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Abstract: In this paper, we consider functional set-valued differential equations in their integral
representations that possess integrals symmetrically on both sides of the equations. The solutions
have values that are the nonempty compact and convex subsets. The main results contain a Peano
type theorem on the existence of the solution and a Picard type theorem on the existence and
uniqueness of the solution to such equations. The proofs are based on sequences of approximations
that are constructed with appropriate Hukuhara differences of sets. An estimate of the magnitude of
the solution’s values is provided as well. We show the closeness of the unique solutions when the
equations differ slightly.
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1. Introduction

In this paper, we study symmetric functional set-valued equations of the form:

X(t) +
∫ t

t0

F(s, Xs)ds = χ0(0) +
∫ t

t0

G(s, Xs)ds for t ∈ [t0, t0 + T], (1)

with initial condition
Xt0 = χ0.

These equations are called symmetric because the integrals appear symmetrically on
both sides of the equation and cannot be reduced to one integral, because they are sets
and not numbers. The equations of type (1) are functional because Xs, Xt0 , χ0 are functions;
they are set-valued because each mapping in (1) has values that are sets and sets are also
both integrals.

To more accurately describe the meaning of symbols and the Equation (1) itself, let
us introduce and explain some notations. Thus, the number t0 can be interpreted as the
present moment, T is the length of the time horizon. By CompConv(Rd) we denote the
family of nonempty compact and convex subsets of Rd. In CompConv(Rd), we consider
the Hausdorff–Pompeiu metric H

H(A, B) := max

{
sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖

}
, A, B ∈ CompConv(Rd),

where ‖ · ‖ stands for the Euclidean norm in Rd. It is well known that the metric space
(CompConv(Rd), H) possesses nice properties; in particular it is complete, separable and
locally compact. If in the set CompConv(Rd) we introduce the operation of adding sets
and multiplying by a number,

A + B := {x + y | x ∈ A, y ∈ B}, k · A := {k · x | x ∈ A}
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for A, B ∈ CompConv(Rd) and k ∈ R,

then unfortunately we will not obtain a linear structure due to the problem with the
existence of the opposite element. In the same way, there is a problem with the existence
of the difference of the two sets, which is the direct cause of the impossibility of reducing
two set-valued integrals in (1) to one integral. In symmetric equations of type (1), one
has to use the concept of the Hukuhara difference of two sets and in the main part of the
paper it will have to be assumed that differences of this type exist. Let us recall that if for
two sets A and B there is a third set C, such that A = B + C, then the set C is called the
Hukuhara difference of sets A and B, and we denote it by A	 B. Let us note (see [1]) that
for A, B, C, D ∈ CompConv(Rd),

(P1) H(A + C, B + C) = H(A, B);
(P2) H(A + B, C + D) ≤ H(A, C) + H(B, D);
(P3) if there exist A	 B and C	 D then H(A	 B, C	 D) ≤ H(A, C) + H(B, D).

Let Cθ = C([−θ, 0], CompConv(Rd)) denote the set of all H-continuous set-valued
mappings acting from [−θ, 0] to CompConv(Rd), where θ is a positive real number. In Cθ ,
we consider metric ρ defined as ρ(χ1, χ2) = supu∈[−θ,0] H(χ1(u), χ2(u)) for χ1, χ2 ∈ Cθ .
The function χ0, which appears in (1), belongs to Cθ . Moreover, Xs from (1) is an element
of Cθ as well, and it is understood as Xs(u) = X(s + u) for u ∈ [−θ, 0], where s is fixed
from I := [t0, t0 + T] and X ∈ C(J, CompConv(Rd)), J := [t0 − θ, t0 + T]. Thus, the
initial condition of Equation (1) is to be interpreted as having the time t0 history, which is
described by χ0.

