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Abstract: Differential equations with delay arguments are one of the branches of functional differen-
tial equations which take into account the system’s past, allowing for more accurate and efficient
future prediction. The symmetry of the equations in terms of positive and negative solutions plays a
fundamental and important role in the study of oscillation. In this paper, we study the oscillatory
behavior of a class of odd-order neutral delay differential equations. We establish new sufficient
conditions for all solutions of such equations to be oscillatory. The obtained results improve, simplify
and complement many existing results.
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1. Introduction

Consider the odd-order neutral delay differential equation (NDDE)(
r(t)

(
Υ(n−1)(t)

)α)′
+ q(t) f (x(h(t))) = 0, t ≥ t0, (1)

where n > 1 is odd, α is a quotient of odd positive integers, and

Υ(t) := x(t) + p(t)x(ζ(t)).

Throughout this paper, we assume the following :

(I1) r, h and ζ are continuously differentiable real-valued functions on [t0, ∞), and p, q
and f are continuous real-valued functions on [t0, ∞).

(I2) r(t) > 0, r′(t) ≥ 0, 0 < p(t) ≤ p0 < ∞, q ≥ 0 does not vanish identically, and
η(t0) = ∞, where

η(t) :=
∫ ∞

t
r−1/α(s)ds;

(I3) h(t) < t, ζ(t) < t, and limt→∞ h(t) = limt→∞ ζ(t) = ∞.
(I4) f (x) ≥ kxα for all x 6= 0, where k is a positive constant (note that xα = −|x|α for

x < 0).

By a solution of (1), we mean a continuous real-valued function x(t) for t ≥ tx ≥ t0,

which has the property: Υ is continuously differentiable n times for t ≥ tx, r
(

Υ(n−1)
)α

is
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continuously differentiable for t ≥ tx, and x satisfies (1) on [tx, ∞). We consider only the
nontrivial solutions of (1) is present on some half-line [tx, ∞) and satisfying the condition
sup{|x(t)| : t ≤ t < ∞} > 0 for any t ≥ tx.

On many occasions, symmetries have appeared in mathematical formulations that
have become essential for solving problems or delving further into research. High quality
studies that use nontrivial mathematics and their symmetries applied to relevant prob-
lems from all areas were presented. In fact, in recent years, many monographs and a lot
of research papers have been devoted to the behavior of solutions of delay differential
equations. This is due to its relevance for different life science applications and its effec-
tiveness in finding solutions of real world problems such as natural sciences, technology,
population dynamics, medicine dynamics, social sciences and genetic engineering. For
some of these applications, we refer to [1–3]. A study of the behavior of solutions to higher
order differential equations yield much fewer results than for the least order equations
although they are of the utmost importance in a lot of applications, especially neutral delay
differential equations. In the literature, there are many papers and books which study the
oscillatory and asymptotic behavior of solutions of neutral delay differential equations
by using different technique in order to establish some sufficient conditions which ensure
oscillatory behavior of the solutions of (1), see [4–6].

The authors in [1,3,7] have studied the oscillatory behavior of the higher-order differ-
ential equation ((

x(n−1)(t)
)α)′

+ q(t)xβ(h(t)) = 0.

And the author of [8] extended the results to the following equation

(
r(t)

(
x(n−1)(t)

)α)′
+ q(t)xα(h(t)) = 0.

Agarwal, Li and Rath [9–12] investigated the oscillatory behavior of quasi-linear
neutral differential equation(

r(t)
(
(x(t) + p(t)x(ζ(t)))(n−1)

)α)′
+ q(t)xα(h(t)) = 0, for t ≥ t0,

under the condition
0 ≤ p(t) < 1.

The latter differential equation was studied by Xing et al. in [13] under the condition

0 ≤ p(t) < ∞.

The aim of this paper is to study the oscillatory behavior of the solutions of odd-order
NDDE (1). By using Riccati transformation, we establish some sufficient conditions which
ensure that every solution of (1) is either oscillatory or tends to zero.

2. Auxiliary Results

In order to prove our main results, we will employ the following lemmas.

