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Abstract: In this communication, using a generalized conformable differential operator, a simulation
of the well-known Newton’s law of cooling is made. In particular, we use the conformable t1−α,
e(1−α)t and non-conformable t−α kernels. The analytical solution for each kernel is given in terms of
the conformable order derivative 0 < α ≤ 1. Then, the method for inverse problem solving, using
Bayesian estimation with real temperature data to calculate the parameters of interest, is applied. It
is shown that these conformable approaches have an advantage with respect to ordinary derivatives.
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1. Introduction

The fractional calculus idea was first suggested by Leibniz and L’Hopital in a letter
three centuries ago; it is an area of classical mathematics which deals with derivatives and
integrals of arbitrary orders [1,2]. Along its history, many fractional derivative definitions
have been introduced [3,4]. All of them are defined via fractional integrals, thus they
inherit nonlocal properties from integrals. Heredity and nonlocality are properties of these
definitions, important in many application fields. In particular, in recent years, the notion
of conformable derivative was introduced in terms of an incremental quotient, which
opened a new direction in this area: the conformable calculus. The conformable derivative
definition was first given by Khalil et al. in [5,6], with 0 < α < 1, this operator shows a
similarity to the integer order derivative and overcomes many of the shortcomings of the
classical fractional derivatives [1,2]. In particular, if f is differentiable the result is obtained
by multiplying the first derivative by a certain factor with fractional power. Recently, a
new non conformable derivative definition has been introduced in [7]. Although these
definitions are valid and work in the case 0 < α < 1, a general definition was needed
for conformable derivatives of any order, integer or not, generalizing the well known
conformable derivatives to higher orders [8]. On the other hand, along with this theoretical
development, the applications of fractional and generalized calculus have been increased to
various areas of science and technology [9–18], and have shown advances in relation to the
known integer order. In [19], the conformable derivative was applied to the Newton’s law
of cooling, having as solution the Kohlraush stretched exponential function. In [20], it was
performed an experimental setup to verify the effectiveness of the conformable derivative.
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In this communication, we start with the ordinary Newton’s law of cooling and
construct its corresponding fractional equation using the generalized conformable deriva-
tive [7]. After that, based on a set of experimental data, we studied Newton’s law of cooling
using different kernels, conformable and non-conformable. Then, the method of the in-
verse problem solving using Bayesian estimation is used to calculate the parameters of
interest. It is shown that these conformable approaches have an advantage with respect to
ordinary derivative.

2. Preliminary

In [7] a generalized conformable derivative was defined in the following way (see
also [16]). Given a function f : [0,+∞) → R. Then, the N-derivative of f of order α is
defined by

Nα
F f (t) = lim

ε→0

f (t + εF(t, α))− f (t)
ε

, (1)

for all t > 0, α ∈ (0, 1) being F(t, α) some function. If f is α—differentiable in some (0, α),
and lim

t→0+
N(α)

F f (t) exists, then define N(α)
F f (0) = lim

t→0+
N(α)

F f (t). The definition given in this

way is a natural generalization of the ordinary derivative. This definition generalizes the
conformable derivative given in [5] and its properties have been studied.

The Nα
F f (t) derivative defined above (1) is a local type derivative, because it is about

a limit of a certain incremental quotient. So, its geometric interpretation should be similar
to the interpretation of the ordinary derivative: the slope of the tangent line to the graph of
the function at the point (t, f (t)), since [7]

Nα
F f (t) = F(t, α) f ′(t), (2)

where f ′ is an ordinary derivative. The factor F(t, α) provides us the information about
the shape of the curve that represents the coordinate f (t). Even more, it is clear that the
influence of the kernel F(t, α), implies some variation of the “speed of convergence” (greater
or lesser) with respect to the limit of the incremental quotient for the ordinary derivative.

On the other hand, Newton’s law of cooling states that the rate of heat loss of a
body is proportional to the temperature difference between the body and its environment.
The transfer of heat is important in the processes because it is a type of energy that is in
motion due to a temperature difference, and it is present in processes such as condensation,
vaporization, crystallization, climate changes, chemical reactions and so forth, where
heat transfer has its own mechanisms and each of them has particular characteristics. In
particular, what Newton’s law affirms is that the cooling of a body is directly proportional
to the difference between the instantaneous temperature of the body T(t), t > 0 and the
environment Te:

dT
dt

= −k(T(t)− Te), T(0) = T0, (3)

where T0 is the initial temperature at t = 0. This expression is not very precise and is
considered only a valid approximation for small differences between T and Te. Newton’s
law of cooling is generally limited to simple cases where the mode of energy transfer is
convection, from a solid surface to a surrounding fluid in motion. In any case the above
expression is useful to show how the cooling of a body follows approximately a law of
exponential decay,

T(t) = Te + (T0 − Te)e−kt. (4)

Figure 1 shows the behavior of the function (4).
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Figure 1. Shows the curve associated with the temperature T(t) for the ordinary model (4).

