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Abstract: In this study, we developed a modified version of the CRiteria Importance Through Inter-
criteria Correlation (CRITIC) method, namely the Distance Correlation-based CRITIC (D-CRITIC)
method. The usage of the method was illustrated by evaluating the weights of five smartphone
criteria. The same evaluation was repeated using four other objective weighting methods, including
the original CRITIC method. The results from all the methods were further analyzed based on
three different tests (i.e., the distance correlation test, the Spearman rank-order correlation test, and
the symmetric mean absolute percentage error test) to validate D-CRITIC. The tests revealed that
D-CRITIC could produce more valid criteria weights and ranks than the original CRITIC method
since D-CRITIC yielded a higher average distance correlation, a higher average Spearman rank-order
correlation, and a lower symmetric mean absolute percentage error. Besides, additional sensitivity
analysis indicated that D-CRITIC has the tendency to deliver more stable criteria weights and ranks
with a larger decision matrix. The research has contributed an alternative objective weighting method
to the area of multi-criteria decision-making through a unique extension of distance correlation. This
study is also the first to propose the idea of a distance correlation test to compare the performance of
different criteria weighting methods.

Keywords: CRITIC; D-CRITIC; distance correlation; multi-criteria decision-making

1. Introduction

The primary purpose of any standard multi-criteria decision-making (MCDM) analysis
is to evaluate and rank the available alternatives based on a predetermined set of decision
criteria [1]. There are four fundamental stages in executing an MCDM analysis. In the first
stage, the decision-makers identify all the relevant criteria that can be used to evaluate the
alternatives. Such an identification can be made either by reviewing the literature, based
on the decision-makers’ knowledge, or by seeking advice from experts [2]. The decision-
makers should invest ample time in this stage because omitting any salient criterion will
result in a futile analysis.

In the second stage, the decision-makers need to collect each alternative’s data or local
score with respect to all the criteria identified in the earlier stage to form the decision matrix.
Assume an MCDM problem where ai = {a1, a2, . . . , am} denotes the set of alternatives
under investigation and cj = {c1, c2, . . . , cn} represents the set of evaluation criteria. The
general form of the decision matrix can then be expressed as in Equation (1), where xmn
denotes the score of alternative m with respect to criterion n [3].
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Alternatives/Criteria c1 c2 . . . cn
a1 x11 x12 . . . x1n
a2 x21 x22 . . . x2n
...

...
...

...
...

am xm1 xm2 . . . xmn

(1)

In the third stage, the weight of each criterion is determined. It is worth noting that it
does not make sense to treat all the criteria equally as, in reality, they may carry different
degrees of importance in a decision system [4]. In the final stage, these criteria weights and
the local scores belonging to each alternative are aggregated into a global score. Based on
these global scores, the alternatives can then be ordered from the most to the least preferred
one [5].

The focus of this paper is on the third stage, which is the weight determination
stage. Imprecise weights will result in misleading global scores, causing us to choose
an inappropriate alternative or solution for the decision problem. One, therefore, needs
to be extremely cautious in determining the weights. Unfortunately, this process can
quickly transform into a complex one, especially when the decision problem involves
many criteria. Hence, various methods have been proposed to determine the criteria
weights systematically.

The remainder of this paper is organized as follows. In Section 1.1, the motivation
of the study is elucidated by reviewing the previous literature. The contributions of the
study are explicated in Section 1.2. Section 2 introduces the proposed modified CRITIC
method. The usage of the modified method is illustrated in Section 3 through a smartphone
criteria evaluation problem. The validity of the method is tested in Section 4. In Section 5,
important findings from Sections 3 and 4 are discussed. Section 6 describes the research
limitations and potential future studies.

1.1. Literature and Motivation

The existing literature classified the weighting methods into two distinct groups,
namely subjective and objective methods [6,7]. Subjective methods require some initial
information from the decision-makers prior to weight determination, with such informa-
tion usually provided based on the decision-makers’ knowledge or experience [8]. Some
popular subjective weighting methods are pairwise-comparison-based methods [9,10],
SWARA [11], KEMIRA [12], SIMOS [13], P-SWING [14], PIPRECIA [15], FUCOM [16],
and DEMATEL [17], to name a few. Although subjective methods have the advantage of
integrating information from experienced decision-makers, such information may some-
times favour a specific criterion because of the decision-makers’ past belief, thus leading to
biased results [18]. Besides, decision-makers who do not have complete knowledge about
the decision problem under consideration may be unable to furnish the needed initial
information [19]. Apart from this, the process of delivering such information may become
complex when the MCDM problem involves many criteria.

Unlike subjective methods, objective methods do not require any sort of initial infor-
mation or judgment from the decision-makers [20]; they merely assess the structure of the
data available in the decision matrix to determine the weights [21–23]. These methods are
known for eliminating possible bias associated with subjective evaluation, thus increasing
objectivity [24]. The following are some examples of objective methods, as mentioned in
the literature: entropy-based methods [25,26], CRiteria Importance Through Inter-criteria
Correlation (CRITIC) [27], and the recent CILOS and IDOCRIW methods [28].