The mappings F and G in (1) are set-valued, F, G : I × Cθ → CompConv(Rd), and
their integrals are the Aumann set-valued integrals (see [2]), that is, for a mapping V : I →
CompConv(Rd), ∫

I
V(t)dt :=

{∫
I

v(t)dt | v ∈ S(V)
}

,

where S(V) is the set of integrable selectors of V and this set is nonempty. The Aumann
integral has the following properties (see [1]):

(P4)
∫

I V(t)dt ∈ CompConv(Rd);

(P5)
∫ b

a V(t)dt =
∫ c

a V(t)dt +
∫ b

c V(t)dt if a ≤ c ≤ b;

(P6) H
(∫

I V(t)dt,
∫

I W(t)dt
)
≤
∫

I H
(
V(t), W(t)

)
dt if V, W are integrable set-valued map-

pings.

Note that by putting F ≡ {0} in Equation (1), it takes the form:

X(t) = χ0(0) +
∫ t

t0

G(s, Xs)ds for t ∈ I (2)

with initial condition
Xt0 = χ0,

and this integral equation for continuous G is equivalent, in terms of the identity of the
solution sets, to the Cauchy problem for the functional set-valued differential equations,{

X′(t) = G(t, Xt), t ∈ I,
Xt0 = χ0,

where the notation ′ denotes the Hukuhara derivative of set-valued functions (see [3]).
Some studies on the last differential problem were conducted, for example, in [4–8], where
research was carried out on equations of the type (2) and the obtained results relate to
their existence and uniqueness, the comparison method and stability, the approximation of
the solution and data dependence, the distance between two solutions, the nonuniform
practical stability and the nonuniform boundedness of the solution.
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In this paper, the range of the considered Equation (1) becomes wider than that of
Equation (2). Equation (1) also has the advantage of being more general than the equations
of the following form:

X(t) +
∫ t

t0

F(s, Xs)ds = χ0(0) for t ∈ I, (3)

with initial condition
Xt0 = χ0.

The latter equations (3) are under certain conditions equivalent to the functional
set-valued differential equations with the so-called second type Hukuhara derivative,
that is, {

X∗(t) = (−1) · F(t, Xt), t ∈ I,
Xt0 = χ0,

where the symbol ∗ stands for the second type Hukuhara derivative of set-valued functions.
The set-valued differential equations with the second type Hukuhara derivative were
considered in [9–11] and then in, for example, [12]. The solutions to both Equations (2) and
(3) show very different geometric properties. Namely, if for the solution X of Equation (2)
we consider the diameter of the set X(t), then this diameter is a non-decreasing function of
the variable t. For solutions of equations of the type (3), the situation is the opposite, that
is, this diameter is a non-increasing function of the variable t. The equations considered in
this work have the advantage of covering both of the previously mentioned cases, allowing
the monotone nature of the diameter of the set X(t) to change.

Although the start of the study of set-valued differential and integral equations dates
back to the 1960s, this issue is still relevant, as indicated by the monograph [1] and the
recently published literature, see for example, [13–19]. Moreover, these equations have
been applied to modeling important socio-biological and medical tasks, such as diagnosing
cancer [20,21].

At the end of this section of the paper we provide the well-known Gronwall–Bellman
Lemma of analytic integral inequality, which we will often use in Section 3.

Lemma 1 (Gronwall–Bellman inequality, [22,23]). Let α, β and f be real-valued functions
defined on interval I. Let β and f be continuous. Suppose that the negative part of α is integrable
on every closed and bounded subinterval of I.

(a) If β is non-negative and if f satisfies the integral inequality

f (t) ≤ α(t) +
∫ t

t0

β(s) f (s) ds for t ∈ I,

then

f (t) ≤ α(t) +
∫ t

t0

α(s)β(s) exp
( ∫ t

s
β(r) dr

)
ds for t ∈ I.

(b) If, in addition, the function α is non-decreasing, then

f (t) ≤ α(t) exp
( ∫ t

t0

β(s) ds
)

for t ∈ I.

