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Abstract: Recent advances in experimental biology studies have produced large amount of molecular
activity data. In particular, individual patient data provide non-time series information for the
molecular activities in disease conditions. The challenge is how to design effective algorithms to
infer regulatory networks using the individual patient datasets and consequently address the issue
of network symmetry. This work is aimed at developing an efficient pipeline to reverse-engineer
regulatory networks based on the individual patient proteomic data. The first step uses the SCOUT
algorithm to infer the pseudo-time trajectory of individual patients. Then the path-consistent method
with part mutual information is used to construct a static network that contains the potential protein
interactions. To address the issue of network symmetry in terms of undirected symmetric network,
a dynamic model of ordinary differential equations is used to further remove false interactions to
derive asymmetric networks. In this work a dataset from triple-negative breast cancer patients is
used to develop a protein-protein interaction network with 15 proteins.

Keywords: protein-protein interaction; individual patient data; mutual information; ordinary
differential equation

1. Introduction

Recent advances in experimental biology studies have produced large amount of
molecular activity data [1]. In particular, the single-cell experiments are able to quantify
gene expression activities or protein abundances in a large number of single cells in a single
experiment, which provides rich information to study the cellular heterogeneity [2]. A
similar datum type is the individual patient data that measure the cellular information from
the cell lines of each patients [3]. An important question is how to analyse the individual
patient datasets and derive biological information from the datasets [4]. A further related
question is how to reconstruct gene/protein connection networks and address the issue of
directed regulations in the developed asymmetric networks [5–8].

The inference methods for constructing regulatory networks can be mainly classified
into three major types, namely the correlation-based methods, dynamic model methods
and machine learning methods [9–11]. The correlation-based methods use one or more
statistical qualities to measure the relationship between pairs of variables in a network.
Several statistical measure have been used to calculate the distances between the variables
using the omics datasets [12–14]. The correlation-based methods have also been used to
find the connections between various types of molecules in cells [15–17]. An alternative
approach is mutual information, which can measure the nonlinear relationships between
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pairs of variables [18]. In addition, the regression-based methods are able to establish
the systematic regulations between all the variables in the system [19]. LASSO and ridge
regression are two major techniques used in the regression-based methods to construct
sparse system models [19,20]. A broader category of these methods is called the causal
network methods that also contain the Bayesian network methods and path-consistency
methods [21,22]. The path-consistency algorithms have been designed by the combination
of mutual information, conditional mutual information or part mutual information [23–25].
Due to the computing efficiency, the correlation-based methods are able to develop large-
scale regulatory network models.

The widely used dynamic models are based on differential equation systems that describe
the detailed dynamics of regulatory networks and make testable predictions [26–29]. Due
to the computing time for simulating models, the differential equation models normally
are limited to small-scale systems. Another issue in dynamic modelling is the inference
of model parameters. If the network model is large, the parameter space is complex and
it is difficult to deal with a large number of unknown parameters of the model [30]. To
address this issue, it is proposed to use the hybrid-methods that combine the statistical
methods to design a static model and the differential equation methods for a dynamic
model together [31–33]. In recent years, machine learning algorithms have been used to
infer regulatory networks using omics datasets and single-cell data [34–37].

Since the Monocle algorithm was first proposed to infer the pseudo-time trajectories
of single cells [38], several methods were developed to determine the positions of single
cells during the cellular processes. The algorithms for constructing pseudo-time trajectories
normally have two major steps. The first step reduces the dimension of the dataset for
visualisation and the second step builds the trajectories based on the low-dimensional
dataset. Several algorithms use the minimum-spanning tree (MST) or shortest path to build
the major structure of the trajectory. Then each cell will be projected to the major structure
to form the trajectory in the second step [39,40]. In recent years, manifold learning has also
been used for pseudo-time inference of single-cell data [41]. Diffusion map has been used
to explore the developmental continuum of cell-fate transitions [42]. A recent comparison
study have tested the effectiveness and efficiency of several major algorithms [43]. In
addition, several pipelines have been developed for reconstructing the genetic regulatory
networks using single-cell data [32,44,45]

Individual patient data are collections of raw data from several patients with a certain
disease [3]. Although substantial studies have been conducted for the statistical analysis
of the individual patient data, limited attempts have been conducted so far to reconstruct
regulatory networks using this type of datasets. In this work we propose a general pipeline
to use individual patient data to infer protein-protein interaction networks. We first select
several important proteins in an individual patient dataset and use a statistical package
to interpolate the missing values. Then we use the SCOUT algorithm to construct the
pseudo-time trajectory of individual patients. The Gaussian process regression method
is used to smooth the expression data. The path-consistency algorithm is applied to infer
the structure of protein-protein interaction network. To obtain the model dynamics, the
ordinary differential equation model was used to remove the false regulations from the
static network.