Our review of the literature suggests that entropy-based methods and CRITIC are the
most widely applied objective methods for the weighting of criteria. However, CRITIC
is found to have extra merit as it considers both the contrast intensity and the conflicting
relationship held by each decision criterion [29,30], unlike the Shannon entropy method,
which addresses only the contrast intensity [31]. Below, we describe these two aspects in
more detail.
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a. Contrast intensity of decision criteria The contrast intensity reflects the degree of vari-
ability associated with the local scores of each criterion. The original CRITIC method
uses standard deviation to measure the contrast intensity of each criterion [32]. The
method ensures that a criterion with a higher contrast intensity or standard deviation
is assigned with a higher weight. The logic of this scenario can be explained as
follows. If a criterion’s scores show more variance from one alternative to another,
this criterion is expected to provide more exciting or meaningful information [33].
Thus, from a decision-making viewpoint, more attention or weight should be given
to such a criterion than to criteria with homogeneous scores.

b. Conflicting relationships between decision criteria The alternatives considered in
an MCDM problem are usually characterized by conflicting criteria [34]. Thus, it is
sometimes impossible for an alternative to perfectly satisfy all the predetermined
criteria [25]. For instance, it is difficult for a buyer to purchase a brand new car that
has a higher engine capacity and is cheaper at the same time: generally, the higher
the engine capacity, the more expensive the car. In short, a conflict between criteria
represents a type of relationship that can be present between decision criteria. The
CRITIC method considers such conflicting relationships by utilizing the Pearson
correlation coefficient [35], which ranges between −1 and 1. When the coefficient
is zero, it implies that the two criteria, cj and cj′ , are independent of each other.
Meanwhile, a negative coefficient indicates that both criteria move in an opposite
direction. To be precise, as the coefficient approaches −1, the conflict between the
two criteria becomes stronger. On the other hand, a positive coefficient indicates a
parallel direction between both criteria. It means that two criteria with a high positive
coefficient share too much redundant information. Hence, a criterion that holds high
positive correlations with other criteria does not deliver any extra information [36]
and is considered to play a minor role in the entire decision system. By adhering to
this principle, based on certain formulas, the CRITIC method ensures that a criterion
with a higher degree of conflict or a lower degree of redundancy, is assigned with a
higher weight.

Overall, it can be claimed that the CRITIC method assigns a higher weight to a criterion
that has a higher contrast intensity and a higher degree of conflict with other criteria [37].
Because of this aspect, CRITIC has been used in many real applications. Previous studies
also show that CRITIC has been used jointly with other objective or subjective methods for
weight determination. For instance, Yerlikaya et al. [38] used a combination of a pairwise
comparison method and CRITIC to evaluate the weights of logistic location selection
criteria. Marković et al. [39] used the fuzzy PIPRECIA method and the CRITIC method to
measure the weights of bank performance criteria. Piasecki and Kostyrko et al. [40] applied
a combination of an entropy method and CRITIC to determine the weights of indoor air
quality criteria.

Surprisingly, there are not many modified versions of CRITIC available in the lit-
erature. Only two modified methods have recently been introduced [41,42], with both
methods using different data normalization techniques. The methods were claimed to
better model the contrast intensity of each criterion; however, additional statistical tests
were not performed to validate the reliability or accuracy of the methods.

In fact, the limited number of studies on modified CRITIC methods implies that
researchers may not have detected any serious issues with CRITIC’s fundamental compo-
nents, suggesting that major modifications may not be needed. However, in the present
study, we discovered that the original CRITIC method has a shortcoming in properly
capturing the conflicting relationships between criteria, since it merely utilizes the Pearson
correlation for this purpose. Studies indicate that this correlation does not always denote
the actual relationships between criteria [43]. For instance, two criteria with a zero Pearson
correlation coefficient may not be completely independent [44]. This undesirable situation
occurs because the Pearson correlation detects only the linear relationship between two cri-
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teria and not the nonlinear relationship [45,46]. Thus, the validity of the weights computed
by the original CRITIC method can be disputed.

Therefore, this research was motivated by the need for a modified CRITIC method
that does not misrepresent the conflicting relationships between decision criteria. Proving
that such a modified method can perform better than the original CRITIC method was
another challenge that was addressed in this research.

1.2. Statement on Contributions

The key contribution of this research is twofold. First, in the context of the MCDM
literature, we have introduced an improved version of the CRITIC method, namely D-
CRITIC. D-CRITIC was developed by incorporating the idea of distance correlation into
the original CRITIC method. Such a novel extension has not been reported in any of the
studies relating to criteria weighting methods. The proposed D-CRITIC method has the
merit of modelling the conflicting relationships between criteria more reliably with the
aid of distance correlation. More importantly, this research has proven that D-CRITIC can
produce a more valid set of criteria weights and ranks than the original CRITIC method.
The introduction of D-CRITIC can also be regarded as an attempt to diversify the current
literature, which is concentrated more on subjective weighting methods than on objective
methods [47].

The second contribution of our research is linked to one of the tests conducted to
validate the performance of D-CRITIC. Overall, we have conducted three different tests
to compare the performance of the method. The purpose of the first test was to com-
pare the degree of agreement of the criteria weights derived by D-CRITIC against four
other weighting methods, including the original CRITIC method. Usually, the Pearson
correlation test is conducted for this purpose [48,49]. However, we discovered that this
test could deliver misleading results since the Pearson correlation is unable to capture a
nonlinear association [50] between any two sets of weights. Therefore, we used the distance
correlation test as an alternative approach to comparing the degree of agreement between
different sets of criteria weights. The study is the first to offer a distance correlation test to
measure the performance of different weighting methods.

In short, we employed the idea of distance correlation not only to develop a modified
version of the CRITIC method but also to validate the performance of the modified method,
that is, the D-CRITIC method.