2. Existence of at Least One Solution

First, we define how we understand the solution to Equation (1).

Definition 1. An H-continuous set-valued mapping X : J → CompConv(Rd) is said to be a
solution to Equation (1), if X(t) = χ0(t− t0) for every t ∈ [t0 − θ, t0] and X(t) verifies equality

X(t) +
∫ t

t0

F(s, Xs)ds = χ0(0) +
∫ t

t0

G(s, Xs)ds for every t ∈ I = [t0, t0 + T].
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Let us notice that, for jointly continuous mappings F and G and continuous mapping
X, the compositions F ◦X and G ◦X are also continuous, and as a consequence the integrals
in (1) are well-defined.

We start the presentation of the results concerning symmetric functional set-valued
integral equations by formulating the Peano type theorem on the existence of at least one
solution. The conditions that have been imposed on the mappings F and G in the equation
are their continuity, especially in the functional variable, and their integrable boundedness.

Theorem 1. Suppose that F, G ∈ C(I × Cθ , CompConv(Rd)), χ0 ∈ Cθ and there are integrable
mappings mF, mG : I → [0, ∞) such that

H(F(t, χ), {0}) ≤ mF(t) and H(G(t, χ), {0}) ≤ mG(t) for every (t, χ) ∈ I × Cθ .

Let In
k := [t0 +

k−1
n T, t0 +

k
n T] for n ∈ N, k = 1, 2, . . . , n. Assume that the sequence

{Xn}∞
n=1, Xn : J → CompConv(Rd) described as

X1(t) =
{

χ0(t− t0), t ∈ [t0 − θ, t0],
χ0(0), t ∈ I,

and for n ∈ {2, 3, . . .}

Xn(t) =


χ0(t− t0), t ∈ [t0 − θ, t0],
χ0(0), t ∈ In

1 ,[
χ0(0) +

∫ t− T
n

t0
G(s, Xn

s )ds
]
	
∫ t− T

n
t0

F(s, Xn
s )ds, t ∈ In

2 ∪ In
3 ∪ · · · ∪ In

n

can be defined. Then the symmetric functional set-valued integral Equation (1) admits at least
one solution.

Proof. Let us fix n ≥ 2 and u, v ∈ I, u < v. If u, v ∈ [t0 − θ, t0] or u, v ∈ In
1 then

H
(
Xn(u), Xn(v)

)
= 0. If u, v ∈ In

2 ∪ In
3 ∪ · · · ∪ In

n then

H
(
Xn(u), Xn(v)

)
= H

([
χ0(0) +

∫ u− T
n

t0

G(s, Xn
s )ds

]
	
∫ u− T

n

t0

F(s, Xn
s )ds,[

χ0(0) +
∫ v− T

n

t0

G(s, Xn
s )ds

]
	
∫ v− T

n

t0

F(s, Xn
s )ds

)
.

By virtue of properties (P3), (P1), (P5) and (P6), we obtain:

H
(
Xn(u), Xn(v)

)
≤ H

(∫ u− T
n

t0

G(s, Xn
s )ds,

∫ v− T
n

t0

G(s, Xn
s )ds

)
+ H

(∫ u− T
n

t0

F(s, Xn
s )ds,

∫ v− T
n

t0

F(s, Xn
s )ds

)
≤

∫ v− T
n

u− T
n

H({0}, G(s, Xn
s ))ds +

∫ v− T
n

u− T
n

H({0}, F(s, Xn
s ))ds.

Now, by the integrable boundedness assumption,

H
(
Xn(u), Xn(v)

)
≤

∫ v− T
n

u− T
n

mG(s)ds +
∫ v− T

n

u− T
n

mF(s)ds.

Thus, if we let v− u↘ 0 then

H
(
Xn(u), Xn(v)

)
−→ 0, uniformly in n.
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Hence, we infer that {Xn} is equicontinuous. In particular, Xn ∈ C(J, CompConv(Rd))
for each n ∈ N.