2. Materials and Methods
2.1. Experimental Data

Breast cancer is one of the most common types of life-threatening disease in females
worldwide [46]. Although more than 80 percent of breast cancers can be treated by targeted
therapies, triple-negative breast cancer (TNBC) is an important unmet clinical problem.
Recently, Lawrence et al. conducted a deep proteomic characterisation of TNBC cell lines
and tissues using mass spectrometry [47]. This individual patient dataset includes 40 breast
cancer lines and four primary breast tumour cell lines, resulting in peptides of around
12,000 distinct proteins. Among them, at least 9000 proteins have been found in each cell
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line [47]. In this study, we use this dataset to infer the protein-protein interaction network.
To generate a manageable sample size, we concentrate on proteins from cell signalling
pathways whose functions are connected to cell proliferation. The mitogen-activated
protein (MAP) kinase pathway is an important pathway to control cell proliferation. This
pathway includes three parallel pathways, namely the ERK pathway, JNK pathway and
p38 pathway [48]. The pathway maps from Kyoto Encyclopedia of Genes and Genomes
(KEGG) is employed as the reference for selecting proteins [49].

2.2. Static Network Development

Let X be a random variable with density function p(x). Entropy H(X) in statistical
mechanics is a measure of thermal energy per unit temperature that is unavailable for
doing useful work in a system, defined by.

H(X) = −
Nx

∑
i=1

p(xi) log p(xi), (1)

for the discrete random variables. Here x1, ..., xNx are samples of random variable X. In
addition, the joint entropy H(X, Y) of two discrete random variables X and Y, which have
joint density function p(x, y), is defined by

H(X, Y) = −
Nx

∑
i=1

Ny

∑
j=1

p(xi, yj) log p(xi, yj) (2)

where y1, ..., yNy are samples of random variable Y.
Mutual information is an alternative approach to measure the relationship of two

random variables. Compared with the correlation coefficient, this method is able to
measures the nonlinear relationship of two random variables. Consider random variables
(X, Y) with marginal density functions p(x) and p(y) for X and Y, respectively. We can
calculate mutual information using

MI(X, Y) =
Nx

∑
i=1

Ny

∑
j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
, (3)

Alternatively, the entropies of X, Y and (X, Y) can also be used to calculate mutual
information using

MI(X, Y) = H(X) + H(Y)− H(X, Y). (4)

Unlike correlation coefficient, two random variables are independent of each other
if the mutual information value is zero [23]. Since the value of mutual information is
non-negative, a larger value of mutual information normally means these two random
variables have closer relationship.

When a system contains more random variables, we can calculate the mutual infor-
mation of each pair of random variables for measuring the relationship. In this case, a
large value of mutual information may not be the indicator of close relationship. For
example, random variables X and Y as well as Y and Z have close relationship, which may
lead to a large value of mutual information between X and Z that actually have not close
relationship. To avoid such false relationship, conditional mutual information is defined
for the conditional relationship of two random variables X and Y in the presence of the
third variable Z, given by

CMI(X, Y|Z) = H(X, Z) + H(Y, Z)− H(Z)− H(X, Y, Z), (5)
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where H(X, Y, Z) is defined as the joint entropy of these three random variables. Based
on the joint density function p(x, y, z) of these three random variables, the joint entropy
H(X, Y, Z) is defined by

H(X, Y, Z) = −
Nx

∑
i=1

Ny

∑
j=1

Nz

∑
k=1

p(xi, yj, zk) log p(xi, yj, zk) (6)

where xi, yi and zi are samples of random variables X, Y and Z, respectively.
Although mutual information may lead to false close relationship, the problem of the

conditional mutual information is that this measure may underestimate the relationship of
two random variable, which may ignore the true relationship between random variables.
To solve this problem, part mutual information is proposed to measure the relationship of
two random variables X and Y in the presence of the third random variable Z [25]. We first
give the definition of partial independence of the random variables, given by

p(x, y|z) = p∗(x|z)p∗(y|z), (7)

where
p∗(x|z) = ∑

y
p(x|z, y)p(y), p∗(y|z) = ∑

y
p(y|z, x)p(x).