Lemma 1 ([14] Lemma (2.3)). Let G(v) = Cv− Dv(α+1)/α where C, D > 0. Then G attains
its maximum value on R at v∗ = (αC/(α + 1)D)α and

max
v∈R

G(v) = G(v∗) =
αα

(α + 1)α+1
Cα+1

Dα
. (2)

Lemma 2 ([15]). Assume that c1, c2 ∈ [0, ∞) and γ > 0. Then(
2
i=1ci

)γ
≤ µ2

i=1cγ
i , (3)
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where

µ(γ) :=
{

1 if γ ≤ 1,
2γ−1 if γ > 1.

Lemma 3. Let f ∈ Cn([t0, ∞), (0, ∞)). Assume that f (n)(t) is of fixed sign and not identically
zero on [t0, ∞) and that there exists a t1 ≥ t0 such that f (n−1)(t) f (n)(t) ≤ 0 for all t ≥ t1. If
limt→∞ f (t) 6= 0, then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

f (t) ≥ µ

(n− 1)!
tn−1

∣∣∣ f (n−1)(t)
∣∣∣ for t ≥ tµ.

Lemma 4. Let the function x be a positive solution to (1) on the interval [t0, ∞). Then there exists

t1 ≥ t0 such that, for t ≥ t1, Υ(t) > 0,
(

r
(
(Υ)(n−1)

)α)′
≤ 0 and there occur two cases for the

derivatives of the function Υ:

(I) Υ′(t) > 0, Υ′′(t) > 0, Υ(n−1)(t) > 0, Υ(n)(t) ≤ 0;
(II) Υ′(t) < 0, Υ′′(t) > 0, Υ(n−1)(t) > 0, Υ(n)(t) ≤ 0.

Proof. By the definition of a positive solution to (1) there exists a t1 ∈ [t0, ∞) such that
x(t) > 0, x(h(t)) > 0 and x(ζ(t)) > 0, for t ≥ t1. By the definition of Υ, it is easy to see

that Υ(t) > 0. Furthermore, from (1), we have
(

r
(
(Υ)(n−1)

)α)′
≤ 0. The rest of the proof

is similar to proof of ([3] Lemma 2). Thus, the proof completed.

Lemma 5. Let x be a positive solution of (1), Υ satisfy (I I) and put

η̃(t) =
1

r
1
α (t)

(∫ ∞

t
q(s)ds

) 1
α

.

If ∫ ∞

t0

η̃(s)sn−2ds = ∞, (4)

then limt→∞ x(t) = limt→∞ Υ(t) = 0.

Proof. Let x be a positive solution of (1). Using (I4) in (1), we have(
r
(
(Υ)(n−1)

)α)′
(t) + kq(t)xα(h(t)) ≤ 0. (5)

From (II), we note that limt→∞ Υ(t) = c ≥ 0, due to Υ(t) > 0 and Υ′(t) < 0. Assume
that c > 0. Then for any ε > 0, we have ε + c > Υ(t) > c, eventually. By definition of Υ(t),
we have

x(t) = Υ(t)− p(t)x(ζ(t)) ≥ Υ(t)− p(t)Υ(ζ(t)),

thus,

x(t) ≥ c− p0(ε + c) =
c− p0(ε + c)

ε + c
(ε + c).

This implies that
x(t) ≥ $Υ(t), (6)

where $ = c−p0(ε+c)
ε+c > 0. Using (6) in (5), we obtain(

r
(
(Υ)(n−1)

)α)′
(t) + k$αq(t)Υα(h(t)) ≤ 0.
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Integrating the above inequality from t to ∞, we obtain

r(t)
(

Υ(n−1)(t)
)α
≥ k$α

∫ ∞

t
q(s)Υα(h(s))ds.

By limt→∞ Υ(t) > c, it follows that

Υ(n−1)(t) ≥ $ck
1
α η̃(t). (7)

Integrating (7) twice from t to ∞, we have

Υ(n−3)(t) ≥ $ck
1
α

∫ ∞

t

∫ ∞

u
η̃(s)dsdu = $ck

1
α

∫ ∞

t
η̃(s)(s− t)ds.

Repeating this procedure, we arrive at

−Υ′(t) ≥ $ck
1
α

(n− 3)!

∫ ∞

t
η̃(s)(s− t)n−3ds.

Now, integrating from t1 to ∞, we see that

Υ(t1) ≥
$ck

1
α

(n− 2)!