Further, notice that for every n ∈ N and for t ∈ [t0− θ, t0]∪ In
1 it holds that H(Xn(t), {0}) ≤

ρ(χ0, 0), where 0 ≡ {0}. Considering t ∈ In
2 ∪ In

3 ∪ · · · ∪ In
n , we get

H(Xn(t), {0}) = H
([

χ0(0) +
∫ t− T

n

t0

G(s, Xn
s )ds

]
	
∫ t− T

n

t0

F(s, Xn
s )ds, {0}

)
≤ H(χ0(0), {0}) +

∫ t− T
n

t0

H(G(s, Xn
s ), {0})ds

+
∫ t− T

n

t0

H(F(s, Xn
s ), {0})ds

≤ H(χ0(0), {0}) +
∫ t− T

n

t0

mG(s)ds +
∫ t− T

n

t0

mF(s)ds

≤ ρ(χ0, 0) +
∫

I
(mG(s) + mF(s))ds.

This leads us to the conclusion that {Xn} is uniformly bounded.
Invoking the Arzela–Ascoli Theorem, we infer that there is a subsequence {Xkn} and

an H-continuous function X : J → CompConv(Rd)) such that

sup
t∈J

H
(
Xkn(t), X(t)

)
−→ 0, as n→ ∞.

We shall show that the limit mapping X is a solution of Equation (1). Notice that
X(t) = χ0(t− t0) if t ∈ [t0 − θ, t0]. So the initial condition is met. It remains to be shown
whether X satisfies equality (1) for every t ∈ I. Let us observe that for t ∈ I,

H
(

X(t) +
∫ t

t0

F(s, Xs)ds, χ0(0) +
∫ t

t0

G(s, Xs)ds
)

≤ H
(
X(t), Xkn(t)

)
+ H

(∫ t− T
kn

t0

F(s, Xkn
s )ds,

∫ t− T
kn

t0

F(s, Xs)ds
)

+ H
(∫ t

t− T
kn

F(s, Xs)ds, {0}
)
+ H

(∫ t− T
kn

t0

G(s, Xkn
s )ds,

∫ t− T
kn

t0

G(s, Xs)ds
)

+ H
(∫ t

t− T
kn

G(s, Xs)ds, {0}
)

.

Due to (P6) and the integrable boundedness of F and G, we obtain

H
(

X(t) +
∫ t

t0

F(s, Xs)ds, χ0(0) +
∫ t

t0

G(s, Xs)ds
)

≤ H
(
X(t), Xkn(t)

)
+
∫ t− T

kn

t0

H
(

F(s, Xkn
s ), F(s, Xs)

)
ds

+
∫ t

t− T
kn

mF(s)ds +
∫ t− T

kn

t0

H
(

G(s, Xkn
s ), G(s, Xs)

)
ds

+
∫ t

t− T
kn

mG(s)ds

≤ H
(
X(t), Xkn(t)

)
+
∫

I
H
(

F(s, Xkn
s ), F(s, Xs)

)
ds

+
∫

I
H
(

G(s, Xkn
s ), G(s, Xs)

)
ds

+
∫ t

t− T
kn

(mF(s) + mG(s))ds.
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Since
H
(
X(t), Xkn(t)

)
−→ 0 as n→ ∞,∫

I
H
(

F(s, Xkn
s ), F(s, Xs)

)
ds −→ 0 as n→ ∞,∫

I
H
(

G(s, Xkn
s ), G(s, Xs)

)
ds −→ 0 as n→ ∞,

and ∫ t

t− T
kn

(mF(s) + mG(s))ds −→ 0 as n→ ∞,

we infer that H
(

X(t) +
∫ t

t0
F(s, Xs)ds, χ0(0) +

∫ t
t0

G(s, Xs)ds
)
= 0 for every t ∈ I. This

means that X satisfies equality (1) and the proof is completed. �

By the magnitude of the set A ∈ CompConv(Rd) we understand the number sup
x∈A
‖x‖,

and it is easy to see that sup
x∈A
‖x‖ = H(A, {0}). We obtain a certain estimate of the magni-

tude of the solution values X(t) in the following theorem.

