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61-614 Poznań, Poland; migda@amu.edu.pl
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Abstract: We investigate the higher order nonlinear discrete Volterra equations. We study solutions
with prescribed asymptotic behavior. For example, we establish sufficient conditions for the existence
of asymptotically polynomial, asymptotically periodic or asymptotically symmetric solutions. On the
other hand, we are dealing with the problem of approximation of solutions. Among others, we present
conditions under which any bounded solution is asymptotically periodic. Using our techniques,
based on the iterated remainder operator, we can control the degree of approximation. In this paper
we choose a positive non-increasing sequence u and use o(un) as a measure of approximation.

Keywords: discrete Volterra equation; prescribed asymptotic behavior; asymptotically polynomial
solution; asymptotically periodic solution; degree of approximation

1. Introduction

We denote by N the set of positive integers and by R the set of real numbers. Assume
τ is an integer, m ∈ N,

f : N×R→ R, K : N×N→ R, b : N→ R

and consider difference equations of the form

∆mxn = bn +
n

∑
k=1

K(n, k) f (k, xk−τ). (1)

By a solution of (1) we mean a sequence x : N→ R satisfying (1) for all large n. We
say that Equation (1) is of monotone type if one of the following conditions is satisfied:

(a) f is non-decreasing with respect to the second variable and (−1)mK(n, k) ≥ 0
for all (n, k);

(b) f is non-increasing with respect to the second variable and (−1)mK(n, k) ≤ 0
for all (n, k).

By studying the hereditary influences in population growth models Vito Volterra
obtained an equation of the form

x(n)(t) = h(t) +
∫ t

0
K(t, s)x(s)ds

which was termed the Volterra integro-differential equation. The non-linear Volterra
integro-differential equation of the form

x(n)(t) = h(t) +
∫ t

0
K(t, s)F(s, x(s))ds (2)
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appears also in many problems. Volterra equations are frequently used to describe
many real world phenomena concerning biology, chemistry, physics, mechanics, economy,
medicine, population dynamics, and others. For more information on the theory and appli-
cations of linear and non-linear Volterra integro-differential equations we refer readers to
the books by Burton [1] and Wazwaz [2] and, for example, the papers [3–6].

In the last four decades many authors have studied the qualitative properties of
solutions of discrete Volterra equations. In particular, asymptotic properties of solutions
of first order Volterra difference equations were considered, e.g., in [7–20] or [21]. For
example, in [19] the necessary and sufficient condition for boundedness of all solutions of
the linear Volterra equation

∆x(n) =
n

∑
i=0

A(n, i)x(i)

are obtained. In [8], the authors established conditions under which every solution of the
system of linear Volterra equations

x(n + 1) = h(n) +
n

∑
i=0

H(n, i)x(i)

is convergent. Some population models described by Volterra difference equations can be
found in the recent monograph by Raffoul [22]. However, there are relatively few papers
devoted to the higher order discrete Volterra equations, see [23–25].

In this paper we investigate asymptotic behavior of solutions to Equation (1) which is
a discrete analog of Equation (2). We mainly deal with problems of two types. The first is
the problem of the existence of solutions with prescribed asymptotic behavior. The second
problem is the approximation of a given solution of Equation (1). Studies on solutions with
prescribed asymptotic behavior are usually based on the application of the Schauder or
Darboux type theorems. In this case, conditions of the continuity type are superimposed
on the function f . We use the Knaster-Tarski theorem. Using the Knaster-Tarski theorem,
we replace the conditions of the continuity type with the conditions of the monotonicity
type. This allows us to apply our results to, e.g., floor function, ceiling function, or other
locally constant functions. To our knowledge, the asymptotic properties of solutions to the
Volterra equations of the monotonic type have not been studied. We believe that the case
of monotonic type equations, e.g., with a locally constant function f , is important in the
application of numerical methods.