∫ ∞

t1

η̃(s)(s− t1)
n−2ds ≥ $ck

1
α

2n−2(n− 2)!

∫ ∞

2t1

η̃(s)sn−2ds,

which contradicts (4), and so we have verified that limt→∞ Υ(t) = 0.

3. Main Results

In the following lemma, we will use the notation q̃(t) := min{q(t), q(h(t))}, q̃2(t) :=
min

{
q
(
h−1(t)

)
, q
(
h−1(ζ(t))

)}
and

ζ ′ ≥ ζ0 > 0; (8)(
h−1(t)

)′
≥ h0 > 0. (9)

Lemma 6. Let x be a positive solution of the equation in (1). If (8) and the equality h ◦ ζ = ζ ◦ h
hold, then the following inequality is valid(

r(t)
(

Υ(n−1)(t)
)α

+
pα

0
ζ0

r(ζ(t))
(

Υ(n−1)(ζ(t))
)α
)′

+
k
µ

q̃(t)Υα(h(t)) ≤ 0. (10)

Moreover, if (8) and (9) hold, then(
r
(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α)′
h0

+
pα

0

(
r
(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α)′
h0ζ0

+
k
µ

q̃2(t)Υα(t) ≤ 0. (11)

Proof. Let x be a positive solution of (1). Then, there exists t1 ≥ t0 such that x(t) > 0,
x(h(t)) > 0 and x(ζ(t)) > 0 for t ≥ t1. By the equality Υ(t) = x(t) + p(t)x(ζ(t)) together
with Lemma 2, we obtain the inequality

Υα(t) ≤ µ(xα(t) + pα
0 xα(ζ(t))). (12)
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From (5) and the properties h ◦ ζ = ζ ◦ h and ζ ′ ≥ ζ0, we obtain

0 ≥
pα

0
ζ ′(t)

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
+ pα

0kq(ζ(t))xα(h(ζ(t)))

≥
pα

0
ζ0

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
+ pα

0kq(ζ(t))xα(ζ(h(t))). (13)

Using the latter inequalities and taking those in (5) and (13) into account as well, we
obtain

0 ≥
(

r(t)
(

Υ(n−1)(t)
)α)′

+
pα

0
ζ0

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
+kq(t)xα(h(t)) + pα

0kq(ζ(t))xα(ζ(h(t)))

≥
(

r(t)
(

Υ(n−1)(t)
)α)′

+
pα

0
ζ0

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
+kq̃(t)(xα(h(t)) + pα

0 xα(ζ(h(t)))),

which with (12) gives

0 ≥
(

r(t)
(

Υ(n−1)(t)
)α)′

+
pα

0
ζ0

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
+

k
µ

q̃(t)Υα(h(t))

≥
(

r(t)
(

Υ(n−1)(t)
)α

+
pα

0
ζ0

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α))′
+

k
µ

q̃(t)Υα(h(t)).

This proves the inequality in (10). In order to show inequality (11) we proceed as
follows. From (8) and (9), we obtain

0 ≥ 1

(h−1(t))′
(

r
(

h−1(t)
)(

Υ(n−1)
(

h−1(t)
))α)′

+ kq
(

h−1(t)
)

xα(t)

≥ 1
h0

(
r
(

h−1(t)
)(

Υ(n−1)
(

h−1(t)
))α)′

+ kq
(

h−1(t)
)

xα(t). (14)

Moreover,

0 ≥
pα

0

(h−1(ζ(t)))′
(

r
(

h−1(ζ(t))
)(

Υ(n−1)
(

h−1(ζ(t))
))α)′

+pα
0kq
(

h−1(ζ(t))
)

xα(ζ(t))

≥
pα

0
h0ζ0

(
r
(

h−1(ζ(t))
)(

Υ(n−1)
(

h−1(ζ(t))
))α)′

+ pα
0kq
(

h−1(ζ(t))
)

xα(ζ(t)). (15)

Combining (14) with (15) and taking into account (12), we have

0 ≥ 1
h0

(
r
(

h−1(t)
)(

Υ(n−1)
(

h−1(t)
))α)′

+
k
µ

q̃2(t)(x(t) + p0x(ζ(t)))α

+
pα

0
h0ζ0

(
r
(

h−1(ζ(t))
)(

Υ(n−1)
(

h−1(ζ(t))
))α)′

,

that is

0 ≥ 1
h0

(
r
(

h−1(t)
)(

Υ(n−1)
(

h−1(t)
))α

+
pα

0
ζ0

r
(

h−1(ζ(t))
)(

Υ(n−1)
(

h−1(ζ(t))
))α

)′
+

k
µ

q̃2(t)Υα(t).