Proposition 1. Suppose that the assumptions of Theorem 1 hold. Then, each solution X to
Equation (1) verifies

sup
t∈J

H(X(t), {0}) ≤ ρ(χ0, 0) +
∫

I
(mF(s) + mG(s))ds.

The above property allows us to conclude that all solutions X of Equation (1) are
uniformly bounded. Moreover, similarly to the proof of Theorem 1, it is possible to find
that any sequence of solutions is equicontinuous. The application of the Arzela–Ascoli
Theorem in locally compact spaces gives us the opportunity to formulate another theorem:

Proposition 2. Suppose that the assumptions of Theorem 1 are satisfied. Then the set of all
solutions to Equation (1) is a compact subset of the space C(J, CompConv(Rd)) endowed with the
supremum metric.

3. Existence of a Unique Solution

In this part of the work, we focus on justifying the existence of a unique solution and
examining properties of the solution. The solution X : J → CompConv(Rd) to Equation (1)
is said to be unique if for every t ∈ J the equality X(t) = Y(t) is true for any other solution
Y : J → CompConv(Rd) to Equation (1). The following theorem is of the Picard type,
therefore we will assume that the mappings F and G in the functional variable satisfy the
Lipschitz condition.

Theorem 2. Assume that F, G ∈ C(I × Cθ , CompConv(Rd)), χ0 ∈ Cθ . Suppose there exists a
positive constant L such that

max{H
(

F(t, χ1), F(t, χ2)
)
, H
(
G(t, χ1), G(t, χ2)

)
} ≤ Lρ(χ1, χ2).

for every t ∈ I and every χ1, χ2 ∈ Cθ . Let the sequence {Xn}∞
n=0, Xn : I → CompConv(Rd) be

described as

X0(t) =
{

χ0(t− t0), t ∈ [t0 − θ, t0],
χ0(0), t ∈ I,

and for n ∈ {1, 2, . . .}

Xn(t) =

{
χ0(t− t0), t ∈ [t0 − θ, t0],[
χ0(0) +

∫ t
t0

G(s, Xn−1
s )ds

]
	
∫ t

t0
F(s, Xn−1

s )ds, t ∈ I,
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can be defined. Then Equation (1) possesses only one solution.

Proof. In the proof, we shall use Picard’s approximation sequence described in the as-
sumptions. It is easy to observe that Xn ∈ C(J, CompConv(Rd)) for every n ∈ {0, 1, 2, . . .}.
We begin with preliminary calculations regarding the distance between consecutive terms
of {Xn}. Notice, at first, that for t ∈ I,

H
(
G(t, X0

t ), {0}
)
≤ H

(
G(t, X0

t ), G(t, 0)
)
+ H

(
G(t, 0), {0}

)
.

Using the Lipschitz condition and the continuity of G, we get

H
(
G(t, X0

t ), {0}
)
≤ Lρ

(
X0

t , 0
)
+ H

(
G(t, 0), {0}

)
≤ Lρ

(
X0

t , 0
)
+ sup

t∈I
H
(
G(t, 0), {0}

)
< ∞.

A similar estimate we obtain for F, that is,

H
(

F(t, X0
t ), {0}

)
≤ Lρ

(
X0

t , 0
)
+ sup

t∈I
H
(

F(t, 0), {0}
)
< ∞.

