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Abstract: The soliton waves’ physical behavior on the pseudo spherical surfaces is studied through
the analytical solutions of the nonlinear (1+1)–dimensional Kaup–Kupershmidt (KK) equation. This
model is named after Boris Abram Kupershmidt and David J. Kaup. This model has been used
in various branches such as fluid dynamics, nonlinear optics, and plasma physics. The model’s
computational solutions are obtained by employing two recent analytical methods. Additionally, the
solutions’ accuracy is checked by comparing the analytical and approximate solutions. The soliton
waves’ characterizations are illustrated by some sketches such as polar, spherical, contour, two, and
three-dimensional plots. The paper’s novelty is shown by comparing our obtained solutions with
those previously published of the considered model.

Keywords: nonlinear (1+1)–dimensional Kaup–Kupershmidt equation; pseudo spherical surfaces;
soliton waves; computational and approximate solutions

1. Introduction

A significant and prominent portion of the nonlinear partial differential Equation
(NLPDE) has recently played a role in describing many physical, chemical, biological,
mechanical, optical, and other phenomena in engineering [1,2]. This image aims to identify
the new features of each model by finding their moving wave solutions to construct the
original and soundscapes for semi-analytical and numerical schemes [3–5]. Therefore, the
analytical findings’ precision can be verified by contrasting the analytical to estimated
solutions for displaying the matching results [6,7]. Thus, several mathematicians and
physics researchers have focused on the drawing up of accurate analytical, semi–analytical,
and numerical schemes such as Khater method, modified Khater method, generalized
Khater method, exp–function method, Hirota’s method, the bi–linear method, Adomian
degradation method, b-spline schemes, and the Sine Gordon expansion method [8–15].
These schemes have dealt with many phenomena and some novel properties that allow
many great applications [16–20] to use these solutions.
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This research paper investigates the analytical and approximate solutions of (1+1)-D
KK equation through the modified F–expansion (MFE), Novel auxiliary Equation (NAE),
and variational iteration (VI) methods [21–25]. This model is given by [26–30]

q1Kt +K5x + q2KKx x x + q3Kx Kx x + q4K2Kx = 0, (1)

where qg, g = 1, 2, 3, 4 are arbitrary constants applying the following wave traveling trans-
formation K(x, t) = R(G), G = x + λ t, where λ is the arbitrary constant to be evaluated
through the suggested analytical methods, converts the NLPDE into the following ordinary
differential Equation (ODE)

R(5) + q2R(3)R+ λ q1R′ + q3R′R′′ + q4R2R′ = 0. (2)

Applying the homogeneous balance principles to Equation (2) for evaluating the value of
balance between the ODE’s model form, finds that s = 2. Consequently, the considered
model’s general solutions are given by

R(G) =



n
∑

i=−s
ai (Q(G) + $)i = a2 (Q(G) + $)2 + a1 (Q(G) + $) + a0,

s
∑

i=1
ai Λ(G)i + a0 = a2 Λ(G)2 + a1 Λ(G) + a0,

(3)

where s is the value of balance, while a2, a1, a0 are arbitrary constants to be evaluated along
with the suggested methods’ framework.

The remaining parts of the article are provided in the order below; Section 2 offers the
wave’s solitary versions by introducing the analytical schemes indicated. The analytical
solutions obtained are often examined to achieve the requested criteria for applying the
semi-analytical methods suggested. Finally, the estimated solutions are determined, and
analytical, semi-analytical, and total errors between the solutions are shown. Specific alter-
natives are displayed by sure distinct illustrations that demonstrate the novel properties of
the model. The findings and creativity of the paper are seen in Section 3. The description
of all results obtained in the whole study paper is explained in Section 4.

2. Distinct Solutions

Here, many various kinds of solutions are obtained and employ two recent analytical
schemes then using their solutions for evaluating the approximate solutions of the con-
sidered model. This investigation aims to illustrate the dynamical behavior of the soliton
waves on pseudo-spherical surfaces. Additionally, it seeks to show the accuracy of the
obtained solutions by estimating the value of error between both solutions.