We use techniques from [26] based on the use of the iterated remainder operator. This
allows us to control the degree of approximation of solutions. In this paper, we choose a
positive non-increasing sequence u and use o(un) as a measure of approximation. Two
particularly important approximation cases can be obtained when u is a power sequence
or a geometric sequence. More precisely, if un = ns for some fixed s ∈ (−∞, 0], then we
have the so-called harmonic approximation. If un = λn, where λ ∈ (0, 1) is fixed, then we
have the geometric approximation. It is worth noting that even in the case of un = 1, i.e., in
the case when o(1) is a degree of approximation, our results are new.

The organization of the paper is as follows. In Section 2, we introduce some notations
and terminology. Moreover, we present two basic lemmas. In Section 3, we present and
prove two theorems. They are the main results of the paper. In Section 4, we present
a number of different consequences of Theorems 1 and 2. Section 5 provides examples,
remarks and additional results. Some conclusions are given in Section 6.
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2. Preliminaries

We denote by Z the set of all integers and RN is the space of all sequences x : N→ R.
We will use the convention xn = x1 whenever x ∈ RN and n < 1. Let m ∈ N. We will use
the following notations

A(m) =

{
x ∈ RN :

∞

∑
i1=1

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

|xim | < ∞

}
.

For any x ∈ A(m) we define the sequence rm(x) by

rm(x)(n) =
∞

∑
i1=n

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

xim . (3)

Then
rm(x)(n) = o(1) (4)

and

rm(x)(n) =
∞

∑
j=n

(
m− 1 + j− n

m− 1

)
xj =

∞

∑
k=0

(
m + k− 1

m− 1

)
xn+k (5)

for any x ∈ A(m) and any n ∈ N. Moreover

∆m(rm(x))(n) = (−1)mxn (6)

for any x ∈ A(m) and any n ∈ N. It is easy to see that if x, z ∈ A(m) and x ≤ z, then
rm(x) ≤ rm(z). For more information about the operator rm see [26]. We will use the
following consequence of the Knaster-Tarski fixed point theorem.

Lemma 1. ([27], Lemma 4.9). Let y, ρ ∈ RN and let S denote the set

{x ∈ RN : |x− y| ≤ |ρ|}

with natural order defined by: x ≤ z if xn ≤ zn for any n ∈ N. Then every non-decreasing map
T : S→ S has a fixed point.

We will also need the following lemma.

Lemma 2. ([28], Lemma 2.3). Assume u is a positive and non-decreasing sequence,

a ∈ RN, m ∈ N, and
∞

∑
n=1

nm−1|an|
un

< ∞.

Then there exists a sequence z ∈ RN such that zn = o(un) and ∆mzn = an.

For k ∈ N we use the factorial notation

nk = n(n− 1) · · · (n− k + 1).

Moreover, we will use the ceiling function d·e : R→ Z defined by

dte = min{n ∈ Z : n ≥ t}.

3. Main Results

We present two theorems in this section. In Theorem 1 we deal with the problem of
the existence of solutions with prescribed asymptotic behavior. More precisely, for a given
solution y of the equation ∆myn = bn and a given positive and non-increasing sequence u
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we present the sufficient conditions for the existence of a solution x to Equation (1) such
that xn = yn + o(un). The proof of this theorem is based on the Knaster-Tarski fixed point
theorem. To use the Knaster-Tarski theorem, it is necessary to assume that Equation (1) is
of the monotone type.

Theorem 2 is devoted to the problem of approximating the solutions of (1). For a
given solution x of Equation (1) and a given positive and non-increasing sequence u, we
establish the sufficient conditions for the existence of a solution y to equation ∆myn = bn
such that xn = yn + o(un). In Theorem 2, we do not need to assume that Equation (1) is of
monotone type.

Theorem 1. Assume u, w : N→ (0, ∞), g : [0, ∞)→ [0, ∞), g is locally bounded,

| f (n, t)| ≤ g(|twn|) for (n, t) ∈ N×R, (7)

∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞, (8)

w is bounded, ∆un ≤ 0, and (1) is of monotone type. Then, for any solution y of the equa-
tion ∆myn = bn such that, yn−τ = O(w−1

n ) there exists a solution x of (1) with the property
xn = yn + o(un).