Based on the partial independence (7), the definition of part mutual information is
given by

PMI(X, Y|Z) = ∑
x,y,z

p(x, y, z) log
p(x, y, z)

p∗(x|z)p∗(y|z)p(z)
, (8)

where p(z) is the marginal density function of Z.
The path-consistency algorithm is used to develop a static network using the threshold

method. Instead of selecting edges that have larger correlation measures, this algorithm
remove edges whose correlation measure values are smaller than the threshold value.
The threshold value ε > 0 is determined based on the required sparsity of the developed
network. In this work, both the MI values and higher order PMI are used to remove
edges. If the MI values are used only, the developed network is termed of zero-order
PMI network. Based on two proteins that are adjacent in the zero-order network, we then
find stock k that is connected to both proteins i and j. If this protein k does not exist, no
first-order PMI exists for edge e(i, j) that connects proteins i and j, and this edge remains
in the first-order PMI network. If one or more proteins exist, we need to calculate the first
order PMI values and then determine whether to remove edge e(i, j) if all PMI values are
less then the threshold value or keep that edge if one of the PMI values is larger than the
threshold value. A similar procedure is applied to higher order PMI values. The detailed
process of the path-consistency algorithm can be found in reference [23].

2.3. Data Processing

To reconstruct a dynamic network, the individual patient data need to be transformed
into time series data. In this work we use our recently proposed SCOUT algorithm
for the pseudo-time ordering of individual patient data to find the pseudo-ordering of
patients [40]. This algorithm includes two major steps. In the first step, the modified local
linear embedding method is applied for dimensional reduction, which project each cell in
the high-dimensional space into a low-dimensional embedding space for data visualisation.
The second step infers the trajectory based on the low dimensional dataset. We first use
the Gaussian mixture model to find the landmarks based on the densities of individual
patients in the low-dimensional space. Then MST is developed that connects all landmarks.
To reduce the uncertainties in the MST, we use 15 landmarks for this dataset. We also
determine the starting landmark based on the distances between these landmarks. This
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MST determines the structure of the inferred trajectory. We then project each cell to a point
on the edge of the MST. We use the Apollonian score to determine the relative positions of
each patient.

The activities of each protein in the inferred pseudo-time trajectory is quite noisy and
it is difficult to simulate these experimental data using mathematical model directly. Thus,
in the next step, the Gaussian process regression method is used to smooth the pseudo-time
data. Assume that protein i has activities pi = (x′1i, x′2i, · · · , x′Mi)

T , and the activity can be
represented by the Gaussian noise model

x′i(t) = x∗i (t) + N(0, σ2
i ),

where x∗i (t) is the non-polynomial smoothing result representing underlying expression
value of protein i at time t, and σ2

i is the irreducible noises.

2.4. Mathematical Modelling

We recently proposed a mathematical model to simulate the protein activities based
on the omics dataset [31]. For a network with N proteins, the kinase activities of the i-th
protein are denoted as xi(t) at time t. Generally, for a regulatory network, the dynamic
protein activities is modelled by the following differential equations

dxi
dt

= fi(x1, x2, ..., xN , θ)− dixi (9)

where θ is model parameters, di is the degradation rate. The regulatory function
fi(x1, x2, ..., xN , θ) represents positive and/or negative regulations from other proteins
to protein i. The key issue is how to design this regulatory function. Instead of using the
summation of positive and negative regulatory functions in our previous study [33], this
work proposes to use the following regulatory function

fi(x1, x2, ..., xN , θ) =
ai1xhi1

1 + ... + aiN xhiN
N

1 + bi1xh1
1 + ... + biN xhN

N

, (10)

where aij, bij and hij will be estimated by matching the experimental data using the ap-
proximate Bayesian computation (ABC) method. If aij > 0 and bij > 0, protein j positively
regulates protein i; if aij = 0 and bij > 0, protein j negatively regulates protein i; if
aij = 0 and bij = 0, protein j has no regulatory relationship with protein i. Since it is rare
to generate a sample with value of exact zero, we use the following indicator function,
defined by

hij =

{
0, 0 ≤ rij < 0.5
1, 0.5 ≤ rij ≤ 1

(11)

where rij is a sample generated from the uniformly distributed random variable rij ∼
U(0, 1). Thus, for a network with N proteins, the number of the unknown parameters
is 3N2 + N, namely aij, bij, hij and di. Using the static network derived from the path-
consistency algorithm, the number of unknown parameters can be reduced substantially.