2.1. Soliton Wave Solution

Employing the suggested computational (MFE and NAE) methods investigates the
solitary wave solutions of the proposed model.

2.1.1. MFE Method’s Investigation

Employing the MFE method’s framework with the following auxiliary equation
Q′(G) = Q(G)2 + $, where $ is arbitrary constant, and the above-mention general solution,
finds the following value of the previous-shown parameters:

Set A

a0 =
1
3

a2$(3$ + 2), a1 = −2a2$, q1 = −
$2(a2

2q4 + 12a2q2 + 144
)

9λ
, q3 = − a2q4

6
− 60

a2
− 2q2.
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Set B

a1 =
12q2$

q4
, a2 = −6q2

q4
, q1 = −

4q4$(a0q2(3$ + 2) + 4$) + a2
0q2

4 + 12q2
2$2($ + 1)(3$ + 1)

λq4
, q3 =

10q4

q2
− q2.

Thus, the solitary solution’s of the nonlinear (1+1)–D KK equation are given by
For $ < 0, we have

KA,1(x, t) = a2

(
$ tan2(

√
$(λt + x)) +

2$

3

)
+

a−1
(√

$ tan
(√

$(λt + x)
)
+ $
)
+ a−2(√

$ tan
(√

$(λt + x)
)
+ $
)2 , (4)

KA,2(x, t) =
1
3

a2$
(

3 cot2(
√

$(λt + x)) + 2
)
+

a−1
(
$−√$ cot

(√
$(λt + x)

))
+ a−2(

$−√$ cot
(√

$(λt + x)
))2 , (5)

KB,1(x, t) =
a−1
(√

$ tan
(√

$(λt + x)
)
+ $
)
+ a−2(√

$ tan
(√

$(λt + x)
)
+ $
)2 + a0 +

6q2$
(
$− tan2(√$(λt + x)

))
q4

, (6)

KA,2(x, t) =
a−1
(
$−√$ cot

(√
$(λt + x)

))
+ a−2(

$−√$ cot
(√

$(λt + x)
))2 + a0 +

6q2$
(
$− cot2(√$(λt + x)

))
q4

. (7)

For $ > 0, we have

KA,3(x, t) = a2

(
$ tan2(

√
$(λt + x)) +

2$

3

)
+

a−2

$
(
tan
(√

$(λt + x)
)
+
√

$
)2 +

a−1√
$ tan

(√
$(λt + x)

)
+ $

, (8)

KA,4(x, t) =
1
3

a2$
(

3 cot2(
√

$(λt + x)) + 2
)
+

a−2

$
(√

$− cot
(√

$(λt + x)
))2 +

a−1

$−√$ cot
(√

$(λt + x)
) , (9)

KB,3(x, t) =
a−1
(√

$ tan
(√

$(λt + x)
)
+ $
)
+ a−2(√

$ tan
(√

$(λt + x)
)
+ $
)2 + a0 +

6q2$
(
$− tan2(√$(λt + x)

))
q4

, (10)

KB,4(x, t) =
a−1
(
$−√$ cot

(√
$(λt + x)

))
+ a−2(

$−√$ cot
(√

$(λt + x)
))2 + a0 +

6q2$
(
$− cot2(√$(λt + x)

))
q4

. (11)

For $ = 0, we have

KA,5(x, t) =
a−2(

1
λt+x − $

)2 +
a−1

$− 1
λt+x

+ a2

(
1

(λt + x)2 +
2$

3

)
, (12)

KB,5(x, t) =
a−2(

1
λt+x − $

)2 +
a−1

$− 1
λt+x

+ a0 +
6q2

(
$2 − 1

(λt+x)2

)
q4

. (13)

2.1.2. NAE Method’s Soliton Solutions

Employing the NAE method’s framework with the following auxiliary equation Λ′(Q) =
P3 Λ(Q)2 + P2 Λ(Q) + P1, where Pj, j = 1, 2, 3 are arbitrary constants, and the above-
mentioned general solution, give the following value of the previously shown parameters:
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Set A

a0 →
a2
(
P2

2 + 8P1P3
)

12P2
3

, a1 →
a2P2

P3
, q1 → −

(
P2

2 − 4P1P3
)2(12a2P2

3 q2 + a2
2q4 + 144P4

3
)

144λP4
3

,

q3 → −
a2q4

6P2
3
−

60P2
3

a2
− 2q2.