Let us denote M = 2Lρ
(
X0

t , 0
)
+ supt∈I H

(
G(t, 0), {0}

)
+ supt∈I H

(
F(t, 0), {0}

)
and

observe that for t ∈ I, due to (P3),

H
(
X1(t), X0(t)

)
= H

([
χ0(0) +

∫ t

t0

G(s, X0
s )ds

]
	
∫ t

t0

F(s, X0
s )ds, χ0(0)

)
≤ H

(
χ0(0) +

∫ t

t0

G(s, X0
s )ds, χ0(0)

)
+ H

(∫ t

t0

F(s, X0
s )ds, {0}

)
.

Further, by (P1) and (P6),

H
(
X1(t), X0(t)

)
≤ H

(∫ t

t0

G(s, X0
s )ds, {0}

)
+ H

(∫ t

t0

F(s, X0
s )ds, {0}

)
≤

∫ t

t0

H
(
G(s, X0

s ), {0}
)
ds +

∫ t

t0

H
(

F(s, X0
s ), {0}

)
ds

≤ M(t− t0).

Then note that, for n ∈ {2, 3, 4, . . .} and t ∈ I, we have

H
(
Xn(t), Xn−1(t)

)
≤ H

(∫ t

t0

G(s, Xn−1
s )ds,

∫ t

t0

G(s, Xn−2
s )ds

)
+ H

(∫ t

t0

F(s, Xn−1
s )ds,

∫ t

t0

F(s, Xn−2
s )ds

)
≤

∫ t

t0

H
(
G(s, Xn−1

s ), G(s, Xn−2
s )

)
ds

+
∫ t

t0

H
(

F(s, Xn−1
s ), F(s, Xn−2

s )
)
ds.

Now by the Lipschitz continuity assumption of G and F,

H
(
Xn(t), Xn−1(t)

)
≤ 2L

∫ t

t0

ρ
(
Xn−1

s , Xn−2
s
)
ds.
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Since

ρ
(
Xn−1

s , Xn−2
s
)

= sup
u∈[−θ,0]

H
(
Xn−1(s + u), Xn−2(s + u)

)
= sup

u∈[s−θ,s]
H
(
Xn−1(u), Xn−2(u)

)
,

we have

H
(
Xn(t), Xn−1(t)

)
≤ 2L

∫ t

t0

sup
u∈[s−θ,s]

H
(
Xn−1(u), Xn−2(u)

)
ds.

Thus, we can infer that, for every n ∈ {1, 2, 3, . . .} and t ∈ I,

H
(
Xn(t), Xn−1(t)

)
≤ M

2L
· [2L(t− t0)]

n

n!
. (4)

This implies

sup
t∈J

H
(
Xn(t), Xn−1(t)

)
≤ M

2L
· [2LT]n

n!
, (5)

and consequently for natural k, ` such that k > `,

sup
t∈J

H
(
Xk(t), X`(t)

)
≤

k−1

∑
n=`

sup
t∈J

H
(
Xn+1(t), Xn(t)

)
≤ M

2L

k−1

∑
n=`

[2LT]n+1

(n + 1)!
.

Now it is obvious that

lim
k,`→∞

sup
t∈J

H
(
Xk(t), X`(t)

)
= 0,

and {Xn(·)} is a Cauchy sequence in the complete metric space C(J, CompConv(Rd))
endowed with supremum metric. Therefore, there is X ∈ C(J, CompConv(Rd)) such that

lim
n→∞

sup
t∈J

H
(
Xn(t), X(t)

)
= 0.

The limit mapping X is a solution to Equation (1). We shall show it now. Let us begin
with an observation that the initial condition is satisfied, that is, X(t) = χ0(t− t0) because
Xn(t) = χ0(t− t0) for each n ∈ {0, 1, 2, . . .} and each t ∈ [t0 − θ, t0]. The next step is to
show that H

(
X(t) +

∫ t
t0

F(s, Xs)ds, χ0(0) +
∫ t

t0
G(s, Xs)ds

)
= 0 for t ∈ I. Notice that

H
(

X(t) +
∫ t

t0

F(s, Xs)ds, χ0(0) +
∫ t

t0

G(s, Xs)ds
)