2. The Proposed D-CRITIC Method

The proposed D-CRITIC method was developed by incorporating the idea of distance
correlation into the original CRITIC method. All in all, as summarized in Figure 1, the
application of D-CRITIC involves five crucial steps. A detailed explanation of each step is
provided in the following sections.
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a. Normalization of the decision matrix (Step 1) The scores of different criteria are
incommensurable as they are expressed in different measurement units or scales.
Normalization is a process of transforming the scores into standard scales, which
range between 0 and 1. In the proposed method, as a first step, we use Equation (2)
for normalizing the scores available in the decision matrix.

xij =
xij − xworst

j

xbest
j − xworst

j
, (2)

where xij is the normalized score of alternative i with respect to criterion j, xij is
the actual score of alternative i with respect to criterion j, xbest

j is the best score of
criterion j, and xworst

j is the worst score of criterion j.
b. Calculate the standard deviation of each criterion (Step 2) In the second step, the

standard deviation of each criterion, sj, is calculated using Equation (3). Note that
xj in Equation (2) is the mean score of criterion j and that m is the total number
of alternatives.

sj =

√(
∑m

i=1 xij − xj
)2

m− 1
, (3)

where xj is the mean score of criterion j and m is the total number of alternatives.
c. Calculate the distance correlation of every pair of criteria (Step 3) The main difference

between the proposed D-CRITIC and the original CRITIC method can be observed
in the third step. In the original CRITIC method, the conflicting relationships be-
tween criteria are captured with the help of the Pearson correlation. However, as
explained in Section 1.1, the Pearson correlation has the risk of inaccurately capturing
the actual relationships between criteria. More precisely, two criteria with a zero
Pearson correlation coefficient may not be completely independent. Accordingly,
Székely et al. [43] introduced a new correlation measure, called distance correlation,
that is zero if, and only if, the criteria are independent. Therefore, in the modified
D-CRITIC method, the distance correlation is used as an alternative way to model
the relationships, with the aim of minimizing the possible error in the final weights.
Equation (4) defines the distance correlation between cj and cj′ .

dCor
(

cj, cj′
)
=

dCov
(

cj, cj′
)

sqrt
(

dVar
(
cj
)
dVar

(
cj′
)) , (4)

where dCov
(

cj , cj′
)

is the distance covariance between cj and cj′ ,

dVar
(
cj
)
= dCov

(
cj, cj

)
is the distance variance of cj, and dVar

(
cj′
)
= dCov

(
cj′ , cj′

)
is the distance variance of cj′ [51]. The detailed steps of determining the distance
correlation of every two criteria, cj and cj′ , can be summarized as follows:

• Step 3.1—Construct the Euclidean distance matrix of cj based on its scores
associated with all the alternatives under consideration. Construct a similar
matrix for cj′ .

• Step 3.2—Perform the following double-centring steps on each matrix, so that
the row means, column means, and the overall mean of the elements in each
matrix become zero: Deduct the row mean from each element; in the result,
deduct the column mean from each element; in the result, add the matrix mean
to each element.

• Step 3.3—Multiply the double-centred matrices elementwise and calculate the
average value of the elements from the resulting matrix, that is, the sum of
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elements divided by the total number of elements. The square root of this
average value is the distance covariance of cj and cj′ , that is, dCov

(
cj, cj′

)
.

• Step 3.4—Compute the distance variance of cj, dVar
(
cj
)
, and the distance vari-

ance of cj′ , dVar
(

cj′
)

. Since dVar
(
cj
)

= dCov
(
cj, cj

)
and

dVar
(

cj′
)

= dCov
(

cj′ , cj′
)

, these two values can be computed by repeating
Steps 3.1–3.4.

• Step 3.5—The available dCov
(
cj, cj,

)
, dVar

(
cj
)
, and aaaaa are substituted into

Equation (4) to determine the distance correlation between cj and cj′ , that is,

dCor
(

cj, cj′
)

.

At the end of this step, the symmetrical distance correlation matrix,
[
dCov

(
cj, cj′

)]
,

can be formed.

d. Compute the information content (Step 4) The amount of information contained in
criterion j is calculated by applying Equation (5).

Ij = sj ∑n
j′=1(1− dCor

(
cj, cj′

)
), (5)

where Ij denotes the information content of cj.
e. Determine the objective weights (Step 5) The objective weight of criterion j is deter-

mined using Equation (6).

wj =
Ij

∑n
j=1 Ij

, (6)

where wj is the objective weight of cj.

3. Application of D-CRITIC to a Decision Problem

Many popular gadget websites provide a list of crucial criteria for smartphone selec-
tion. Some even rank these criteria from the most to the least important one. Since the
smartphone market is becoming more and more competitive, providing such information
will undoubtedly be helpful for the manufacturers to develop the right product strategies
to sustain them in such a competitive marketplace.

There are several MCDM-based studies conducted to determine the weights and
ranks of smartphone criteria scientifically. For instance, Peaw and Mustafa [52] evaluated
various smartphone criteria, including the dimension and screen resolution, using the
combination of AHP and Data Envelopment Analysis. Meanwhile, Ho et al. [53] analyzed
the responses collected from a sample of customers using a modified AHP to evaluate eight
selected criteria, which include the display quality, camera, and price. In another study,
Okfalisa et al. [54] applied both the fuzzy AHP and fuzzy analytical network process for a
similar smartphone criteria evaluation purpose.

Surprisingly, most of the previous studies on the evaluation of smartphone criteria
were more focused on using subjective weighting methods, e.g., AHP. In this section, we are
interested in establishing that the objective weighting methods, particularly the D-CRITIC
method, can be used as a potential alternative tool to determine the weights and ranks of
smartphone criteria.

Table 1 shows the decision matrix of five smartphone models that were compared
according to five criteria, namely the base price measured in dollars (c1), the screen size
measured in inches (c2), the pixel density measured in pixels per centimetre (c3), the thick-
ness measured in millimetres (c4), and the mass measured in grams (c5). The smartphone
models were renamed as Models A, B, C, D, and E for confidentiality.
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Table 1. Decision matrix of smartphone models.

Model/Criterion c1
(Nonbeneficial)

c2
(Beneficial)

c3
(Beneficial)

c4
(Nonbeneficial)

c5
(Nonbeneficial)

Model A 649 4.7 326 7.1 143
Model B 749 5.5 401 7.3 192
Model C 740 5.7 520 7.6 171
Model D 400 5.7 520 11.1 179
Model E 600 5.5 538 8.9 152

Source: https://www.trendhunter.com/trends/smartphone-guide (accessed on 2 November 2020).