Set B

a1 → −
6P2P3q2

q4
, a2 → −

6P2
3 q2

q4
, q1 → −

1
λq4

(
q4

(
a0

(
P2

2 + 8P1P3

)
q2 +

(
P2

2 − 4P1P3

)2
)

+ a2
0q2

4 + 6P1P3

(
P2

2 + 2P1P3

)
q2

2

)
, q3 →

10q4

q2
− q2.

Thus, the solitary solutions of the nonlinear (1+1)–D KK equation are given by
For P2

2 − 4P1P3 > 0, P2P3 6= 0, we get

KA,1(x, t) = −
a2
(
P2

2 − 4P1P3
)

12P2
3

(
3 sech2

(
1
2

√
P2

2 − 4P1P3(λt + x)
)
− 1
)

, (14)

KA,2(x, t) =
a2
(
P2

2 − 4P1P3
)

12P2
3

(
3 csch2

(
1
2

√
P2

2 − 4P1P3(λt + x)
)
+ 1
)

, (15)

KB,1(x, t) = a0 +
3q2

2q4

(
4P1P3 +

(
P2

2 − 4P1P3

)
sech2

(
1
2

√
P2

2 − 4P1P3(λt + x)
))

, (16)

KB,2(x, t) = a0 +
3q2

2q4

(
4P1P3 −

(
P2

2 − 4P1P3

)
csch2

(
1
2

√
P2

2 − 4P1P3(λt + x)
))

. (17)

For P2
2 − 4P1P3 < 0, P2P3 6= 0, we get

KA,3(x, t) = −
a2
(
P2

2 − 4P1P3
)

12P2
3

(
3 sec2

(
1
2

√
4P1P3 −P2

2 (λt + x)
)
− 1
)

, (18)

KA,4(x, t) = −
a2
(
P2

2 − 4P1P3
)

12P2
3

(
3 csc2

(
1
2

√
4P1P3 −P2

2 (λt + x)
)
− 1
)

, (19)

KB,3(x, t) = a0 +
3q2

2q4

(
4P1P3 +

(
P2

2 − 4P1P3

)
sec2

(
1
2

√
4P1P3 −P2

2 (λt + x)
))

, (20)

KB,4(x, t) = a0 +
3q2

2q4

(
4P1P3 +

(
P2

2 − 4P1P3

)
csc2

(
1
2

√
4P1P3 −P2

2 (λt + x)
))

. (21)

For P2
2 − 4P1P3 > 0, P1P3 6= 0, we get
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KA,5(x, t) =a2

(
P2

2 − 4P1P3

)(
− 10P1P3 +

√
P2

2 − 4P1P3P2

(
− sinh

(√
P2

2 − 4P1P3(λt + x)
))

+
(
P2

2 − 2P1P3

)
cosh

(√
P2

2 − 4P1P3(λt + x)
))/(

12P2
3

(
P2 cosh

(1
2

√
P2

2 − 4P1P3

(λt + x)
)
−
√
P2

2 − 4P1P3 sinh
(

1
2

√
P2

2 − 4P1P3(λt + x)
))2)

,

(22)

KA,6(x, t) =a2

(
P2

2 − 4P1P3

)(
10P1P3 +

√
P2

2 − 4P1P3P2

(
− sinh

(√
P2

2 − 4P1P3(λt + x)
))

+
(
P2

2 − 2P1P3

)
cosh

(√
P2

2 − 4P1P3(λt + x)
))/(

12P2
3

(
P2 sinh

(1
2

√
P2

2 − 4P1P3

(λt + x)
)
−
√
P2

2 − 4P1P3 cosh
(

1
2

√
P2

2 − 4P1P3(λt + x)
))2)

,

(23)

KB,5(x, t) =a0 + 6P1P3q2

(
P2

2 − 2P1P3 −
√
P2

2 − 4P1P3P2 sinh
(√
P2

2 − 4P1P3(λt + x)
)