To determine the value of k, we suppose that after some given time t1, the temperature
changes from T to T1, with these conditions we can find the value of k from (4), getting,

k =
1
t1

ln
(

T0 − Te

T1 − Te

)
. (5)

3. Results

In this work, we model the Newton’s law of cooling using a conformable and non-
conformable kernels in a generalized conformable differential operator. From the numerical
study carried out, some methodological observations are made.

First of all, we must ensure that by transforming Equation (3) to its corresponding
fractional equation, the physical parameters in it retain their physical units. Following [21],
it is necessary to take into account “the distortion” suffered by the derivative when going
from the ordinary case to the non-integer. We can use the physical parameter [k] = s−1 to
pass from the ordinary differential operator to the fractional one, as follows

d
dt

= k1−α dα

dtα , 0 < α ≤ 1. (6)

In this way, the differential operator retains its dimensionality [d/dt] = s−1, and α is
the order of derivative. Substituting (6) in (3), we obtain the fractional Newton’s law of
cooling, as

dαT
dtα

= −kα(T(t)− Te), 0 < α ≤ 1. (7)

A similar equation has been solved by applying Caputo and Riemann-Liouville type
fractional derivatives for water, mustard oil and mercury [17]. In [19] the conformable
derivative was applied to the same equation, and later applied to experimental data for the
water [20]. In this case, a closed expression for the parameter k was obtained, which cannot
be obtained by using fractional derivatives [17].

In order to find a solution as accurate as possible that predicts the experimental results,
in this work we analyse different kernels, conformable and nonconformable. Using the
property (2) together with (6), we get

d f
dt

= k1−α dα f
dtα = k1−αNα f (t) = k1−αF(t, α)

d f (t)
dt

. (8)
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Replacing this operator in the expression (3), we obtain the general conformable
Newton’s low of cooling

dT
dt

= − kα

F(t, α)

(
T(t)− Te

)
. (9)

This equation is an ordinary differential equation with parameter 0 < α ≤ 1, when
T(0) = T0, it has the particular solution

T(t, α) = Te + (T0 − Te) exp
(
−
∫ kα

F(t, α)
dt
)

, 0 < α ≤ 1, (10)

where the function F(t, α) plays the role of a generalized conformable kernel. We consider
different types of particular kernels.

Khalil Kernel: In this case, the generalized kernel F(t, α) takes the particular form
F(t, α) = t1−α. Then, from (10), we have the particular solution

T(t, α) = Te + (T0 − Te)e−
kα

α tα
, (11)

fulfilled the initial condition T(0) = T0. Assuming that after a time τ, the temperature is
T1, then the convection coefficient is [19],

k(α) =
[ α

τα
ln
(T0 − Te

T1 − Te

)]1/α
. (12)

It is easy to see that, when α → 1 we get (4) and (5). Figure 2 shows the behaviour
of k(α) depending on the some values of α (12), associated with the conformable model.
Figure 3 shows the behaviour of temperature with regard to time associated with the model
with derivative conformable with kernel t1−α (11), for different values of α.
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Figure 2. Shows the behavior of k(α) (12) depending on the some values of α.
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Figure 3. Shows the curves associated with the temperature T(t, α) (11), associated with some values
of α; {1 (black), 0.9 (yellow), 0.75 (blue), 0.5 (green), 0.25 (red).

Conformable kernel: This particular kernel has the form F(t, α) = e(1−α)t, then from (10),
we have

T(t, α) = Te + (T0 − Te) exp
(
− kα

α− 1
e(α−1)t

)
. (13)

Then, after a certain time τ the body has the temperature T1, the convection coefficient
is obtained in a closed form

k(α) =
[ 1− α

e(α−1)τ
ln
(T1 − Te

T0 − Te

)]1/α
. (14)

Figure 4 shows the behaviour of k(α) (14) for some values of α, and Figure 5 shows
some curves which represent the Equation (13) varying the variable t for some values of α
using the conformable kernel e(1−α)t.
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Figure 4. Shows the behavior of k(α) depending on the values of α, (14).
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Figure 5. Shows the curves associated with the direct type problem (13), for the values of α {1 (black),
0.9 (yellow), 0.75 (blue), 0.5 (green), 0.25 (red)}.