Note that the actual smartphone comparison data obtained from https://www.
trendhunter.com/trends/smartphone-guide (accessed on 2 November 2020) consists of ten
criteria. However, we had to drop five criteria from further analysis due to some reasons.
The operating system, processor, and special feature criteria were removed since they are
qualitative in nature, making them not compatible as input criteria for D-CRITIC. A similar
reason applied to storage criterion as the data are mixed with quantitative and qualitative
values, besides the fact that there is no single, fixed value with respect to each smartphone.
The battery criterion was removed due to the issue of data incompleteness. To simplify,
after taking into consideration the suitability of the criteria data with the proposed method,
only five criteria were finalised for the analysis.

Table 2 is the normalized decision matrix derived from Equation (1). The worst and
best values of each criterion were carefully identified before applying Equation (1). Note
that the base price, thickness, and mass are nonbeneficial criteria, whereas the remaining
are beneficial criteria. Therefore, for the case of a nonbeneficial criterion, the lowest value is
considered the most preferred or best value. In contrast, for a beneficial criterion, as usual,
the highest value is considered the best one. For instance, the best and worst values for the
base price are $400 and $749, respectively. Meanwhile, for screen size, 5.7 in. and 4.7 in.
are considered the best and the worst value, respectively. The standard deviation value
of each criterion, which was computed using Equation (2), is also presented in the same
table. These values suggest that the data pattern of pixel density has the highest contrast,
followed by thickness, screen size, mass, and base price. However, at this level, it is too
early for us to identify pixel density as the essential criterion, for the following two reasons:

a. The standard deviation values, which are relatively close to each other, do not show
a clear distinction in terms of their contrast intensity, so we are unable to make a
concrete decision about the importance of the criteria.

b. The relationships held by the criteria are yet to be considered.

Table 2. Normalized decision matrix.

Model/Criterion c1 c2 c3 c4 c5

A 0.2865 0 0 1 1
B 0 0.8000 0.3538 0.9500 0
C 0.0258 1 0.9151 0.8750 0.4286
D 1 1 0.9151 0 0.2653
E 0.4269 0.8000 1 0.5500 0.8163

Standard
deviation 0.4062 0.4147 0.4394 0.4161 0.4063

The analysis, therefore, proceeded by computing the distance correlation measures
of the criteria. Table 3 depicts the distance correlation matrix of the criteria. To facilitate a
better understanding, we present in Appendix A an example of calculating the distance
correlation for c1 and c2, Dcor (c2, c2). Based on Table 3, the highest distance correlation
measure is noticed between the base price and the thickness (i.e., 0.9437), indicating a
strong redundancy between both criteria. It also appears that the mass criterion does not

https://www.trendhunter.com/trends/smartphone-guide
https://www.trendhunter.com/trends/smartphone-guide
https://www.trendhunter.com/trends/smartphone-guide
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largely overlap with any other criterion since none of the measures are above 0.8. This
situation suggests that the mass could be identified as the most important criterion by the
end of the analysis. Table 4 shows the information content and the weight of each criterion
determined using Equations (5) and (6), respectively. In short, as expected, D-CRITIC
identifies c5 as the most important criterion with a weight score of 0.2118, followed by
criteria c3, c1, c2, and c4.

Table 3. Distance correlation matrix.

Criterion c1 c2 c3 c4 c5

c1 1 0.4777 0.5114 0.9437 0.6229
c2 0.4777 1 0.8465 0.5499 0.7564
c3 0.5114 0.8465 1 0.6957 0.6043
c4 0.9437 0.5499 0.6957 1 0.5027
c5 0.6229 0.7564 0.6043 0.5027 1

Table 4. Information content and weight of each criterion.

Criterion c1 c2 c3 c4 c5

Information
content 0.5867 0.5680 0.5898 0.5442 0.6149

Weight 0.2021 0.1956 0.2031 0.1874 0.2118

4. Comparison Analysis

In this section, the weights of the same five smartphone criteria were determined using
four other objective methods to validate the performance of D-CRITIC. Those methods
were Hwang’s entropy-based method [25], CILOS [28], IDOCRIW [28], and not to mention
the original CRITIC method [27]. The entropy-based method was chosen because of its long
existence and widespread application in real problems, apart from its ability to capture the
contrast intensity of each criterion. On the other hand, the recently developed CILOS and
IDOCRIW methods were selected because they consider the criteria’s impact loss element
in the determination of the weights.

We had to exclude subjective weighting methods, which usually use different input
types, from our comparison analysis to ensure an apples-to-apples comparison. In this
study, such a fair comparison can be assured by only considering similar objective methods
since they use the same input, i.e., the data in the decision matrix. Indeed, many earlier
studies, which introduced a new or modified objective weighting method, presented their
comparison analysis similarly. For instance, the study that introduced the original CRITIC
method compared the method with only two different objective methods, and not with
any other subjective methods [27].

Table 5 shows the weights and ranks obtained by all five methods, including D-
CRITIC. Meanwhile, Figure 2 offers a visual summary of the variances between the weights
determined by those methods. The complete calculation associated with each method
can be found in the provided Supplementary File. Based on these different results, the
performance of D-CRITIC was then compared by conducting the following tests: (a) the
distance correlation test, (b) the Spearman rank-order correlation test, and (c) the symmetric
mean absolute percentage error square error (sMAPE) test.
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Table 5. Results of different methods.