The absolute error is used to quantify the error between the simulated protein activities
and experimental data, given by

Error =
1

NM

N

∑
i=1

M

∑
j=1
|xij − x∗ij| (12)

where xij and x∗ij are the simulated data and observation data of protein i at time point
j, respectively.
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2.5. Robustness Analysis

Since we can obtain different estimates of model parameters in different implementa-
tions of the ABC algorithm, we use the robustness property as an additional criterion to
select the estimated model parameters. We used the definition by Kitano [50] to quantify
the robustness of a network model. For the given model parameter θ, we consider a set of
perturbations P. For each perturbation, we simulate the model and derive the simulation
which is called the perturbed system DM

a,p over the perturbation. The average simulation is
measured by

Rs
a,P(tj) =

∫
p∈P

prob(p)Ds
a,p(tj)dp (13)

where prob(p) is the probability of perturbation p. If perturbations have the same proba-
bility, it is the average of all the perturbed simulations. Thus, the average behaviour (AB)
is defined by

AB = ∑
j
|Rs

a,P(tj)− xj| (14)

where xj is the unperturbed simulation using the estimated parameters at time point j.
Please note that xj is a vector of all variables. In addition, we define the nominal behaviour
(NB) as

NB = ∑
i,j

∫
p∈P

prob(p)(Rs
a,P(tj)− xj)

2dp (15)

For each rate constant ki, the perturbation is set to ki = max{N(ki, σ2), 0} with a
Gaussian distribution. Here σ is the perturbation strength and the value of σ = 0.4 is
determined by simulations. For each set of estimate, we generate 1000 sets of perturbed
parameters. The system with a particular set of estimate is more robust if the difference
between the perturbed 1000 simulations and unperturbed simulation is smaller.

3. Results
3.1. Pseudo-Time Trajectory Inference

Based on the Uniprot Entry of each gene, we first find the corresponding proteins in the
TNBC proteome excel which represents intensity-based absolute protein abundance (iBAQ)
profile of each sample. We initially select 60 important proteins from the MAP kinase
pathway from the 1200 proteins sampled in the database showing large variations [47]. We
also include the upstream protein PCK and the down-stream transcriptional factor MSK1/2.
In addition, AKT is also included for testing the cross-talk between the MAP kinase
pathway and Akt-PI3K pathway. For these 60 proteins, there are quite several missing
values because of experimental conditions. There are 30 proteins that have more than 50%
missing values. Thus, we choose 27 proteins that have more than 50% observation values.

For these 27 proteins, we use an R package missMDA [51] which use the principal
component methods to deal with incomplete data sets. For this dataset, we use the
regularised iterative PCA algorithm. First, the means of the variables change after each
imputation. Next, the algorithm use cross-validation to tune the number of dimensions as
a priori. We implement leave-one-out, k-fold and generalised cross-validation to obtain
the dimension that minimises the mean square error of prediction. Finally, we choose
the imputed matrix which falls a predefined threshold. Finally, we selected 15 proteins
by excluding a few protein isoforms and proteins whose smoothed data still have large
variations. These 15 proetins are PKC, Ras, Raf1, RafB, MEK1, MKK3, MKK4, MKK6, ERK,
P38, JNK, MSK1/2, Akt, TAB, and DAXX.

To construct dynamic network, the pseudo-trajectory is inferred for the time dependent
model. We use the SCOUT algorithm to infer the pseudo-time trajectory of the individual
patients to obtain the developmental process of TNBC. Figure 1 shows the raw data for
the pseudo-time trajectory of four proteins. It is clear that there is much noise in the raw
pseudo-time trajectory. Thus, the Gaussian process regression method is employed to
remove the noise in the data. The solid-line in Figure 1 is the smoothed protein activity
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data. Compared with the raw data shown as star in Figure 1, the smoothed data can be
used for mathematical modeling.

Figure 1. The pseudo-time trajectory of four proteins and the corresponding smoothed proteomic
data. (A) Protein MKK6; (B) PKC; (C) MKK4; (D) Ras.

3.2. Static Networks Construction

After the selection of 15 proteins, we use the Path-consistency algorithm using PMI to
reconstruct the static regulatory network. Since the network density is determined by the
threshold value, we use the algorithm with different threshold values to obtain networks
with different number of edges. Our experience in gene network construction shows that,
when the number of edges is relatively small, several regulations are not included in the
developed static network. Thus, we use a relatively small threshold values to select the top
undirected 50 edges. Since one edge represents two directed regulations, the total potential
regulations in the developed network is 100.