+
(
P2

2 − 2P1P3

)
cosh

(√
P2

2 − 4P1P3(λt + x)
))/(

q4

(
P2 cosh

(1
2

√
P2

2 − 4P1P3

(λt + x)
)
−
√
P2

2 − 4P1P3 sinh
(

1
2

√
P2

2 − 4P1P3(λt + x)
))2)

,

(24)

KB,6(x, t) =a0 − 6P1P3q2

(
P2

√
P2

2 − 4P1P3 sinh
(√
P2

2 − 4P1P3(λt + x)
)

−
(
P2

2 − 2P1P3

)(
cosh

(√
P2

2 − 4P1P3(λt + x)
)
− 1
))/(

q4

(
P2 sinh

(1
2

√
P2

2 − 4P1P3

(λt + x)
)
−
√
P2

2 − 4P1P3 cosh
(

1
2

√
P2

2 − 4P1P3(λt + x)
))2)

.

(25)

For P2
2 − 4P1P3 < 0, P1P3 6= 0, we get

KA,7(x, t) =
1

12
a2

(
P2

2
P2

3

−
24P1P2 cos

(
1
2

√
4P1P3 −P2

2 (λt + x)
)

P3

(√
4P1P3 −P2

2 sin
(

1
2

√
4P1P3 −P2

2 (λt + x)
)
+ P2 cosh

(
1
2

√
4P1P3 −P2

2 (λt + x)
))

+ 8P1

( 1
P3

+
3P1

(
cos
(√

4P1P3 −P2
2 (λt + x)

)
+ 1
)

(√
4P1P3 −P2

2 sin
(

1
2

√
4P1P3 −P2

2 (λt + x)
)
+ P2 cosh

(
1
2

√
4P1P3 −P2

2 (λt + x)
))

2

))
,

(26)
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KA,8(x, t) =
1

12
a2

(
P2

2
P2

3
+ 8P1

( 1
P3

−
3P1

(
cos
(√

4P1P3 −P2
2 (λt + x)

)
− 1
)

(
P2 sinh

(
1
2

√
4P1P3 −P2

2 (λt + x)
)
−
√

4P1P3 −P2
2 cos

(
1
2

√
4P1P3 −P2

2 (λt + x)
))

2

)

+
24P1P2 sin

(
1
2

√
4P1P3 −P2

2 (λt + x)
)

P3

(√
4P1P3 −P2

2 cos
(

1
2

√
4P1P3 −P2

2 (λt + x)
)
−P2 sinh

(
1
2

√
4P1P3 −P2

2 (λt + x)
))),

(27)

KB,7(x, t) = a0 +

(
12P1P3q2 cos

(
1
2

√
4P1P3 −P2

2 (λt + x)
)(√

4P1P3 −P2
2P2 sin

(1
2

√
4P1P3 −P2

2

(λt + x)
)
− 2P1P3 cos

(
1
2

√
4P1P3 −P2

2 (λt + x)
)
+ P2

2 cosh
(

1
2

√
4P1P3 −P2

2 (λt + x)
)))/(

q4

×
(√

4P1P3 −P2
2 sin

(
1
2

√
4P1P3 −P2

2 (λt + x)
)
+ P2 cosh

(
1
2

√
4P1P3 −P2

2 (λt + x)
))2

)
,

(28)

KB,8(x, t) = a0 −
(

12P1P3q2 sin
(

1
2

√
4P1P3 −P2

2 (λt + x)
)(

2P1P3 sin
(

1
2

√
4P1P3 −P2

2 (λt + x)
)

+
√

4P1P3 −P2
2P2 cos

(
1
2

√
4P1P3 −P2

2 (λt + x)
)
+ P2

2

(
− sinh

(
1
2

√
4P1P3 −P2

2 (λt + x)
))))

/(
q4

(
P2 sinh

(
1
2

√
4P1P3 −P2

2 (λt + x)
)
−
√

4P1P3 −P2
2 cos

(
1
2

√
4P1P3 −P2

2 (λt + x)
))

2

)
.