Criterion
Entropy CILOS IDOCRIW CRITIC D-CRITIC

Weight Rank Weight Rank Weight Rank Weight Rank Weight Rank

c1 0.3481 1 0.0738 5 0.1465 3 0.1872 3 0.2021 3
c2 0.1360 5 0.3864 1 0.2996 2 0.1838 4 0.1956 4
c3 0.1690 3 0.0997 4 0.0960 5 0.1691 5 0.2031 2
c4 0.1463 4 0.1467 3 0.1223 4 0.2599 1 0.1874 5
c5 0.2006 2 0.2934 2 0.3355 1 0.2000 2 0.2118 1
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Figure 2. Criteria weights from different methods.

4.1. Distance Correlation Test

The degree of agreement or consistency between two sets of weights, resulting from
two different methods, is usually measured using the Pearson correlation [55]. However,
as explained in Section 1.1, the Pearson correlation coefficient could inaccurately represent
the correlation between two data arrays. Therefore, the distance correlation was used to
measure consistency. Table 6 shows the computed distance correlation between every two
different sets of weights. Table 6 also shows the average correlation score of each method.

Table 6. Distance correlation between criteria weights.

Method Entropy CILOS IDOCRIW CRITIC D-CRITIC

Entropy 1 0.5897 0.4609 0.4658 0.6336
CILOS 0.5897 1 0.9527 0.4968 0.5975

IDOCRIW 0.4609 0.9527 1 0.5057 0.5919
CRITIC 0.4658 0.4968 0.5057 1 0.8186

D-CRITIC 0.6336 0.5975 0.5919 0.8186 1
Average 0.6300 0.7273 0.7022 0.6574 0.7283

4.2. Spearman Rank-Order Correlation Test

The Spearman rank-order correlation test is a popular tool for measuring the degree of
agreement between two different sets of ranks [56,57]. We therefore used this test to assess
the consistency across the criteria ranks obtained by all five methods. This correlation test
was chosen due to its appropriateness as a non-parametric test that efficiently measures the
association between two different ordinal data arrays [58], apart from its computational
simplicity [59]. Table 7 reports the Spearman rank-order correlation between every pair of
methods, including the average Spearman rank-order correlation score of each method.
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Table 7. Spearman rank-order correlation between criteria ranks.

Method Entropy CILOS IDOCRIW CRITIC D-CRITIC

Entropy 1 −0.7000 0.1000 0.1000 0.6000
CILOS −0.7000 1 0.6000 0.1000 −0.1000

IDOCRIW 0.1000 0.6000 1 0.3000 0.3000
CRITIC 0.1000 0.1000 0.3000 1 −0.3000

D-CRITIC 0.6000 −0.1000 0.3000 −0.3000 1
Average 0.2200 0.1800 0.4600 0.2400 0.3000

4.3. sMAPE Test

There exist many error metrics that can be used to quantify the degree of difference
between a group of estimated values and actual values, e.g., mean absolute error, mean
squared error, root mean square error, mean absolute percentage error (MAPE), and
symmetric MAPE (sMAPE). The literature suggests that these error metrics can also be
employed to test the accuracy of the results generated by different MCDM methods [60].
Usually, the lower the error value, the higher the accuracy of the method. A set of actual
values is needed to enable the use of any error metrics.

In this research, Equation (7), based on the geometric mean, was used to aggregate the
weights from different methods.

wj =

(
ŵj, entropy

)
·
(
ŵj, CILOS

)
·
(
ŵj, IDOCRIW

)
·
(
ŵj, CRITIC

)
·
(
ŵj, D− CRITIC

)
∑n

j=1
[(

ŵj, entropy
)
·
(
ŵj, CILOS

)
·
(
ŵj, IDOCRIW

)
·
(
ŵj, CRITIC

)
·
(
ŵj, D− CRITIC

)] , (7)

where wj is the final aggregated weight of criterion j, ŵj is the weight of criterion j estimated
using each method, and j = {1,2,3,4,5}.

By treating these aggregated weights as the actual ones, Equation (8) was then used to
identify the sMAPE of each method. Out of many metrics, sMAPE was chosen because
unlike MAPE, it does not impose a larger penalty for negative error (when the estimated
value is higher than actual value) than for positive error [61,62].

sMAPE =
100%

n ∑n
j=1

∣∣wj − ŵj
∣∣(

wj + ŵj
)
/2

. (8)

Table 8 shows the aggregated weights, and Table 9 illustrates the sMAPE of each
method compared with the aggregated weights. Meanwhile, Figure 3 summarizes the
performance of each method based on its average distance correlation score, average
Spearman rank-order correlation score, and sMAPE.

Table 8. Aggregated weight of each criterion.

c1 c2 c3 c4 c5

0.1802 0.2375 0.1493 0.1763 0.2568

Table 9. sMAPE of each method.

Entropy CILOS IDOCRIW CRITIC D-CRITIC

34.6994% 40.6001% 29.9940% 20.9825% 17.3267%
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5. Sensitivity Analysis

In this section, we furthered our investigation to understand the robustness of the
proposed D-CRITIC method. Robustness explains the steadiness of the results produced
by a method. As far as MCDM literature is concerned, sensitivity analysis has always been
a popular choice of tool to examine the robustness of various MCDM methods, e.g., [63,64].
Generally, a sensitivity analysis explores how a little change in the input parameters could
affect the output resulting from a method.

Therefore, in this study, the sensitivity analysis was conducted with the aim of un-
derstanding how the variation in the size of the decision matrix will affect the criteria
weights and ranks estimated by D-CRITIC. Since the weights estimated by D-CRITIC are
subjected to the data structure in the decision matrix, it is then rational to analyze the effect
of different dimensions of the decision matrix on the criteria weights and ranks.

