:

Figure 4. Weight Minimization of a Speed Reducer.
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Use x1–x7 to represent the above seven variables, and the mathematical description of
the problem of weight minimization of a speed reducer is as follows:

Minimize:

f (x) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)
− 1.508x1

(
x2

6 + x2
7

)
+7.4777

(
x3

6 + x3
7

)
+ 0.7854

(
x4x2

6 + x5x2
7

)
Subject to:

g1(x) = −x1x2
2x3 + 27 ≤ 0,

g2(x) = −x1x2
2x2

3 + 397.5 ≤ 0,
g3(x) = −x2x4

6x3x−3
4 + 1.93 ≤ 0,

g4(x) = −x2x4
7x3x−3

5 + 1.93 ≤ 0,

g5(x) = 10x−3
6

√
16.91× 106 +

(
745x4x−1

2 x−1
3

)2
− 1100 ≤ 0,

g6(x) = 10x−3
7

√
157.5× 106 +

(
745x5x−1

2 x−1
3

)2
− 850 ≤ 0,

g7(x) = x2x3 − 40 ≤ 0,
g8(x) = −x1x−1

2 + 5 ≤ 0,
g9(x) = x1x−1

2 − 12 ≤ 0,
g10(x) = 1.5x6 − x4 + 1.9 ≤ 0,
g11(x) = 1.1x7 − x5 + 1.9 ≤ 0,

With bounds:
2.6 ≤ x1 ≤ 3.6,
0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9,
5 ≤ x7 ≤ 5.5.

The experimental results are shown in Table 9. SASSA has the best performance on
the best value and mean value, indicating that after its optimization, the weight of the
reducer is the least, but the std is slightly inferior to GWO, indicating that its stability needs
to be improved. Figure 5 shows that the iteration curves of SASSA, SSA and GWO are
relatively close. Combining with the data, it can be seen that the convergence accuracy of
SASSA is the best. In terms of convergence speed, it can be seen directly that SASSA is
in the leading position. Therefore, the convergence speed and performance of SASSA are
better than other comparison algorithms.

Table 9. Weight Minimization of a Speed Reducer.

Best Mean Worst Std

SASSA 2.9949 × 103 3.0025 × 103 3.1017 × 103 18.0827
SSA 2.9975 × 103 3.0190 × 103 3.0759 × 103 22.0886

GWO 3.0091 × 103 3.0519 × 103 3.0162 × 103 5.1551
DE 3.6746 × 105 3.6746 × 105 3.6746 × 105 1.1944 × 10−10

BBO 3.6746 × 105 3.6746 × 105 3.6746 × 105 9.6747 × 10−7

ACO 6.9015 × 105 6.9015 × 105 6.9015 × 105 0
PSO 3.6746 × 105 3.6746 × 105 3.6746 × 105 1.2312 × 10−10

The convergence curve of weight minimization of a speed reducer is shown in Figure 5:
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Figure 5. Convergence Curve of Weight Minimization of a Speed Reducer.

5.4.2. Gear Train Design Problem

Gear design problem is also a popular engineering optimization problem. Figure 6
shows the gear train design problem model [43]. When designing compound gears, the
gear ratio between the drive shaft and the driven shaft should be considered. The gear ratio
is defined as the ratio of the angular velocity of the output shaft to the angular velocity of
the input shaft. Our goal is to make the gear ratio as close as possible to 1/6.931. For each
gear, the number of gears is between 12 and 60. The variables Ta, Tb, Td and Tf are the
number of teeth of gears A, B, D, and F, and the number of teeth must be an integer.

Figure 6. Gear train design Problem.

Use x1–x4 to represent the above four variables, and the mathematical description of
the problem is as follows:

Minimize:

f (x) =
(

1
6.931

− x1x2

x3x4

)2

Subject to:
12 ≤ xi ≤ 60, i = 1, 2, 3, 4

Table 10 shows the experimental results of the gear train design problem. As can be
seen from the table, both SASSA and PSO can get 1/6.931, but the mean value and variance
of SASSA are the smallest, indicating that its overall performance and stability are better.
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Figure 7 is the convergence curve. It can be seen that compared with other algorithms,
SASSA has significant advantages in terms of convergence accuracy and speed.

Table 10. Gear train design Problem.

Best Mean Worst Std

SASSA 0 2.5461 × 10−32 2.7810 × 10−31 7.7458 × 10−32

SSA 1.4130 × 10−23 1.3639 × 10−20 7.1462 × 10−20 2.2508 × 10−20

GWO 1.1932 × 10−17 6.3166 × 10−13 2.3137 × 10−12 6.8706 × 10−13

DE 1.9891 × 10−14 1.9877 × 10−11 2.1586 × 10−10 4.8930 × 10−11

BBO 8.0696 × 10−22 3.8308 × 10−18 1.8866 × 10−17 5.9474 × 10−18

ACO 5.0119 × 10−4 5.0119 × 10−4 5.0119 × 10−4 2.2247 × 10−19

PSO 0 1.8183 × 10−24 1.9587 × 10−23 5.0490 × 10−24

The convergence curve of gear train design problem is shown in Figure 7:

Figure 7. Convergence Curve of Gear train design Problem.