This proves (11) and completes the proof of Lemma 6.
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Theorem 1. Suppouse that h(t) ≤ ζ(t), h ◦ ζ = ζ ◦ h, h′(t) > 0 and (8) hold. Morever, assume
that (4) is satisfied and that there exists a function δ ∈ C1([t0, ∞), (0, ∞)) with the property that
for all sufficiently large t1 ≥ t0,there exists t2 ≥ t1 such that

lim sup
t→∞

∫ t

t1

[
kδ(s)

q̃(s)
µ
− ((n− 2)!)α

µα(α + 1)α+1

(
1 +

pα
0

ζ0

)
r(s)(δ′(s))α+1

(δ(s)hn−2(s)h′(s))α

]
ds = ∞. (16)

Then, a solution x(t) to (1) either oscillates or else tends to zero when t→ ∞.

Proof. Let x be a positive solution of (1). Then, there exist t1 ≥ t0 such that x(t) > 0,
x(h(t)) > 0 and x(ζ(t)) > 0 for t ≥ t1. Define the positive function ω by

ω(t) = δ(t)
r(t)

(
Υ(n−1)(t)

)α

Υα(h(t))
. (17)

Hence, by differentiating (17), we obtain

ω′(t) = δ′(t)
r
(
(Υ)(n−1)

)α

Υα(h(t))
+ δ(t)

(
r(t)

(
Υ(n−1)(t)

)α)′
Υα(h(t))

−
αδ(t)r(t)

(
Υ(n−1)(t)

)α
Υα−1(h(t))Υ′(h(t))h′(t)

Υ2α(h(t))
. (18)

Since Υ
′
> 0, Υ

′′
> 0, we see that limt→∞ Υ

′
(t) 6= 0, using Lemma 3 with f = Υ

′
, we

obtain
Υ
′
(t) ≥ µ

(n− 2)!
tn−2Υ(n−1)(t),

for every µ ∈ (0, 1). Thus, by Υ(n)(t) ≤ 0, we obtain

Υ
′
(h(t)) ≥ µ

(n− 2)!
(h(t))n−2Υ(n−1)(h(t)) ≥ µ

(n− 2)!
(h(t))n−2Υ(n−1)(t). (19)

Substituting (17) and (19) into (18) implies

ω′(t) ≤ δ′(t)
r(t)

(
Υ(n−1)(t)

)α

Υα(h(t))
+ δ(t)

(
r(t)

(
Υ(n−1)(t)

)α)′
Υα(h(t))

−
(

Υ(n−1)(t)
Υ(h(t))

)α+1
αδ(t)r(t)µhn−2(t)h′(t)

(n− 2)!

≤ δ(t)

(
r(t)

(
Υ(n−1)(t)

)α)′
Υα(h(t))

+
δ′(t)
δ(t)

ω(t)

−αδ(t)r(t)µhn−2(t)h′(t)
(n− 2)!

(
ω(t)

δ(t)r(t)

) α+1
α

,

that is,

ω′(t) ≤ δ(t)

(
r(t)

(
Υ(n−1)(t)

)α)′
Υα(h(t))

+
δ′(t)
δ(t)

ω(t)

− αµhn−2(t)h′(t)
(n− 2)!δ1/α(t)r1/α(t)

ω(α+1)/α(t). (20)
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Now, define another positive function v by

v(t) = δ(t)
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α

Υα(h(t))
. (21)

By differentiating (21), we obtain

v′(t) = δ′(t)
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α

Υα(h(t))
+

δ(t)
(

r(ζ(t))
(

Υ(n−1)(ζ(t))
)α)′

Υα(h(t))

−
αδ(t)r(ζ(t))

(
Υ(n−1)(ζ(t))

)α
Υα−1(h(t))Υ′(h(t))h′(t)

Υ2α(h(t))
. (22)