We commenced the analysis by generating ten different scenarios. These scenarios
were created by merely amending the existing decision matrix that comprises data of five
alternatives, i.e., smartphones (m = 5). The amendment was done so that at the end,
we would have slightly smaller (m = 4) and larger (m = 6) decision matrices than the
actual ones. For the first five scenarios, we eliminated one alternative while retaining the
other four. Meanwhile, for the next five scenarios, we duplicated the data of one selected
alternative so that each scenario would have a decision matrix with m = 6. More details
about these ten scenarios are summarized in Table 10.

The D-CRITIC method was then applied to each scenario. Table 11 summarizes the
criteria weights resulting from every different scenario. Figure 4 displays the variations
observed in the ranking of each criterion across the ten scenarios. Meanwhile, Figure 5
displays the comparison between the criteria weights of each scenario against the weights
estimated from the actual decision matrix, together with the sMAPE of each scenario
and average sMAPE for Sc1-Sc5 and Sc6-Sc10. On the other hand, Table 12 provides a
comparison of the criteria ranks from all ten scenarios against the actual estimation. Note
that the green highlight in Table 12 indicates that the ranking of the criterion under that
specific scenario has remained unaffected when compared to the actual ranks.
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Table 10. The scenarios for sensitivity analysis.

Scenario Amendment Done Decision Matrix Normalized Decision Matrix

Scenario 1 (Sc1) Removed the data of Model B

Scenario 2 (Sc2) Removed the data of Model C

Scenario 3 (Sc3) Removed the data of Model D

Scenario 4 (Sc4) Removed the data of Model E

Scenario 5 (Sc5) Removed the data of Model A

Scenario 6 (Sc6) Duplicated the data of Model A

Scenario 7 (Sc7) Duplicated the data of Model B

Scenario 8 (Sc8) Duplicated the data of Model C

Scenario 9 (Sc9) Duplicated the data of Model D

Scenario 10 (Sc10) Duplicated the data of Model E

Table 11. Criteria weights resulting from different scenarios.

Criterion Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10

c1 0.2242 0.1657 0.2071 0.2309 0.1836 0.1898 0.1896 0.2125 0.2245 0.1880
c2 0.1897 0.2018 0.2021 0.1849 0.3058 0.2039 0.2008 0.1925 0.1805 0.2015
c3 0.2227 0.1868 0.2091 0.1898 0.1826 0.2114 0.1901 0.2110 0.1947 0.2146
c4 0.1905 0.1710 0.1999 0.2180 0.1669 0.1825 0.1857 0.1955 0.2031 0.1719
c5 0.1729 0.2747 0.1818 0.1765 0.1611 0.2123 0.2338 0.1886 0.1973 0.2240
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Table 12. Criteria ranks of each scenario vs. actual ranks.

Scenarios with m=4 Actual scenario with m=5 Scenarios with m=6

Criteria Sc1 Sc2 Sc3 Sc4 Sc5 Actual
Estimation Sc6 Sc7 Sc8 Sc9 Sc10

c1 1 5 2 1 2 3 4 4 1 1 4
c2 4 2 3 4 1 4 3 2 4 5 3
c3 2 3 1 3 3 2 2 3 2 4 2
c4 3 4 4 2 4 5 5 5 3 2 5
c5 5 1 5 5 5 1 1 1 5 3 1

Total unaffected ranks = 4 Total unaffected ranks = 10

Note: The green highlight indicates that the ranking of the criterion under that specific scenario has remained unaffected when compared
to the actual ranks.

6. Discussion and Conclusions

The proposed D-CRITIC method and four other objective weighting methods were
applied to a smartphone criteria evaluation problem to demonstrate the workability of
D-CRITIC. D-CRITIC identified mass as the most salient criterion with a weight of 0.2118
(see Table 5), followed by pixel density (0.2031), base price (0.2021), screen size (0.1956),
and thickness (0.1874). Interestingly, two other methods, namely CILOS and IDOCRIW,
also reported mass as the most critical smartphone criterion. We realize that the results
of D-CRITIC are consistent with the findings reported in several past studies. Yildiz and
Ergul [65] applied a subjective weighting method, i.e., ANP, for evaluating a long list of
smartphone selection criteria and proved that the mass of a smartphone is more important
than its thickness. Lee et al. [66] indeed claimed that mass is an essential criterion for an
ergonomic smartphone since it helps in providing the expected one-handed grip comfort to
users. In another study conducted by Mishra et al. [67], similar to the results of D-CRITIC, it
was reported that pixel density is more crucial than screen size. In fact, Zhu et al. [68] stated
that the specifications of the camera and the quality of taken photos are becoming dominant
criteria for customers purchasing smartphones. Many smartphone manufacturers also tend
to promote their smartphones by emphasizing the strength of their smartphone camera
specifications, including the pixel density.

It could be surprising to notice that D-CRITIC did not identify price as the most
important smartphone selection criterion. Similar to our findings, Bhalla et al. [69] also
recently reported that price has less effect on a customer’s buying decision when compared
to other physical features of a smartphone. In a similar vein, Osman et al. [70] claimed
that customers nowadays care more about the physical features of a smartphone and are
willing to pay more in exchange for better features. More importantly, from the MCDM
perspective, the price data of the five smartphone models considered in this study are
found not to vary too much (with the lowest standard deviation value), indicating that this
specific criterion has the lowest degree of contrast intensity and least information to tell.
Such a data pattern further strengthens the logic as to why D-CRITIC did not identify price
as the most crucial criterion.

On the other hand, a somewhat uniform line for D-CRITIC compared with the other
lines (see Figure 1) indicates that D-CRITIC assigns weights that are relatively close to
each other. In other words, it appears that D-CRITIC concludes that all five smartphone
criteria hold a similar degree of importance, with only marginal differences. Although
the weights estimated by D-CRITIC are relatively close, it has to be emphasized that they
are still distinct enough to enable a decent ranking on the criteria. It is acceptable to have
relatively close weights since, in some situations, that could be the actual case. For instance,
Suh et al. [71], who used an integrated weighting method to evaluate eight mobile service
criteria, discovered that the computed weights did not vary too much and merely ranged
between 0.0870 and 0.1780.