Non conformable kernel: Finally, we consider the kernel F(t, α) = t−α. In this case,
from (10), we get the solution

T(t, α) = Te + (T0 − Te)e−
kα

α+1 tα+1
, (15)

with the corresponding convective coefficient

k(α) =
[α + 1

τα+1 ln
(T0 − Te

T1 − Te

)]1/α
. (16)

The dependence of k(α) and the temperature T(t, α) with respect to α are given in
Figures 6 and 7, for the models with non-conformable derivative (15) and (16) with kernel
t−α. In the case of Figure 7, the curve of the ordinary model (4) with discontinuous lines in
black is also shown.
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Figure 6. Shows the behaviour of k(α) (16), depending on the values of α.
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Figure 7. Shows the curves associated with the direct type problem (15), for the values of α {1 (black),
0.9 (yellow), 0.75 (blue), 0.5 (green), 0.25 (red)}. The ordinary model shown with discontinuous lines
in black color.

Remark 1. We must point out that, in the case of conformable kernels the ordinary case has not
been drawn, because for α = 1, these derivatives are reduced to the classical derivative, therefore,
they coincide with the model. In the non-conformable case, when α = 1 this does not happen, hence
the need to compare with the ordinary model.

4. Materials and Methods

In the same direction, an observation equation is associated to the model

yi = g(T(ti)) + εi, i = 1, . . . , n, (17)

where yi correspond to the i− th observed value under uncertainty from a solution of (9)
associated with temperature values at the discrete time ti ∈ [0; t]; i = 1, 2, . . . , n; g is the
observation function and εi are measurement errors, which are considered as independent
and identically distributed (i.i.d.) random variables from a normal distribution, with mean
zero and constant variance σ2, denoted by εi ∼ N (0, σ2).

For the model defined in (9) and (17), the parameter of interest is φ = (α, k, Te, T0, σ2).
The prior distributions proposed are: k ∼ G(γk, µk), Te ∼ G(γe, µe), T0 ∼ G(γ0, µ0) and
τ ∼ G(γτ , µτ); where G(γ, µ) denotes the Gamma distribution with shape parameter γ
and rate parameter µ. U is the continuous uniform distribution on the interval (0, 1);
α ∼ U (0, 1), τ = 1/σ2.

The parameters introduced in the prior distributions are called hyperparameters. The
prior distributions have been defined in order to reflect the information already known about
the possible values of the parameters of interest. Taking for granted prior independence
of the parameters, the joint prior distribution can be written as: p(φ|hyperparameters) =
p(α)p(k|γk, µk), p(Te|γTe, µTe), p(T0|γT0, µT0), p(τ|γτ , µτ), where p(a|γa, µa),p(α) and p(τ|
γτ , µτ) have been previously defined.

Let O = (O1, O2, . . . , On) denote observed data at times, which are independent and
identically distributed (t1, t2, . . . , tn) from the model defined by (9) and (17), the likelihood
function is given by

L(O|φ) =
n

∏
i=1

fO(Oi) =
1

(σ
√

2π)n
exp

{
− 1

2σ2

n

∑
i=1

(Oi − g(T(ti)))
2

}
, (18)
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where T(ti), i = 1, . . . , n is a solution of (9). Then, applying Bayes theorem, the posterior
distribution of the parameters of interest is given by

p(φ|O) =
L(O|φ)p(φ)∫
	 L(O|φ)p(φ)dφ

, (19)

where 	 denotes the parameter space of φ. It is known that,

p(φ|O) ∝ L(O|φ)p(φ). (20)

Adopting a loss quadratic function, the Bayesian point estimation is the posterior
mean of φ̂B, which is given by φ̂B = E(φ|O). Markov Chain Monte Carlo simulations
(MCMC) are employed to work with (19). One of the most popular MCMC techniques
is the Metropolis-Hastings [22]. WinBUGS and JAGS are some computer programs that
implement MCMC algorithms.