Proof. Assume y ∈ RN, ∆myn = bn, and yn−τ = O(w−1
n ). Let

T = {x ∈ RN : |x− y| ≤ 1}.

By (7), there exists a constant K such that if x ∈ T and n ∈ N, then

|wnxn−τ | = |wnxn−τ − wnyn−τ + wnyn−τ |

≤ |wn||xn−τ − yn−τ |+ |wnyn−τ | ≤ K.

Since g is locally bounded, there exists a positive constant M such that g([0, K]) ⊂
[0, M]. Therefore, using (7) we have

g(|wnxn−τ |) ≤ M and | f (n, xn−τ)| ≤ g(|xn−τwn|) ≤ M (9)

for x ∈ T and n ∈ N. Let α : N→ R be defined by

αn =
n

∑
k=1
|K(n, k)|.

The sequence u is positive and non-increasing. Hence, using (8), we have α ∈ A(m).
So there exists an index p such that Mrm(α)(n) ≤ 1 for n ≥ p. Let µ, ρ ∈ RN,

µn = 0 for n < p, µn = 1 for n ≥ p, ρn = µn Mrm(α)(n).

Define an operator G : RN → RN by

G(x)(n) =
n

∑
k=1

K(n, k) f (k, xk−τ).

If x ∈ T, then

|G(x)(n)| ≤
n

∑
k=1
|K(n, k)|| f (k, xk−τ)| ≤ M

n

∑
k=1
|K(n, k)| = Mαn.
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Hence G(x) ∈ A(m) for any x ∈ T. Let

S = {x ∈ RN : |x− y| ≤ ρ}.

Then S ⊂ T. Define an operator A : S→ RN by

A(x) = y + (−1)mµrm(G(x)).

If x ∈ S, then

|A(x)− y| = |µrm(G(x))| ≤ µrm(|G(x)|) ≤ ρ.

Hence A(S) ⊂ S. Now we assume that the condition (a) of the definition of mono-
tonicity of (1) is fulfilled. The proof in the case (b) is analogous. Let x, z ∈ S, x ≤ z. If
n ∈ N, then

(−1)mG(x)(n) =
n

∑
k=1

(−1)mK(n, k) f (k, xk−τ)

≤
n

∑
k=1

(−1)mK(n, k) f (k, zk−τ) = (−1)mG(z)(n).

Hence (−1)mG(x) ≤ (−1)mG(z). Since the operator rm is non-decreasing, we get

A(x) = y + (−1)mµrm(G(x)) ≤ y + (−1)mµrm(G(z)) = A(z).

By Lemma 1, there exists a sequence x ∈ S such that A(x) = x. Then, for n ≥ p,
we have

xn = yn + (−1)mrm(G(x))(n). (10)

Hence

∆mxn = ∆myn + G(x)(n) = bn +
n

∑
k=1

K(n, k) f (k, xk−τ)

for n ≥ p. Therefore x is a solution of (1). Now we will show that

rm(G(x))(n) = o(un).

Define sequences β, γ+, γ− by

βn =
|G(x)(n)|

un
, γ+

n = max(0, G(x)(n)), γ−n = −min(0, G(x)(n)).

Then 0 ≤ γ+ ≤ |G(x)|. Hence γ+ ∈ A(m) and using (5) we get

rm(γ+)(n) =
∞

∑
k=0

(
m + k− 1

m− 1

)
γ+

n+k ≤
∞

∑
k=0

(
m + k− 1

m− 1

)
|G(x)(n + k)|

=
∞

∑
k=0

(
m + k− 1

m− 1

)
un+kβn+k ≤

∞

∑
k=0

(
m + k− 1

m− 1

)
unβn+k = unrm(β)(n).

Therefore,

0 ≤ rm(γ+)(n)
un

≤ rm(β)(n).