More importantly, further analyses (the distance correlation test, the Spearman rank-
order correlation, the sMAPE test, and the sensitivity analysis) have provided obvious
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evidence that the weights estimated by D-CRITIC are more acceptable than those of
other methods.

The distance correlation test reveals that the set of weights derived by the D-CRITIC
method is strongly consistent with the sets of weights produced by the other methods
since all the coefficient values are above 0.6. The highest consistency is reported for the
original CRITIC method, with a coefficient value of 0.8186. This finding is undoubtedly the
result of the similarity between the two methods in determining the criteria weights. More
specifically, unlike other methods, both methods capture the contrast intensity and the
conflicting nature of the criteria while determining the weights. However, overall, the set
of weights produced by D-CRITIC has the highest degree of consistency compared with the
weights produced by the other four methods; that is, D-CRITIC yielded the largest average
distance correlation score (0.7283). The second most consistent weights were derived by
CILOS (0.7273), followed by IDOCRIW (0.7022), CRITIC (0.6574), and the entropy-based
method (0.6300).

On the other hand, the Spearman rank-order correlation test reveals that the most
consistent criteria ranks, which agree well with the other four sets of criteria ranks, resulted
from the IDOCRIW method. Interestingly, as in the case of criteria weights, it appears that
the set of ranks derived by D-CRITIC is more consistent than that derived by CRITIC, since
the former has a higher average Spearman rank-order correlation score (0.3000).

Besides, the sMAPE test shows that D-CRITIC has estimated the most accurate crite-
ria weights since the method obtained the lowest sMAPE value, that is, 17.3267%, when
compared with the aggregated weights. The original CRITIC method is reported as
the second most accurate method with an sMAPE value of 20.9825%. The test also in-
dicates that the entropy method produced the second-least accurate estimates because,
unlike D-CRITIC and CRITIC, the entropy method considers only the contrast intensity of
the criteria.

To sum up, based on Figure 3, it can be claimed that D-CRITIC has a better performance
than the original CRITIC method. The D-CRITIC method is proven to have the ability
to produce a more valid set of criteria weights and ranks. The results support the initial
argument made in Section 1.1 that the weights determined by the CRITIC method could be
flawed since it misrepresents conflicting relationships between criteria. This shortcoming
is minimized in the D-CRITIC method, mainly with the aid of distance correlation.

On the other hand, the results in Table 11 and Figure 4 clearly show that a little
modification in the size of the decision matrix or the data structure, which was done
through ten different scenarios, have caused changes to the weights or ranking of criteria
estimated from the actual decision matrix. These changes prove that the D-CRITIC method
results are sensitive to the variations in the size of the decision matrix. This situation is
caused by the integrated distance correlation measures. Unlike the Pearson correlation,
distance correlation is not only more responsive to the change in the amount of data, but at
the same time, it is more sensitive to the presence of both linear and non-linear associations
between data vectors.

However, it can be claimed that D-CRITIC can produce more stable criteria weights
with a larger decision matrix. This quality is evident based on Figure 5, where it appears
that weights generated by Sc6, Sc7, Sc8, Sc9, and Sc10 are more consistent with the actual
estimation compared to Sc1, Sc2, Sc3, Sc4, and Sc5. Furthermore, the lower average sMAPE
value for Sc6–Sc10, i.e., 17.5550%, in general, suggests that weights estimated via a larger
decision matrix have better proximity to the actual estimation. It has to be reiterated that
the decision matrix of Sc1–Sc5 only comprises four alternatives, whereas six alternatives
make up the decision matrix of Sc6–Sc10.

In terms of the criteria ranks, few scenarios have generated ranks that tally with the
actual estimation. For instance, c5, which was identified as the most important criterion, has
also been ranked first in Sc2, Sc6, Sc7, and Sc10. Besides, c4, which was reported as the least
important criterion, has remained at the same fifth rank in Sc6, Sc7, and Sc10. However,
based on the number of green boxes distributed between Sc1-Sc5 and Sc6–Sc10, we can
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specifically claim that the ranks derived from larger decision matrices are more consistent
with the actual estimation. All in all, the sensitivity analysis reveals that D-CRITIC has the
tendency to deliver more stable criteria weights and ranks with a larger decision matrix, or
in other words, if the decision problem involves a larger set of alternatives.

7. Limitations and Recommendations

Our research has two main limitations that should be addressed in future studies.
The first limitation relates to the computational load of D-CRITIC. The method is more
computationally demanding than the original CRITIC method since D-CRITIC is based on
distance correlation. The original calculation of distance correlation presented in this paper
can lead to a more complex procedure when a larger number of alternatives is involved.
Huo and Székely [72] claimed that the computational complexity of distance correlation
could be as high as a constant multiplied by m2 (i.e., O ∗m2), where m denotes the number
of alternatives. Future studies, therefore, may consider developing and using a simpler
algorithm to calculate distance correlation prior to applying D-CRITIC.

The second limitation is that the proposed D-CRITIC method derives the weights
merely by analyzing the data structure in the decision matrix without considering experts’
inputs. Although it has the advantage of minimizing the possible bias caused by human
judgment, it may also disregard the valuable inputs from experienced experts. Thus, in
the future, the users of D-CRITIC may consider using the method together with other
subjective weighting methods, so that the final criteria weights can be determined by
utilizing the benefits of both objective and subjective methods.