With the objective of evaluation the behaviour of the solution of the differential
equation with initial condition (9), according to different fractional approaches (classical,
Khalil, conformable, non-conformable) in problems of direct and inverse type, was used
the R software [23] and the packages associated with the Bayesian estimate [24].

Now, we show an application of the inverse problem resolution using a Bayesian
estimation with real temperature data [20], for different kernels; Khalil F(t, α) = t1−α (blue),
Conformable Derivative with F(t, α) = e(1−α)t (red), non-conformable F(t, α) = t−α (yellow)
and Ordinary F(t, α) = 1 (black). Figure 8 shows the adjustments corresponding to the
observations (black points) associated with real data.
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Figure 8. Temperature vs. t.

The errors in the adjustments according to the different approaches are the following:
Khalil et al. (0.2034), F(t, α) = e(α−1)t (3.0500), non-conformable (8.8700) and Ordinary
(3.1902). Figure 9 shows the trace and estimated posterior distributions of the parameters
of interest using Khalil fractional derivatives.
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The estimates of the parameters α, k, Te, T0, and τ related to the real data [20], according
to the different approach are:

Derivative α Te T0 k τ

Ordinary − 2.3619 8.4119 2.5933 0.1191
F(t, α) = e(1−α)t 0.3703 1.9094 2.0215 13.0428 0.0961
Khalil et al. 0.7923 2.1510 8.8381 1.9983 0.02607
non-Conformable 0.6666 2.3872 7.1298 10.8981 0.3973

Figure 10 shows the adjustments corresponding to the observations (black points)
associated with real data.
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Figure 10. Temperature vs. t.

The errors in the adjustments, according to the different approaches are the following:
Khalil et al. (2.6412), F(t, α) = e(α−1)t (5.5393), non-conformable (17.4638) and Ordinary
(6.5927).

The estimates of the parameters α, k, Te, T0, and τ related to the real data, according to
the different approach are:

Derivative α Te T0 k τ

Ordinary − 3.2904 9.5120 0.0891 0.2127
F(t, α) = e(1−α)t 1.2440 3.0916 0.0711 0.9477 0.1557
Khalil et al. 2.6813 10.1773 0.0516 0.7107 0.1127
non-Conformable 1.2440 3.0916 0.0711 0.9477 0.1557

Figure 11 shows the adjustments corresponding to the observations (black points)
associated with real data.
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Figure 11. Temperature vs. t.

The errors in the adjustments according to the different approaches are the following:
Khalil et al.(1.7671), F(t, α) = e(α−1)t (5.5023), non-conformable (21.2764) and Ordinary
(1.9976).

The estimates of the parameters α, k, Te, T0, and τ related to the real data, according to
the different approach are:

Derivative α Te T0 k τ

Ordinary − 3.4686 9.9086 0.0406 0.0703
F(t, α) = e(1−α)t 2.9407 3.1779 0.0407 0.9876 0.0791
Khalil et al. 3.2229 10.0060 0.0357 0.9354 0.0640
non-Conformable 2.940 3.1779 0.04079 0.9876 0.0791

5. Conclusions

In this work, a simulation of the well-known Newton’s Law of Cooling using a
generalized differential operator with different kernels F(t, α) is made. From the results
obtained, the conformable derivative F(t, α) = t1−α [5] shows the best fit, verifying the
results obtained in [20]. However, the following questions arise:

(1) In any model, the conformable derivatives provide the best fit? We believe that each
model must be analysed separately, for two fundamental questions: first, because
it is clear that if α → 1 we obtain the ordinary derivative, then there will always be
a “critical” value of α from which this model will fit as well as ordinary model. For
asymptotic properties (when t→ ∞) the non-conformable model used et−α

behaves
like the ordinary model, hence values of t large enough, this model better represents
the behaviour of the model (in this regard you can consult [13]).

(2) The distortion factor used, see (6), is the same in all models, which leads us to the
conclusion that said correction factor must depend on the kernel used and not be
unique, that is, we must use a factor of the type F(k−1, α). This would improve the
fit of the remaining models. The application of this type of generalized equations
of Newton’s law of cooling can be applied in the study of the thermal dynamics
of systems with complex spatial profiles (see [25]). Estimating the time of death is
a fundamental problem in forensic medicine, and to calculate it, Newton’s cooling
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model and its corresponding generalization, the Marshall and Hoare model, have
been applied (cf. [17]). The fractional and generalized generalization of the Marshall
and Hoare model will be analysed in detail in a future work.
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