Figure 2 gives the developed static network. Each protein on average has 6.7 edges to
connect the other proteins. It shows that the proteins in the upstream pathway has less
connections. For example, Ras protein has only three connections, and a similar observation
is applied to protein Raf1. However, the MAP kinase kinase proteins have much more
regulations. For example, MEK1 has 10 connections and MKK4 has 11 regulations. These
observations are consistent with the regulation complexity of the MAP kinase signalling
pathway, namely there are more cross-talk in the MAP kinase modules. However, the
selected regulations in Figure 2 are much more than the real regulations in the MAP kinase
pathway. We need to use the dynamic model to delete false regulations from the developed
static network.
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Figure 2. The inferred static network using the path-consistency algorithm with PMI. This network has 15 proteins in the
MAP kinase pathway and 50 mutual regulations.

3.3. Inference of Model Parameters

Based on the static network in Figure 2 with 15 proteins and 50 mutual regulations,
we first use the Approximate Bayesian Computation (ABC) rejection method to estimate
the unknown model parameters. Since the protein activities of different proteins have large
variations, we normalise the activities of protein i using

x∗ij =
xij

maxj{xij}
,

where xij are the smoothed protein activities at time j. In this way, we can compare the
coefficient values aij under the same condition. That is also why the absolute error (12)
is used to quantify the simulation error. Instead of simulating the model in the whole
time period t ∈ [0, 21.5] using one initial condition at t = 0, we use the smoothed protein
activities at time point ti−1 as the initial condition to simulate the model in the time period
[ti−1, ti], and then calculate the simulation error at tj [52]. For model parameters aij, bij and
di, it is assumed that the prior distribution follows the uniform distribution in the interval
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[0, B]. We test the different values of B for achieving better accuracy of the simulations. The
final value used in the simulation is B = 2.

We use the ABC rejection algorithm to obtain 10,000 sets of parameter estimates and
select the top 100 sets with smaller simulation errors for further analysis. We calculate the
model robustness using the top 10 sets of parameters and determine the final set from these
10 sets based on the robustness property. Figure 3 gives the simulated and smoothed observed
protein activities of six proteins. These six proteins have different trends in protein activities.
The other proteins have a trend that is close to one of the patterns in Figure 3. For example,
MKK3 has a quite close trend to that of MKK6 in Figure 3A, and RafB has similar protein
activities as those ERK in Figure 3C. However, AKT in Figure 3F has a unique pattern, and
whose activities reach the peak at t = 13.5, possibly because AKT is not a protein in the
MAP kinase pathway.

Figure 3. Simulated protein activities and smoothed experimental data of six proteins in the MAP kinase pathway.
(A) Protein MKK6; (B) MEK1; (C) ERK; (D) PKC; (E) MKK4; (F) AKT. (Red circle: smoothed observation data; solid-line:
simulation of the network with 100 directed regulations; dash-line: simulation of the network with 70 directed regulations;
dash-dot line: simulation of the network with 35 directed regulations.

3.4. Inference Network with Less Regulations

The inferred network in the previous subsection has 100 directed regulations that is
much larger than the regulations in the signal transduction pathway. Thus, a large number
of regulations should be removed from the derived network. We next use the dynamic
model (9) with function (10) to remove regulations that has less impact on the system
dynamics. With such a large number of regulations in the network, the removal of one or
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two regulations has limited effects on the system dynamics. So we choose 15 regulations
in one test initially. The key criterion for removing regulations is the value of coefficients
aij in the estimated model parameters. Since the value of a particular parameter varies
in different estimates, we use the average value of the top 100 estimates. In addition, the
following factors are also considered. First, if the correlation coefficient of two proteins is
large, the edge connecting these two proteins should not be considered. In addition, we try
to keep a minimal number of regulations to each protein. For example, more regulations
are removed for MEK1 and MKK4 but less regulations are removed for Ras initially. It
is relatively easy to select the first ∼10 regulations but the difference between average
coefficients of the following regulations are small. Thus, different selections of the removed
edges may be tested. If the removed edges have much influence on the system dynamics,
we need to test a different set of regulations.

In the five removal tests in Table 1, it is relatively easy to conduct the first two tests.
Only one selection is used to determine the removed edges. However, in the following tests,
more selections are needed to determine the removed edges. The simulation error and the
robustness property are used to determine the different selections. If the derived network
has similar simulation error and robustness property as the network before removal, the
selected removal is determined. In the final test (namely test 5), it is difficult to select more
edges. Thus, we choose only 5 edges to be removed from the network. Figure 3 also gives
the simulations of the network with 70 regulations (i.e., Test 2) and that with 35 regulations
(i.e., Test 5). Figure 4 gives the final inferred network with 35 regulations.