5.4.3. Optimal Operation of Alkylation Unit

The optimal operation of alkylation unit is a very common in the petroleum industry.
Figure 8 shows a simplified alkylation process flow [44]. As shown in the figure, the
olefin feedstock (100% butane), pure isobutane recycle and 100% isobutene supplement are
introduced into the reactor together with the acid catalyst, and then the reactor product is
passed through a fractionator, where isobutene and alkane are separated. The base product,
spent acid is also removed from the reactor.

Figure 8. Optimal Operation of Alkylation Unit.
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The main purpose of this problem is to increase the octane number of the olefin
feedstock under acidic conditions, and the objective function is defined as the alkylation
product. Literature [45] transformed this problem into a constrained optimization problem
with 7 variables and 14 constraints. The mathematical description is as follows:

Maximize:

f (x) = 0.035x1x6 + 1.715x1 + 10.0x2 + 4.0565x3 − 0.063x3x5

Subject to:

g1(x) = 0.0059553571x2
6x1 + 0.88392857x3 − 0.1175625x6x1 − x1 ≤ 0,

g2(x) = 1.1088x1 + 0.1303533x1x6 − 0.0066033x1x2
6 − x3 ≤ 0,

g3(x) = 6.66173269x2
6 − 56.596669x4 + 172.39878x5 − 10000− 191.20592x6 ≤ 0,

g4(x) = 1.08702x6 − 0.03762x2
6 + 0.32175x4 + 56.85075− x5 ≤ 0,

g5(x) = 0.006198x7x4x3 + 2462.3121x2 − 25.125634x2x4 − x3x4 ≤ 0,
g6(x) = 161.18996x3x4 + 5000.0x2x4 − 489510.0x2 − x3x4x7 ≤ 0,
g7(x) = 0.33x7 + 44.333333− x5 ≤ 0,
g8(x) = 0.022556x5 − 1.0− 0.007595x7 ≤ 0,
g9(x) = 0.00061x3 − 1.0− 0.0005x1 ≤ 0,
g10(x) = 0.819672x1 − x3 + 0.819672 ≤ 0,
g11(x) = 24500.0x2 − 250.0x2x4 − x3x4 ≤ 0,
g12(x) = 1020.4082x4x2 + 1.2244898x3x4 − 100000x2 ≤ 0,
g13(x) = 6.25x1x6 + 6.25x1 − 7.625x3 − 100000 ≤ 0,
g14(x) = 1.22x3 − x6x1 − x1 + 1.0 ≤ 0,

With bounds:
1000 ≤ x1 ≤ 2000,
0 ≤ x2 ≤ 100,
2000 ≤ x3 ≤ 4000,
0 ≤ x4 ≤ 100,
0 ≤ x5 ≤ 100,
0 ≤ x6 ≤ 20,
0 ≤ x7 ≤ 200.

We first converted the maximization problem into the minimization problem to solve it.
Table 11 shows that SASSA performs best in all standards, indicating that it can maximize
the alkylation product value and has a good effect on the optimization of the alkylation
process. Figure 9 is the convergence curve of the optimal operation of alkylation unit. It
can be seen from the figure that the convergence performance of the improved algorithm is
not optimal at the beginning. But at the later stage of the iteration, after a long period of
local stagnation, the improved algorithm still has the ability to get rid of the current local
best points and continue to explore so that the overall optimization performance is further
enhanced. This shows that the improvement strategy mentioned in the previous article for
the basic algorithm that tends to fall into a partial stagnation in the later iteration of the
iteration has played a role.

Table 11. Optimal Operation of Alkylation Unit.

Best Mean Worst Std

SASSA −452.8468 1.5985 × 103 7.1265 × 103 3.2772 × 103

SSA −443.2917 3.3583 × 104 7.4636 × 105 1.6777 × 105

GWO −431.5267 5.4967 × 106 5.2486 × 107 1.6104 × 107

DE −423.8519 7.7895 × 103 1.6719 × 104 6.7751 × 103

BBO −439.6189 1.4217 × 105 2.8428 × 106 6.3567 × 105

ACO 5.2070 × 1012 5.2070 × 1012 5.2070 × 1012 0
PSO −310.1030 2.0528 × 106 1.1166 × 107 3.4116 × 106
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The convergence curve of optimal operation of alkylation unit is shown in Figure 9:

Figure 9. Convergence Curve of Optimal Operation of Alkylation Unit.