From (19), h(t) ≤ ζ(t) and Υ(n)(t) ≤ 0, we have

Υ
′
(h(t)) ≥ µ

(n− 2)!
(h(t))n−2Υ(n−1)(h(t)) ≥ µ

(n− 2)!
(h(t))n−2Υ(n−1)(ζ(t)). (23)

Substituting (23) and (21) into (22), implies

v′(t) ≤ δ′(t)
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α

Υα(h(t))
+ δ(t)

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
Υα(h(t))

−
(

Υ(n−1)(ζ(t))
Υ(h(t))

)α+1
αδ(t)r(ζ(t))µhn−2(t)h′(t)

(n− 2)!

≤ δ(t)

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
Υα(h(t))

+
δ′(t)
δ(t)

v(t)

−αδ(t)r(ζ(t))µhn−2(t)h′(t)
(n− 2)!

(
v(t)

δ(t)r(ζ(t))

) α+1
α

.

By r
′
(t) > 0, we obtain

v′(t) ≤ δ(t)

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
Υα(h(t))

+
δ′(t)
δ(t)

v(t)

− αµhn−2(t)h′(t)
(n− 2)!δ1/α(t)r1/α(t)

v(α+1)/α(t). (24)

Now, using inequalities (20) and (24), we obtain

ω′(t) +
pα

0
ζ0

v′(t) ≤ δ(t)

(
r(t)

(
Υ(n−1)(t)

)α)′
+

δα
0

ζ0

(
r(ζ(t))

(
Υ(n−1)(ζ(t))

)α)′
Υα(h(t))

+
δ′(t)
δ(t)

ω(t)− αµhn−2(t)h′(t)
(n− 2)!δ1/α(t)r1/α(t)

ω(α+1)/α(t)

+
δα

0
ζ0

(
δ′(t)
δ(t)

v(t)− αµhn−2(t)h′(t)
(n− 2)!δ1/α(t)r1/α(t)

v(α+1)/α(t)
)

. (25)
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By inserting the inequality in (10) in (26), we obtain

ω′(t) +
pα

0
ζ0

v′(t) ≤ −δ(t)
(

kq̃(t)
µ

)
+

δ′(t)
δ(t)

ω(t)− αµhn−2(t)h′(t)
(n− 2)!δ1/α(t)r1/α(t)

ω(α+1)/α(t)

+
δα

0
ζ0

(
δ′(t)
δ(t)

v(t)− αµhn−2(t)h′(t)
(n− 2)!δ1/α(t)r1/α(ζ(t))

v(α+1)/α(t)
)

. (26)

By applying the Lemma 1 with

C =
δ′(t)
δ(t)

and D =
αµhn−2(t)h′(t)

(n− 2)!δ1/α(t)r1/α(t)
,

we obtain

ω′(t) +
pα

0
ζ0

v′(t) ≤ −δ(t)
(

kq̃(t)
µ

)
+

((n− 2)!)α

µα(α + 1)α+1
r(t)(δ′(t))α+1

(δ(t)hn−2(t)h′(t))α

+
pα

0((n− 2)!)α

ζ0µα(α + 1)α+1
r(t)(δ′(t))α+1

(δ(t)hn−2(t)h′(t))α .

Integrating last the inequality from t2 to t, we obtain

∫ t

t2

[
kδ(s)

q̃(s)
µ
− ((n− 2)!)α

µα(α + 1)α+1

(
1 +

pα
0

ζ0

)
r(s)(δ′(s))α+1

(δ(s)hn−2(s)h′(s))α

]
ds ≤ ω(t2) +

pα
0

ζ0
v(t2).

The proof is complete.

Theorem 2. Suppose that the functions h and ζ satisfy (8), (9) and h(t) ≤ ζ(t) for t0. In addition,
suppose that (4) is satisfied. If there exists a function δ ∈ C1([t0, ∞), (0, ∞)) with the property
that for all sufficiently large t1 ≥ t0,there exists t2 ≥ t1 such that

lim sup
t→∞

∫ t

t2

[
kδ(s)

q̃2(s)
µ
− ((n− 2)!)α

µαh0(α + 1)α+1

(
1 +

pα
0

ζ0

)
r
(
h−1(s)

)
(δ′(s))α+1

(δ(s)sn−2)
α

]
ds = ∞ (27)

is valid. Then a solution x(t) of Equation (1) oscillates or tends to zero when t→ ∞.