(29)

For P1 = 0&P2P3 6= 0, we get

KA,9(x, t) =
1

12
a2P2

2

(
1
P2

3
+

12Ω2

β2
(
eP2(−(λt+x)) + Ω

)
2
− 12Ω

βP3
(
eP2(−(λt+x)) + Ω

)), (30)

KA,10(x, t) =
1
12

a2P2
2

(
1
P2

3
+

12e2P2(λt+x)

β2
(
eP2(λt+x) + Ω

)
2
− 12
P3
(

β + βΩeP2(−(λt+x))
)), (31)

KB,9(x, t) = a0 +
6P3P2

2 q2Ω
(

β
(

eP2(−(λt+x)) + Ω
)
−P3Ω

)
β2q4

(
eP2(−(λt+x)) + Ω

)
2

, (32)

KB,10(x, t) = a0 +
6P3P2

2 q2eP2(λt+x)
(

βΩ + (β−P3)eP2(λt+x)
)

β2q4
(
eP2(λt+x) + Ω

)
2

. (33)

2.2. Semi–Analytical Solutions

Here, we apply the VI method to the considered model along with the above-obtained
analytical solutions. These solutions are used to construct the requested conditions for the
suggested approximate schemes. The aims of this section are evaluating the numerical so-
lutions of the nonlinear VP model and investigating the accuracy of the obtained analytical
solutions. Handling the considered model via the VI method gives
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KSemi-analytical =



1
12(tanh(2x) + 2)7

(
1536t(405 tanh(2x) + 4358)sech10(2x)− 48

× sech8(2x)((616784t− 1) tanh(2x) + 2(778544t− 7)) + 2sech6(2x)

× (16(3090480t− 131) tanh(2x) + 52179036t− 7831) + sech4(2x)

× (3(6477327t + 12092) tanh(2x) + 75298110t + 65290)− sech2(2x)

× ((111084189t + 61352) tanh(2x) + 110984790t + 67562) + 2(6194

× tanh(2x) + 6199)
)

,

∣∣∣∣∣
MKE method

,

−66t tanh( x
2 )+cosh(x)−5

3(cosh(x)+1)

∣∣∣∣∣
NAE

.

(34)

Investigating the analytical and semi-analytical solutions concerning different val-
ues of x of the considered model along with the above-shown approximate solutions is
represented by the following Tables 1 and 2.
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Table 1. Absolute error between analytical and approximate solutions through the MFE and VI methods for x ∈ {10, 11, · · · , 29, 30}, t ∈ {1, 2, 3, 4, 5}.

Value of x t = 1 t = 2 t = 3 t = 4 t = 5

10 1.4432899320127 × 10−13 2.88213897192691 × 10−13 4.32098801184111 × 10−13 5.75539615965681 × 10−13 7.19424519957101 × 10−13

11 3.10862446895044 × 10−15 5.77315972805081 × 10−15 8.43769498715119 × 10−15 1.11022302462516 × 10−14 1.37667655053519 × 10−14

12 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

13 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

14 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

15 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

17 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

18 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

19 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

20 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

21 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

22 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

23 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

24 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

25 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

26 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

27 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

28 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

29 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16

30 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16 4.44089209850063 × 10−16
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Table 2. Absolute error between analytical and approximate solutions through the MFE and VI methods for x ∈ {10, 11, · · · , 29, 30}, t ∈ {5, 7, 9, 11, 13}.

Value of x t = 5 t = 7 t = 9 t = 11 t = 13

10 0.0164244725343919 0.16654441640775 0.768291042082899 0.764296573715769 0.15456101130636

11 0.00612510388391158 0.0654402400876814 0.413294105364588 0.991850112266608 0.41035480239668

12 0.00226461467607447 0.0246752792399448 0.17824901408163 0.783449430725106 0.782908753326303

13 0.000834641432710226 0.0091608207257004 0.0697467012240005 0.418871310795438 0.998698061991988

14 0.000307255579977739 0.003381448617511 0.0262596162962896 0.180300854252883 0.785968774011267

15 0.000113061194247033 0.00124550927506378 0.00974367638621276 0.0705015447026717 0.419798142092268

16 0.0000415967037510345 0.000458406440250525 0.00359587067076089 0.0265373095425168 0.180641818692087