5.4.4. Welded Beam Design

The problem of welded beam design can be described as: under the constraints such
as shear stress, bending stress of beam, bending load on bar, deflection of beam end and
boundary conditions, the optimal design variables h, l, t and b are sought to minimize the
cost of manufacturing welded beam [46], as shown in Figure 10:

Figure 10. Welded Beam Design.

Use x1–x4 to represent the above four variables, the mathematical description is
as follows:

Minimize:
f (x) = 0.04811x3x4(x2 + 14) + 1.10471x2

1x2

Subject to:
g1(x) = x1 − x4 ≤ 0,

g2(x) = δ(x)− δmax ≤ 0,
g3(x) = P ≤ Pc(x),

g4(x) = τmax ≥ τ(x),
g5(x) = σ(x)− σmax ≤ 0,

where:
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τ =
√

τ′2 + τ′′ 2 + 2τ′τ′′ x2
2R , τ′′ = RM

J , τ′ = P√
2x2x1

, M = P
( x2

2 + L
)
,

R =

√
x2

2
4 +

(
x1+x3

2

)2
, J = 2(

(
x2

2
4 +

(
x1+x3

2

)2
)√

2x2x1,

σ(x) = 6PL
x4x2

3
, σ(x) = 6PL3

Ex2
3x4

, Pc(x) = 4.013Ex3x3
4

6L2

(
1− x3

2L

√
E

4G

)
,

L = 14in, P = 6000lb, E = 30.106 psi, σmax = 30, 000psi,
τmax = 13, 600psi, G = 12.106 psi, δmax = 0.25in,

With bounds:
0.125 ≤ x1 ≤ 2,
0.1 ≤ x2, x3 ≤ 10,
0.1 ≤ x4 ≤ 2.

The experimental results are shown in Table 12. It can be seen that the improved
algorithm can get the best cost value among all the algorithms. Figure 11 shows that the
improved algorithm has the best iteration speed, indicating that it has the fastest speed
when it obtains the best value.

Table 12. Welded Beam Design.

Best Mean Worst Std

SASSA 1.7208 1.7232 1.7319 0.0016
SSA 1.7225 1.7675 1.9785 0.0817

GWO 1.7555 1.9321 2.3010 0.1561
DE 1.0890 × 1014 1.0890 × 1014 1.0890 × 1014 0.0321

BBO 1.0890 × 1014 1.0890 × 1014 1.0890 × 1014 0.1447
ACO 1.6916 × 105 1.6916 × 105 1.6916 × 105 5.9720 × 10−11

PSO 1.0890 × 1014 1.0890 × 1014 1.0890 × 1014 0.0321

Figure 11. Convergence Curve of Welded Beam Design.

The convergence curve of optimal operation of alkylation unit is shown in Figure 11:
Use the data of the improved algorithm in Tables 9–12 on the four engineering opti-

mization problems to get the ranking of Friedman test. As shown in Table 13, compared
with other successful meta-heuristic algorithms, SASSA can also get the best ranking in en-
gineering optimization problems. The results in Table 14 also show that the null hypothesis
is rejected so the Friedman ranking is correct.
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Table 13. The Friedman ranks(engineering optimization problems).

Rank Name F-Rank

0 SASSA 1
1 SSA 2.67
2 PSO 4
3 DE 4.33
4 BBO 4.33
5 GWO 4.67
6 ACO 7

Table 14. Related statistical values (engineering optimization problems).

Chi-sq’ Prob > Chi-sq’ (p) Critical Value

13.46341463 3.62 × 10−2 12.59

6. Conclusions

The salp swarm algorithm is a meta-heuristic algorithm based on the predatory
behavior of salp, which simulates the group of salp to join end-to-end in the form of a chain
and move successively. The salp swarm algorithm has some disadvantages such as slow
convergence speed and poor optimization ability. In this paper, the SASSA is constructed
by combining chaos initialization population, symmetric adaptive population division
and a simulated annealing mechanism based on symmetric perturbation with the salp
swarm algorithm. In order to test the ability of the algorithm, 21 benchmark functions were
introduced in this paper to evaluate from the aspects of mean value, Std and lowest value.
The results show that the improved algorithm proposed in this paper can yield better
results for three different types of test functions. At the same time, in order to verify the
ability of the improved algorithm to solve practical problems, this paper used the improved
algorithm to solve engineering optimization problems. Weight minimization of a speed
reducer, gear train design problem, optimal operation of alkylation unit and welded beam
design were selected for the experiment, and the experimental results were compared with
SSA, GWO, DE, BBO, ACO and PSO, the experimental results prove that the algorithm
proposed in this paper has better optimization ability and stability when dealing with
engineering optimization problems, and the algorithm’s exploratory and mining properties
and convergence mode have also been significantly improved. The problems cover the
fields of mechanical engineering and chemical engineering. This provides directions and
ideas for the improvement of the basic salp swarm algorithm, and also provides a reference
solution for solving complex engineering optimization problems in reality.
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