By (3), rm(β)(n) = o(1). Hence rm(γ+)(n) = o(un). Analogously, rm(γ−)(n) =
o(un). Thus

rm(G(x))(n) = rm(γ+ − γ−)(n) = rm(γ+)(n)− rm(γ−)(n) = o(un).

Now, using (10), we obtain xn = yn + o(un). The proof is complete.
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Theorem 2. Assume u, w : N→ (0, ∞), g : [0, ∞)→ [0, ∞), g is locally bounded,

| f (n, t)| ≤ g(|twn|) for (n, t) ∈ N×R, (11)

∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞, (12)

w is bounded, and ∆un ≤ 0. Then for any solution x of (1) such that xn−τ = O(w−1
n ) there exists

a solution y of the equation ∆myn = bn such that, xn = yn + o(un).

Proof. Assume x is a solution of (1) such that xn−τ = O(w−1
n ). There exists a positive

constant K such that |wnxn−τ | ≤ K for any n. Since g is locally bounded, there exists a
positive constant M such that g([0, K]) ⊂ [0, M]. By (11) we have

| f (k, xk−τ)| ≤ g(|wkxk−τ |) ≤ M (13)

for any k ∈ N. Define a sequence β by

βn = ∆mxn − bn.

Since x is a solution of (1), we have

|βn| =
∣∣∣∣∣ n

∑
k=1

K(n, k) f (k, xk−τ)

∣∣∣∣∣ ≤ M
n

∑
k=1
|K(n, k)|

for large n. Hence there exists a constant P ≥ M such that

|βn| ≤ P
n

∑
k=1
|K(n, k)|

for any n ∈ N. Using (12) we get

∞

∑
n=1

nm−1|βn|
un

≤ P
∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞.

By Lemma 2, there exists a sequence z such that

zn = o(un) and ∆mzn = βn.

Let y = x− z. Then

∆myn = ∆mxn − ∆mzn = ∆mxn − βn = ∆mxn − ∆mxn + bn = bn

for any n ∈ N. Moreover xn = yn + zn = yn + o(un).

We say that a sequence w ∈ RN is standard if

wn+1 = O(wn) and wn−1 = O(wn).

For example, if s ∈ R, then the sequence wn = ns is standard. If λ > 0, then the
sequence wn = λn is standard. It is easy to see that a sum of two standard sequences is
standard. In particular any polynomial sequence is standard. The sequence wn = nn is
not standard.

Remark 1. Assume w ∈ RN is a positive standard sequence. Then the sequence w−1
n is also

standard. In this case, condition yn−τ = O(w−1
n ) in Theorem 1 can be replaced by condition

yn = O(w−1
n ). Similarly, condition xn−τ = O(w−1

n ) in Theorem 2 can be replaced by condition
xn = O(w−1

n ).
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4. Consequences
4.1. Solutions with Prescribed Asymptotic Behavior

In this subsection we present some consequences of Theorem 1.

Corollary 1. Assume the assumptions of Theorem 1 are satisfied and moreover

∞

∑
n=1

nm−1|bn|
un

< ∞. (14)

Then, for any polynomial ϕ such that deg(ϕ) < m and ϕ(n− τ) = O(w−1
n ) there exists a

solution x of (1) such that xn = ϕ(n) + o(un).

Proof. By Lemma 2, there exists a sequence z such that

zn = o(un) and ∆mzn = bn.

It is easy to check that conditions zn = o(un), wn = O(1), ∆un ≤ 0 imply zn−τ =
O(w−1

n ). Let y = ϕ + z. Then y is a solution of the equation ∆myn = bn and, by Theorem 1,
there exists a solution x of (1) such that xn = yn + o(un). Hence we get

xn = ϕ(n) + zn + o(un) = ϕ(n) + o(un) + o(un) = ϕ(n) + o(un).

Corollary 2. Assume the assumptions of Theorem 1 are satisfied. Then for any bounded solution y
of the equation ∆myn = bn there exists a solution x of (1) such that xn = yn + o(un).

Proof. It is easy to see that boundedness of y implies the condition yn−τ = O(w−1
n ). Hence

the assertion is a consequence of Theorem 1.