17 0.0000153030884371685 0.00016866662738646 0.00132439093487935 0.00984583427270436 0.0706269788158394

18 5.62976149848238 × 10−6 0.0000620528182497249 0.000487425407530773 0.00363345249082281 0.0265834542153602

19 2.07108297073377 × 10−6 0.0000228284749557162 0.000179342112418768 0.00133821651842542 0.00986280995476424

20 7.61910125712806 × 10−7 8.39819683040588 × 10−6 0.0000659801102002033 0.000492511556099862 0.00363969749601051

21 2.80291244492137 × 10−7 3.08953346023211 × 10−6 0.0000242732449891592 0.000181213201995989 0.00134051392754658

22 1.03113409810618 × 10−7 1.13657712896842 × 10−6 8.92969803173438 × 10−6 0.0000666684455996602 0.000493356725697391

23 3.79333067179743 × 10−8 4.18123533130199 × 10−7 3.28506182639687 × 10−6 0.0000245264694327396 0.000181524122517152

24 1.39548841371351 × 10−8 1.53819075254802 × 10−7 1.20850799517624 × 10−6 9.02285409870585 × 10−6 0.0000667828268674509

25 5.13371495314274 × 10−9 5.6586878571796 × 10−8 4.44585419978605 × 10−7 3.31933202823986 × 10−6 0.0000245685479496327

26 1.88858823024773 × 10−9 2.08171497262377 × 10−8 1.63553859455767 × 10−7 1.22111529793356 × 10−6 9.03833392007503 × 10−6

27 6.94772794851417 × 10−10 7.65820140635753 × 10−9 6.01681055534264 × 10−8 4.49223387488651 × 10−7 3.32502673627832 × 10−6

28 2.5559265814934 × 10−10 2.81729489737259 × 10−9 2.21346095341524 × 10−8 1.65260072348961 × 10−7 1.22321026396754 × 10−6

29 9.40272304461587 × 10−11 1.03642483484379 × 10−9 8.14286776895656 × 10−9 6.0795786183121 × 10−8 4.49994082385441 × 10−7

30 3.45907191778849 × 10−11 3.81279452454919 × 10−10 2.99559366201407 × 10−9 2.23655203246409 × 10−8 1.65543595165296 × 10−7
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3. Results’ Discussion

Here, the article’s results are illustrated by comparing them with previously pub-
lished solutions. In contrast, the paper’s contribution is also explained by showing the
result’s novelty and shown figures and tables. Additionally, this section shows the obtained
solution’s accuracy by estimating the matching between obtained analytical and approxi-
mate solutions. The formulated solutions are different from the constructed solutions by
numerous researchers who have applied some distinct analytical schemes.

This paper has applied the MFE and NAE analytical schemes to the considered
model for constructing novel solutions. Both computational methods depend on the
above-shown auxiliary equations that are different from the previous techniques. These
auxiliary equations provide some distinct solutions by giving a specific value of parameters.
The considered model is studied by utilizing some analytical and numerical schemes
such as the homotopy perturbation method (HPM) [26], different methods of fixed-point
theorem together with the concept of Piccard L-stability [27], the deep geometric theory of
Krasil’shchik and Vinogradov that is known with a nonlocal symmetries theory [28], the
q-homotopy analysis transform method (q-HATM) [29], the modified auxiliary equation of
direct algebraic method [30], the Adomian decomposition method (ADM) [31], perturbation
scheme and the Hirota bi-linear formalism [32]. However, all these are studies of the
considered model, but our paper has constructed novel solutions that have not been
obtained in previously published articles.