Table 1. Simulation error and robustness of the inferred networks in five removal tests. SE: simulation error (12); AB:
average behaviour (14); NB: nominal behaviour (15). Test 0: network with 100 directed regulations without any removal;
Test 1: network with 85 directed regulations; Test 2: network with 70 directed regulations; Test 3: network with 55 directed
regulations; Test 4: network with 40 directed regulations; Test 5: network with 35 directed regulations;

Test Removed Edges SE AB NB

Test 0 The inferred static network with 100 directed
regulation. No edge is removed. 0.1072 0.2763 1.1089

Test 1

AKT→MKK4 , MSK1/2→MKK6 , MEK1→MKK6
AKT→ DAXX, MSK1/2→ AKT, JNK→ DAXX
JP38→MKK3,MSK1/2→ JNK,AKT→MEK1

RafB→ Ras,MKK6→ Raf1,JNK→MEK1
MKK4→ P38,AKT→MSK1/2,JDAXX→MKK4

0.0975 0.2842 2.2453

Test 2

AKT→ RafB , MKK4→MKK3 , MKK3→ RafB
MKK4→MKK6, ERK→ PKC, AKT→ ERK
MKK6→ TAB1,ERK→MEK1,JNK→MKK4

MEK1→ AKT,DAXX→ JNK,MKK3→MSK1/2
P38→MEK1,MEK1→ Raf1,TAB1→ JNK

0.1020 0.2925 1.9310

Test 3

ERK→ RafB ,MEK1→ RafB ,MKK3→MKK6
Raf1→MKK6, RafB→ ERK, DAXX→ TAB1

JNK→ TAB1, MKK3→MEK1, MKK6→MEK1
MEK1→MKK4, MKK3→MKK4,DAXX→ AKT
P38→ AKT, MSK1/2→ P38,MKK6→MSK1/2

0.1092 0.3622 3.1484

Test 4

P38→MKK6 , ERK→ AKT , TAB1→ AKT
MKK4→MEK1, P38→MKK4, P38→ DAXX

MKK6→MKK4,MKK4→ DAXX,MEK1→MKK3
ERK→MKK4,MKK3→ TAB1,DAXX→ P38

MKK4→ TAB1,MKK6→ DAXX,MSK1/2→MKK4

0.1051 0.1958 0.8761

Test 5 MKK4→ RafB , RafB→ AKT , AKT→ P38
RafB→MKK3, RafB→MKK4 0.1052 0.2647 2.4039
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Figure 4. The final inferred protein regulatory network of the MAP kinase pathway. This network has 35 directed regulations.

4. Conclusions

This work is aimed at designing an integrated pipeline for reconstructing protein-
protein interaction networks using individual patient proteomic data. We first use the
SCOUT algorithm to infer the pseudo-time trajectory for the individual patients using the
proteomic data. Due to the large noise of protein abundance in the pseudo-time trajectory,
we use the Gaussian process regression method to smooth the pseudo-time proteomic
data. To deal with relatively large networks using dynamic models, we first use the path-
consistency algorithm with part mutual information to develop a static protein-protein
interaction network in order to reduce the complexity of the regulatory network. Based
on the static network, we design a dynamic model of ordinary differential equations to
simulate the evolution of protein activities. In this work we use develop a relatively dense
static network and then remove false regulations from the developed network. Using the
proteomic data of the triple negative breast cancer patients as the test problem, we develop
a network model with 15 proteins in the MAP kinase pathway. Numerical results suggest
that the proposed method is an effective approach to study the functions and mechanisms
of relatively large regulatory networks.

Compared with our previous study [33], the developed static network in this work
contains much more possible regulations. Thus, the dynamic modelling step needs to
remove more false regulations. Since the removal of one or two regulations in such a
large network does not have any impact on the system dynamics, we remove 15 false



Symmetry 2021, 13, 1097 12 of 14

regulations from the network in one step mainly based on the relatively small values of the
inferred model parameters. The simulation error and robustness property are used as the
major criteria to remove regulations. In fact, when the regulation number in the network
become smaller, it is more difficult to select false regulations. We need to test more possible
cases in one test in order to ensure the reliability of the predicted network. However, this
proposed framework is a manually controlled method. It would be interesting to design an
integrated algorithm by qualifying the additional standard into the method.
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