Condition (7) in Theorem 1 is complicated. Below by reducing the generality, we
simplify this condition.

Corollary 3. Assume α, β ∈ (0, ∞), u : N→ (0, ∞), ∆un ≤ 0,

p =
β

α
, | f (n, t)| ≤ |t|

α

nβ
for all (n, t),

∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞,

and (1) is of monotone type. Then, for any solution y of the equation ∆myn = bn such that
yn = O(np) there exists a solution x of (1) such that xn = yn + o(un).

Proof. Let y be a solution of the equation ∆myn = bn such that yn = O(np). Define a
sequence w and a function g : [0, ∞)→ [0, ∞) by

wn =
1

np , g(t) = tα.

Since (n − τ)p = O(np), we have yn−τ = O(w−1
n ). Hence all assumptions of

Theorem 1 are satisfied. Therefore, there exists a solution x of (1) such that
xn = yn + o(un).

Corollary 4. Assume the assumptions of Corollary 3 are satisfied and moreover

∞

∑
n=1

nm−1|bn|
un

< ∞.
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Then, for any polynomial ϕ such that deg(ϕ) < m and ϕ(n) = O(np) there exists a solution
x of (1) such that xn = ϕ(n) + o(un).

Proof. Using Corollary 1 instead of Theorem 1 in the proof of Corollary 3 we obtain
the result.

Assuming boundedness of the function f we obtain an especially simple version of
Theorem 1.

Corollary 5. Assume f is bounded, u : N→ (0, ∞), ∆un ≤ 0,

∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞,

and (1) is of monotone type. Then, for any solution y of the equation ∆myn = bn there exists a
solution x of (1) such that xn = yn + o(un).

Proof. Let y be a solution of the equation ∆myn = bn. Choose a positive constant M such
that | f (n, t)| ≤ M for any (n, t). Define a function g : [0, ∞)→ [0, ∞) by g(t) = M for any
t ∈ [0, ∞) and let w be an arbitrary bounded positive sequence such that yn−τ = O(w−1

n ).
Then, all assumptions of Theorem 1 are satisfied. Hence there exists a solution x of (1) such
that xn = yn + o(un).

Corollary 6. Assume the assumptions of Corollary 5 are satisfied and moreover

∞

∑
n=1

nm−1|bn|
un

< ∞.

Then, for any polynomial ϕ such that deg(ϕ) < m there exists a solution x of (1) such that
xn = ϕ(n) + o(un).

Proof. Using Corollary 1 instead of Theorem 1 in the proof of Corollary 5 we obtain
the result.

4.2. Approximation of Solutions

This section is devoted to the consequences of Theorem 2.

Corollary 7. Assume the assumptions of Theorem 2 are satisfied and moreover

∞

∑
n=1

nm−1|bn|
un

< ∞.

Then, for any solution x of (1) such that xn−τ = O(w−1
n ) there exists a polynomial ϕ, such

that deg(ϕ) < m and xn = ϕ(n) + o(un).

Proof. By Theorem 2 there exists a solution y of the equation ∆myn = bn such that, xn =
yn + o(un). By Lemma 2, there exists a sequence z such that

zn = o(un) and ∆mzn = bn.

Let ϕ = y− z. Then ∆m ϕ = ∆my− ∆mz = b− b = 0. Hence ϕ is a polynomial such
that deg(ϕ) < m. Moreover

xn = yn + o(un) = ϕ(n) + zn + o(un) = ϕ(n) + o(un) + o(un) = ϕ(n) + o(un).
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Corollary 8. Assume the assumptions of Theorem 2 are satisfied. Then, for any bounded solution
x of (1) there exists a solution y of the equation ∆myn = bn such that xn = yn + o(un).

Proof. It is easy to see that boundedness of x implies the condition xn−τ = O(w−1
n ). Hence

the assertion is a consequence of Theorem 2.

Corollary 9. Assume α, β ∈ (0, ∞), u : N→ (0, ∞), ∆un ≤ 0, p = β/α,

| f (n, t)| ≤ |t|
α

nβ
for all (n, t), and

∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞.