Proof. Let x be a positive solution of (1). Then, there exist t1 ≥ t0 such that x(t) > 0,
x(h(t)) > 0 and x(ζ(t)) > 0 for t ≥ t1. Define the positive function ω by

ω(t) = δ(t)
r
(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α

Υα(t)
. (28)

Hence, by differentiating (28), we obtain

ω′(t) = δ′(t)
r
(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α

Υα(t)
+ δ(t)

(
r
(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α)′
Υα(t)

−
αδ(t)r

(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α
Υα−1(t)Υ′(t)

Υ2α(t)
. (29)

Since Υ
′
> 0, Υ

′′
> 0, we see that limt→∞ Υ

′ 6= 0, using Lemma 3 with f = Υ
′
, we

obtain
Υ
′
(t) ≥ µ

(n− 2)!
tn−2Υ(n−1)(t), (30)
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for every µ ∈ (0, 1). Thus, by h−1(t) > t and Υ(n)(t) ≤ 0, we obtain

Υ
′
(t) ≥ µ

(n− 2)!
tn−2Υ(n−1)(t) ≥ Υ

′
(t) ≥ µ

(n− 2)!
tn−2Υ(n−1)

(
h−1(t)

)
. (31)

Substituting (28) and (31) into (29) implies

ω′(t) ≤ δ′(t)
r
(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α

Υα(t)
+ δ(t)

(
r
(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α)′
Υα(t)

−
(

Υ(n−1)(h−1(t)
)

Υ(t)

)α+1
αδ(t)r

(
h−1(t)

)
µtn−2

(n− 2)!

≤ δ(t)

(
r
(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α)′
Υα(t)

+
δ′(t)
δ(t)

ω(t)

−
αδ(t)r

(
h−1(t)

)
µtn−2

(n− 2)!

(
ω(t)

δ(t)r(h−1(t))

) α+1
α

,

that is,

ω′(t) ≤ δ(t)

(
r
(
h−1(t)

)(
Υ(n−1)(h−1(t)

))α)′
Υα(t)

+
δ′(t)
δ(t)

ω(t)

− αµtn−2

(n− 2)!δ1/α(t)r1/α(h−1(t))
ω(α+1)/α(t). (32)

Now, define another positive function v by

v(t) = δ(t)
r
(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α

Υα(t)
. (33)

By differentiating (33), we obtain

v′(t) = δ′(t)
r
(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α

Υα(t)

+
δ(t)

(
r
(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α)′
Υα(t)

−
αδ(t)r

(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α
Υα−1(t)Υ′(t)

Υ2α(t)
. (34)

From (30), h−1(ζ(t)) ≥ t and Υ(n)(t) ≤ 0, we have

Υ
′
(t) ≥ µ

(n− 2)!
tn−2Υ(n−1)(t) ≥ µ

(n− 2)!
tn−2Υ(n−1)

(
h−1(ζ(t))

)
. (35)
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A similar method has been used in the work [16]. Substituting (35) and (33) into
(34), implies

v′(t) ≤ δ′(t)
r
(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α

Υα(t)

+
δ(t)

(
r
(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α)′
Υα(t)

−
(

Υ(n−1)(h−1(ζ(t))
)

Υ(t)

)α+1
αδ(t)r

(
h−1(ζ(t))

)
µtn−2

(n− 2)!

≤
δ(t)

(
r
(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α)′
Υα(t)

+
δ′(t)
δ(t)

v(t)

−
αδ(t)r

(
h−1(ζ(t))

)
µtn−2

(n− 2)!

(
v(t)

δ(t)r(h−1(ζ(t)))

) α+1
α

.