Supplementary Materials: A spreadsheet file that shows the complete calculations performed in
this study is provided together with this paper. It is available online at https://www.mdpi.com/
article/10.3390/sym13060973/s1. The file contains the following data: the normalized decision
matrix (Sheet 1), the distance correlation between the criteria (Sheets 2 to 11), the weight estimates
using D-CRITIC (Sheet 12), the weight estimates using CRITIC (Sheet 13), the weight estimates
using the entropy-based method (Sheet 14), the weight estimates using CILOS (Sheet 15), the weight
estimates using IDOCRIW (Sheet 16), the validation using the distance correlation test (Sheet 17), the
validation using the Spearman rank-order correlation test (Sheet 18), the validation using the sMAPE
test (Sheet 19), the amended decision matrices for sensitivity analysis (Sheet 20), and the results of
Scenario 1 to 10 (Sheets 21 to 30).
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Appendix A

Appendix A, which is a portion of the Supplementary File provided together with
this paper, depicts the complete calculation of the distance correlation between c1 and
c2. Microsoft Office EXCEL was used to enable a speedy calculation. The calculation is
presented based on the steps outlined in Section 2 (Steps 3.1 to 3.5).
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41. Žižović, M.; Miljković, B.; Marinković, D. Objective methods for determining criteria weight coefficients: A modification of the
CRITIC method. Decis. Making: Appl. Manag. Eng. 2020, 3, 149–161. [CrossRef]

42. Wu, H.W.; Zhen, J.; Zhang, J. Urban rail transit operation safety evaluation based on an improved CRITIC method and cloud
model. J. Rail Transp. Plan. Manag. 2020, 16, 100206. [CrossRef]

43. Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing dependence by correlation of distances. Ann. Stat. 2007, 35,
2769–2794. [CrossRef]

44. Kosorok, M.R. Discussion of: Brownian distance covariance. Ann. Appl. Stat. 2009, 3, 1270–1278. [CrossRef]
45. Chaudhuri, A.; Hu, W. A fast algorithm for computing distance correlation. Comput. Stat. Data Anal. 2019, 135, 15–24. [CrossRef]
46. Edelmann, D.; Fokianos, K.; Pitsillou, M. An Updated Literature Review of Distance Correlation and Its Applications to Time

Series. Int. Stat. Rev. 2019, 87, 237–262. [CrossRef]
47. Podvezko, V.; Zavadskas, E.K.; Podviezko, A. An Extension of the New Objective Weight Assessment Methods Cilos and Idocriw

to Fuzzy Mcdm. Econ. Comput. Econ. Cybern. Stud. Res. 2020, 54, 59–75. [CrossRef]
48. Mulliner, E.; Malys, N.; Maliene, V. Comparative analysis of MCDM methods for the assessment of sustainable housing

affordability. Omega 2016, 59, 146–156. [CrossRef]
49. Villacreses, G.; Gaona, G.V.; Martínez-Gómez, J.; Jijón, D. Wind farms suitability location using geographical information system

(GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renew. Energy 2017, 109,
275–286. [CrossRef]

50. Zhou, Z. Measuring nonlinear dependence in time-series, a distance correlation approach. J. Time Ser. Anal. 2012, 33,
438–457. [CrossRef]

51. Shen, C.; Priebe, C.E.; Vogelstein, J.T. From Distance Correlation to Multiscale Graph Correlation. J. Am. Stat. Assoc. 2020, 115,
280–291. [CrossRef]

52. Peaw, T.L.; Mustafa, A. Incorporating AHP in DEA analysis for smartphone comparisons. In Proceedings of the 2nd IMT-GT
Regional Conference on Mathematics, Statistics, and Applications, Penang, Malaysia, 13–15 June 2006.

53. Ho, F.; Wang, C.N.; Ho, C.T.; Chiang, Y.C.; Huang, Y.F. Evaluation of Smartphone feature preference by a modified AHP approach.
In Proceedings of the 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Singapore, 6–9 December 2015; pp. 591–594.

54. Okfalisa, O.; Rusnedy, H.; Iswavigra, D.U.; Pranggono, B.; Haerani, E.H.; Saktioto, S. Decision support system for smart-
phone recommendation: The comparison of fuzzy ahp and fuzzy anp in multi-attribute decision making. SINERGI 2021, 25,
101–110. [CrossRef]

55. Vafaei, N.; Ribeiro, R.; Camarinha-Matos, L.M. Normalization techniques for multi-criteria decision making: Analytical hierarchy
process case study. In IFIP Advances in Information and Communication Technology; Springer: New York City, NY, USA, 2016;
Volume 470, pp. 261–269. [CrossRef]

56. Ghorabaee, M.K. Developing an MCDM method for robot selection with interval type-2 fuzzy sets. Robot. Comput. Manuf. 2016,
37, 221–232. [CrossRef]

57. Yalçın, N.; Pehlivan, N.Y. Application of the Fuzzy CODAS Method Based on Fuzzy Envelopes for Hesitant Fuzzy Linguistic
Term Sets: A Case Study on a Personnel Selection Problem. Symmetry 2019, 11, 493. [CrossRef]

58. Zamani-Sabzi, H.; King, J.P.; Gard, C.C.; Abudu, S. Statistical and analytical comparison of multi-criteria decision-making
techniques under fuzzy environment. Oper. Res. Perspect. 2016, 3, 92–117. [CrossRef]

59. Croux, C.; Dehon, C. Influence functions of the Spearman and Kendall correlation measures. Stat. Methods Appt. 2010, 19,
497–515. [CrossRef]

60. Afolayan, A.H.; Ojokoh, B.A.; Adetunmbi, A.O. Performance analysis of fuzzy analytic hierarchy process multi-criteria decision
support models for contractor selection. Sci. Afr. 2020, 9, e00471. [CrossRef]

61. Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]
62. Makridakis, S. Accuracy measures: Theoretical and practical concerns. Int. J. Forecast. 1993, 9, 527–529. [CrossRef]
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