Then, for any solution x of (1) such that xn = O(np) there exists a solution y of the equation
∆myn = bn such that xn = yn + o(un).

Proof. Let x be a solution of (1) such that xn = O(np). Define a sequence w and a
function g : [0, ∞) → [0, ∞) by wn = n−p, g(t) = tα. Since (n − τ)p = O(np), we
have yn−τ = O(w−1

n ). Hence all assumptions of Theorem 2 are satisfied. Therefore, there
exists a solution y of the equation ∆myn = bn such that xn = yn + o(un).

Corollary 10. Assume f is bounded, u : N→ (0, ∞), ∆un ≤ 0, and

∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞.

Then for any solution x of (1) there exists a solution y of the equation ∆myn = bn such that
xn = yn + o(un).

Proof. Let x be a solution of (1) and let g = M be a positive constant function such that
| f (n, t)| ≤ M for any (n, t) ∈ N×R. There exists a bounded positive sequence w such that
xn−τ = O(w−1

n ). Then, all assumptions of Theorem 2 are satisfied. Hence there exists a
solution y of the equation ∆myn = bn such that xn = yn + o(un).

Corollary 11. Assume f is bounded, u : N→ (0, ∞), ∆un ≤ 0,

∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞, and

∞

∑
n=1

nm−1|bn|
un

< ∞.

Then, for any solution x of (1) there exists a polynomial ϕ such that deg(ϕ) < m and
xn = ϕ(n) + o(un).

Proof. Using Corollary 7 instead of Theorem 2 in the proof of Corollary 10 we obtain
the result.

5. Examples, Remarks, and Additional Results

We start with an example illustrating Theorem 1.

Example 1. Let m = 3, τ = 0,

bn =
6

(n + 5)4 , K(n, k) = − k
n(n + 1)2n+4 , f (n, t) = dte2, g(t) = (t + 1)2.

Then, Equation (1) takes the form

∆3xn =
6

(n + 5)4 −
n

∑
k=1

k
n(n + 1)2n+4 dxke2. (15)
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So, (1) is of monotone type. It is easy to check that yn = n+1
n+2 is a solution of equation

∆3yn =
6

(n + 5)4 . (16)

Set wn = 1, un =
( 2

3
)n. Then yn = O(w−1

n ). It is easy to check that

∞

∑
k=1

n23n

2n

n

∑
k=1

k
n(n + 1)2n+4 < ∞.

Thus, by Theorem 1, there exists a solution x of (15) such that xn = yn + o(un). For example
the sequence

xn =
n + 1
n + 2

+
1

2n+2

is such a solution.

Condition

∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞, (17)

may be difficult to verify. The following lemma may facilitate the verification of this condition.

Lemma 3. Assume m ∈ N, u : N→ (0, ∞), K : N×N→ R, K∗ ∈ RN,

K∗(n) = n max(|K(n, 1)|, |K(n, 2)|, . . . , |K(n, n)|), (18)

and at least one of the following conditions is satisfied

lim inf
n→∞

ln un − ln K∗(n)
ln n

> m, lim inf
n→∞

n ln
(

K∗(n)un+1

K∗(n + 1)un

)
> m,

lim inf
n→∞

n
(

K∗(n)un+1

K∗(n + 1)un
− 1
)
> m.

Then, the condition (17) is satisfied.

Proof. Using ([27], Lemma 4.4, Lemma 4.5) and ([29], Lemma 6.4) we get

∞

∑
n=1

nm−1K∗(n)
un

< ∞.

Since ∑n
k=1 |K(n, k)| ≤ K∗(n) for any n, we obtain (17).

Example 2. Let α, β ∈ R, m ∈ N. Define a kernel K and a sequence u by

K(n, k) =
kα

3
√

n
, un = nβ.