Figures 1–6 show the dynamical behavior of the obtained solutions through the pseudo
spherical surfaces, respectively, kink, bright, dark, bright, dark, and dark waves. These
figures have been plotted by using the following values of the above-shown parameters

in its represented solution
[

a2 = 4, a−2 = 2, a−1 = 5, λ = 3, $ = −16 & a0 = 0.3, a2 =

0.5, a−2 = 0.1, a−1 = 0.9, λ = 7, q2 = 0.8, q4 = 0.4, $ = −4 & a2 = 5, λ = 7, P1 =
1, P2 = 3, P3 = 2 & a2 = 5, λ = 7, P1 = 1, P2 = 3, P3 = 2 & a0 = 5, λ = 7, P1 = 1, P2 =

3, P3 = 2, q2 = 6, q4 = 8 & a0 = 5, λ = 7, P1 = 1, P2 = 3, P3 = 2, q2 = 6, P4 = 8
]
. For

further explanation of the sketched solutions Equations (4), (6), (14), (16), (22), and (24),
three, two-dimensional, contour, polar, and spherical plots have been figured to show more
novel properties of the wave’s dynamical behavior on the considered surface.

Estimating the matching between analytical and approximate solutions by using the
analytical obtained solutions for constructing the requested conditions allows applying the
VI method. The approximate solutions of the considered model are also sketched in distinct
forms (Figures 7 and 8). While the matching between the analytical and approximate
solutions is discussed through Tables 1 and 2 and Figures 9 and 10. Additionally, The MFE
method’s accurate is greater than the NAE method, and this superiority is explained by
Figure 11:

Figure 1. Cont.
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Figure 1. Distinct kink waves’ sketches of Equation (4) in various formulas (three (a), two (b), contour
(c), spherical (d), polar plots (e)) for a2 = 4, a−2 = 2, a−1 = 5, λ = 3, $ = −16.

Figure 2. Cont.
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Figure 2. Distinct bright waves’ sketches of Equation (6) in various formulas (three (a), two (b),
contour (c), spherical (d), polar plots (e)) for a0 = 0.3, a2 = 0.5, a−2 = 0.1, a−1 = 0.9, λ = 7, q2 =

0.8, q4 = 0.4, $ = −4.

Figure 3. Distinct dark waves’ sketches of Equation (14) in various formulas (three (a), two (b),
contour (c), spherical (d), polar plots (e)) for a2 = 5, λ = 7, P1 = 1, P2 = 3, P3 = 2.
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Figure 4. Distinct bright waves’ sketches of Equation (22) in various formulas (three (a), two (b),
contour (c), spherical (d), polar plots (e)) for a2 = 5, λ = 7, P1 = 1, P2 = 3, P3 = 2.

Figure 5. Cont.
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Figure 5. Distinct dark waves’ sketches of Equation (16) in various formulas (three (a), two (b),
contour (c), spherical (d), polar plots (e)) for a0 = 5, λ = 7, P1 = 1, P2 = 3, P3 = 2, q2 = 6, q4 = 8.

Figure 6. Cont.
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Figure 6. Distinct dark waves’ sketches of Equation (24) in various formulas (three (a), two (b),
contour (c), spherical (d), polar plots (e)) for a0 = 5, λ = 7, P1 = 1, P2 = 3, P3 = 2, q2 = 6, P4 = 8.

Figure 7. Cont.
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Figure 7. Distinct bright waves’ sketches of the obtained approximate solution by the calculated data
from the MFE method’s solutions in various formulas (three (a), two (b), contour (c), spherical (d),
polar plots (e)).

Figure 8. Cont.
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Figure 8. Distinct bright waves’ sketches of the obtained approximate solution by the calculated data
from the NAE method’s solutions in various formulas (three (a), two (b), contour (c), spherical (d),
polar plots (e)).

Figure 9. Absolute error through Table 1, through (a) two-dimensional, and (b) bar normal plots.
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Figure 10. Absolute error through Table 2., through (a) two-dimensional, and (b) distribution plots.

Figure 11. Accuracy of the MFE expansion method over NAE method through (a) two-dimensional,
and (b) distribution plots.
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4. Conclusions

This paper has successfully implemented two recent analytical schemes for ob-
taining novel solutions of the nonlinear KK-model. Many computational wave solutions
have been formulated through the used schemes. These solutions have been checked
for their accuracy by employing the VI approximate schemes. The solutions have been
represented in some different sketches to explain the physical and dynamical characteri-
zations of the waves on pseudo-spherical surfaces. The paper’s novelty and contribution
are demonstrated by comparing its solutions with the previously published results of the
considered model.
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