By r
′
(t) > 0, we obtain

v′(t) ≤
δ(t)

(
r
(
h−1(ζ(t))

)(
Υ(n−1)(h−1(ζ(t))

))α)′
Υα(t)

+
δ′(t)
δ(t)

v(t)

− αµtn−2

(n− 2)!δ1/α(t)r1/α(h−1(t))
v(α+1)/α(t). (36)

Now, using inequalities (20) and (24), we obtain

1
h0

ω′(t) +
pα

0
h0ζ0

v′(t)

≤ δ(t)
h0Υα(t)

(
r
(

h−1(t)
)(

Υ(n−1)
(

h−1(t)
))α)′

+
pα

0
h0ζ0

(
r
(

h−1(ζ(t))
)(

Υ(n−1)
(

h−1(ζ(t))
))α)′

+
δ′(t)

h0δ(t)
ω(t)− αµtn−2

h0(n− 2)!δ1/α(t)r1/α
(
h−1(t)

)ω(α+1)/α(t)

+
pα

0
h0ζ0

(
δ′(t)
δ(t)

v(t)− αµtn−2

(n− 2)!δ1/α(t)r1/α
(
h−1(t)

) v(α+1)/α(t)

)
.

By (4), we obtain

1
h0

ω′(t) +
pα

0
h0ζ0

v′(t)

≤ −δ(t)
(

kq̃2(t)
µ

)
+

δ′(t)
h0δ(t)

ω(t)− αµtn−2

h0(n− 2)!δ1/α(t)r1/α(h−1(t))
ω(α+1)/α(t)

+
pα

0
ζ0

(
δ′(t)

h0δ(t)
v(t)− αµtn−2

h0(n− 2)!δ1/α(t)r1/α(h−1(ζ(t)))
v(α+1)/α(t)

)
.

By using Lemma 1 with

C =
δ′(t)

h0δ(t)
and D =

αµtn−2

h0(n− 2)!δ1/α(t)r1/α(h−1(t))
,
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we obtain

1
h0

ω′(t) +
pα

0
h0ζ0

v′(t) ≤ −δ(t)
(

kq̃2(t)
µ

)
+

((n− 2)!)α

µαh0(α + 1)α+1
r
(
h−1(t)

)
(δ′(t))α+1

(δ(t)tn−2)
α

+
pα

0((n− 2)!)α

ζ0h0µα(α + 1)α+1
r
(
h−1(t)

)
(δ′(t))α+1

(δ(t)tn−2)
α .

Integrating both sides of the latter inequality from t2 to t, we obtain

∫ t

t2

[
kδ(s)

µ
q̃2(s)−

((n− 2)!)α

µαh0(α + 1)α+1

(
1 +

pα
0

ζ0

)
r
(
h−1(s)

)
(δ′(s))α+1

(δ(s)sn−2)
α

]
ds

≤ 1
h0

ω(t2) +
pα

0
h0ζ0

v(t2).

The proof is complete.

Example 1. Consider the odd order neutral delay differential equation

Υ(n)(t) +
q0

tn x
(

t
e2

)
= 0, t ≥ 1, q0 > 0, n ≥ 3, (37)

where Υ(t) = x(t) + 17
18 x
( t

e
)
, and

k = µ = α = r(t) = 1, q̃2(s) =
q0

(e2t)n , h(t) =
t
e2 , ζ(t) =

t
e

, and set δ(t) = tn−1.

Using Example 1 in [17], we find that every solution of (37) oscillates or tends to zero if

q0 > 9(n− 1)!e2n−3,

and using Example 2.11 in [13], we find that every solution of (37) oscillates or tends to zero if

q0 > (n− 1)!
(

e2n−3 +
17
18

e2n−2
)

.

From condition (27) in Theorem 2, we see that every solution of (37) oscillates or tends to zero if

lim sup
t→∞

[
q0

e2n −
(n− 2)!(n− 1)

4e2

(
1 +

17
18

e
)]

ln t = ∞,

thus,

q0 >
e
4
(n− 1)!

(
e2n−3 +

17
18

e2n−2
)

.

Hence, we can see that our results are better than ([17] Example 1) and ([13] Example 2.11).

4. Conclusions

In this work, we established the oscillation criteria for a class of odd-order delay
differential equations. By using Riccati transformation, we presented some sufficient
conditions which ensure that every solution of (1) is either oscillatory or tends to zero. The
approach used does not need to be restricted by the condition 0 < p(t) < 1, unlike many
previous work.

For interested researchers, results presented in this paper may be extended to more
general equations than (1). Another interesting problem for further research is to obtain
new criteria for oscillatory solutions for (1) without requiring (8).
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