If K∗ is defined by (18), then K∗(n) = nα+1/3
√

n and

n ln
(

K∗(n)un+1

K∗(n + 1)un

)
= n ln

((
n

n + 1

)α+1(n + 1
n

)β 3
√

n+1

3
√

n

)

= n(α + 1) ln
n

n + 1
+ nβ ln

n + 1
n

+ n(
√

n + 1−
√

n) ln 3→ ∞.

Hence, by Lemma 3 we get (17).
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The following lemma can be the basis for the theory of ‘geometric approximation’ of
the solutions of Equation (1).

Lemma 4. Assume m ∈ N, K : N×N→ R, K∗ ∈ RN is defined by (18), and

lim sup
n→∞

n
√

K∗(n) < λ < 1. (19)

Then
∞

∑
n=1

nm−1

λn

n

∑
k=1
|K(n, k)| < ∞. (20)

Proof. Define a sequence ω ∈ RN and a number µ by

ωn =
nm−1K∗(n)

λn , µ = lim sup
n→∞

n
√

K∗(n).

Then

lim sup
n→∞

n
√

ωn =
µ

λ
< 1⇒

∞

∑
n=1

nm−1K∗(n)
λn < ∞

and we get (20).

It is clear that, in Lemma 4, condition (19) can be replaced by condition:

lim sup
n→∞

K∗(n + 1)
K∗(n)

< λ < 1. (21)

Example 3. Let

K(n, k) =
(−1)m2k

n!
, f (n, t) =

t
nm , λ ∈ (0, 1) and b ∈ RN.

Then

K∗(n) =
n2n

n!
, lim

n→∞

K∗(n + 1)
K∗(n)

= lim
n→∞

2
n
= 0 < λ.

Hence
∞

∑
n=1

nm−1

λn

n

∑
k=1
|K(n, k)| < ∞.

Therefore, by Corollary 3, for any solution y of the equation ∆myn = bn such that yn = O(nm),
there exists a solution x of the equation

∆mxn = bn +
n

∑
k=1

(−1)m2kxn−τ

(n!)nm

such that xn = yn + o(λn).

Now we turn to the problem of asymptotically periodic solutions to Equation (1). Let
q ∈ N. We say that a sequence β ∈ RN is q-balanced if it is q-periodic and

β1 + β2 + · · ·+ βq = 0.

Example 4. If α1, α2, α3 ∈ R, then the sequence

(α1, α2, α3,−α1,−α2,−α3, α1, α2, α3,−α1,−α2,−α3, . . . )
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is 6-balanced. More generally, we say that a sequence γ ∈ RN is q-symmetric if

xn+q = −xn

for any n ∈ N. It is easy to see that any q-symmetric sequence γ is 2q-balanced.

Lemma 5. ([27], Lemma 7.7). Assume m, q ∈ N and β ∈ RN is q-balanced. Then there exists a
q-periodic sequence γ ∈ RN such that ∆mγ = β.

Corollary 12. Assume the assumptions of Theorem 1 are satisfied, q ∈ N, and the sequence b is
q-balanced. Then there exists a q-periodic solution y of the equation ∆myn = bn such that for any
c ∈ R there exists an asymptotically q-periodic solution x of (1) such that xn = c + yn + o(un).

Proof. By Lemma 5 there exists a q-periodic solution y of the equation ∆myn = bn. Let
c ∈ R. Then the sequence c + y is bounded and ∆m(c + y) = b. By Corollary 2 there exists
a solution x of (1) such that xn = c + yn + o(un).

Remark 2. If the assumptions of Theorem 1 are satisfied, q ∈ N, a sequence γ ∈ RN is q-symmetric
and ∆mγ = b, then, by Corollary 2, there exists an asymptotically symmetric solution x of (1),
such that xn = γn + o(un).

Below we establish conditions under which any bounded solution of (1) is asymptoti-
cally periodic.

Corollary 13. Assume the assumptions of Theorem 2 are satisfied, q ∈ N, and the sequence b is
q-balanced. Then, for any bounded solution x of (1) there exists a q-periodic sequence y such that
xn = yn + o(un).

Proof. Let x be a bounded solution of (1). By Corollary 8 there exists a solution y of the
equation ∆myn = bn such that xn = yn + o(un). By Lemma 5 there exists a q-periodic
sequence γ ∈ RN such that ∆mγ = b. Let λ = y− γ. Then ∆mλ = ∆my− ∆mγ = b− b = 0.
Hence λ is a polynomial sequence. Moreover,

λn = yn − γn = xn − γn − o(un).

Hence λ is bounded. Therefore, the sequence λ is constant and y = λ + γ
is q-periodic.

We say that a sequence x ∈ RN is ( f , τ)-bounded if the sequence f (k, xk−τ) is bounded.
For ( f , τ)-bounded solutions of Equation (1) we have the following simple version of
Theorem 2.

Theorem 3. Assume

u : N→ (0, ∞), ∆un ≤ 0, and
∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞. (22)

Then, for any ( f , τ)-bounded solution x of (1) there exists a solution y of the equation
∆myn = bn such that, xn = yn + o(un).

Proof. Let x be an ( f , τ)-bounded solution of (1) and let M be a positive constant such that

| f (k, xk−τ)| ≤ M

for any k ∈ N. Now, repeating the second part of the proof of Theorem 2 we get the result.
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Corollary 14. Assume (22) and
∞

∑
n=1

nm−1|bn|
un

< ∞. (23)

Then, for any ( f , τ)-bounded solution x of (1) there exists a polynomial ϕ such that deg(ϕ) < m
and xn = ϕ(n) + o(un).

Proof. Assume x is an ( f , τ)-bounded solution of (1). By Theorem 3 there exists a sequence
y such that ∆my = b and xn = yn + o(un). By Lemma 2 there exists a sequence z such that
zn = o(un) and ∆mz = b. Let ϕ = y− z. Then ϕ is a polynomial sequence, deg(ϕ) < m,
and xn = ϕ(n) + zn + o(un) = ϕ(n) + o(un).

Below we present conditions under which any solution of (1) is asymptotically polynomial.

Corollary 15. Assume (22), (23), and f is bounded. Then for any solution x of (1) there exists a
polynomial ϕ with the property deg(ϕ) < m and xn = ϕ(n) + o(un).

Proof. If f is bounded, then any sequence x ∈ RN is ( f , τ)-bounded. Hence the assertion
follows from Corollary 14.

Finally, we present a version of Theorem 1 relating to the case of an ordinary difference
equation. In this case, our result is also new.

Theorem 4. Assume u, w : N→ (0, ∞), g : [0, ∞)→ [0, ∞), g is locally bounded,

| f (n, t)| ≤ g(|twn|) for (n, t) ∈ N×R, (24)

a ∈ RN,
∞

∑
n=1

nm−1|an|
un

< ∞, (25)

w is bounded, ∆un ≤ 0, and one of the following conditions is satisfied:

(a) f is non-decreasing with respect to the second variable and (−1)man ≥ 0
for all n,

(b) f is non-increasing with respect to the second variable and (−1)man ≤ 0
for all n.

Then, for any solution y of the equation ∆myn = bn such that, yn−τ = O(w−1
n ) there exists a

solution x of the equation
∆mxn = an f (n, xn−τ) + bn (26)

such that xn = yn + o(un).

Proof. Let us define a map K : N×N→ R by

K(n, k) =

{
an if k = n
0 if k 6= n

.

Then, the assumptions of Theorem 1 are satisfied and Equation (1) takes the form (26).
Hence, using Theorem 1, we obtain the result.

6. Conclusions

One of the main tools used in this paper is the Knaster-Tarski fixed point Theorem.
We believe that this theorem can be used to study the asymptotic properties of solutions to
discrete equations of various types, e.g., neutral type equations, Sturm-Liouville Equations
or other Equations with quasi-differences. It also seems that the results presented in this
paper can be generalized using the asymptotic pair technique from [29]. Of course, from
Theorem 4 one can draw conclusions analogous to the results from Section 4. We leave it to
the reader.
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