≤ H
(

X(t) +
∫ t

t0

F(s, Xs)ds, Xn(t) +
∫ t

t0

F(s, Xn−1
s )ds

)
+ H

(
χ0(0) +

∫ t

t0

G(s, Xn−1
s )ds, χ0(0) +

∫ t

t0

G(s, Xs)ds
)
,
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and therefore

H
(

X(t) +
∫ t

t0

F(s, Xs)ds, χ0(0) +
∫ t

t0

G(s, Xs)ds
)

≤ H(X(t), Xn(t)) +
∫ t

t0

H(F(s, Xs)), F(s, Xn−1
s )))ds

+
∫ t

t0

H(G(s, Xn−1
s ), G(s, Xs))ds

≤ H(X(t), Xn(t)) + 2L
∫ t

t0

ρ(Xs, Xn−1
s )ds

≤ H(X(t), Xn(t)) + 2LT sup
u∈J

H(X(u), Xn−1(u)).

Since the right-hand side of the inequality above converges to zero for every t ∈ I, we
obtain the desired property, that is,

H
(

X(t) +
∫ t

t0

F(s, Xs))ds, χ0(0) +
∫ t

t0

G(s, Xs)ds
)
= 0 for t ∈ I.

To see that the solution X is the unique solution to Equation (1), let us assume that
Y : J → CompConv(Rd) is another solution to Equation (1). The fulfillment of the initial
condition by X and Y implies that Y(t) = X(t) for t ∈ [t0 − θ, t0]. We shall show that
Y(t) = X(t) also for t ∈ I. Indeed, for t ∈ I,

sup
u∈[t0,t]

H
(
Y(u), X(u)

)
= sup

u∈[t0,t]
H
([

χ0(0) +
∫ u

t0

G(s, Ys)ds
]
	
∫ u

t0

F(s, Ys)ds,[
χ0(0) +

∫ u

t0

G(s, Xs)ds
]
	
∫ u

t0

F(s, Xs)ds
)

≤ sup
u∈[t0,t]

∫ u

t0

H(G(s, Ys), G(s, Xs))ds

+ sup
u∈[t0,t]

∫ u

t0

H(F(s, Ys), F(s, Xs))ds

≤
∫ t

t0

H(G(s, Ys), G(s, Xs))ds

+
∫ t

t0

H(F(s, Ys), F(s, Xs))ds.

By the Lipschitz continuity assumption,

sup
u∈[t0,t]

H
(
Y(u), X(u)

)
≤ 2L

∫ t

t0

ρ
(
Ys, Xs

)
ds = 2L

∫ t

t0

sup
u∈[s−τ,s]

H
(
Y(u), X(u)

)
ds

≤ 2L
∫ t

t0

sup
u∈[t0,s]

H
(
Y(u), X(u)

)
ds.

Now, by the Gronwall–Bellman inequality (Lemma 1), we arrive at

sup
u∈[t0,t]

H
(
Y(u), X(u)

)
≤ 0 for every t ∈ I,

and this leads us straightforwardly to H
(
Y(t), X(t)

)
= 0 for t ∈ I. Hence, the uniqueness

of the solution X is proved. �
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As in the previous part of this article, we will deal with the issue of estimating the
magnitude of the solution value, assuming the Lipschitz character of the mappings F
and G.

Proposition 3. Let the assumptions of Theorem 2 be satisfied. Let X denote the unique solution to
Equation (1). Then,

sup
t∈J

H(X(t), {0}) ≤
(
(1 + 2LT)ρ(χ0, 0) +

∫
I

H(G(s, 0), {0})ds

+
∫

I
H(F(s, 0), {0})ds

)
e2LT .

Proof. It is obvious that sup
t∈[t0−θ,t0]

H(X(t), {0}) = ρ(χ0, 0). For t ∈ I = [t0, t0 + T]

sup
u∈[t0,t]

H(X(u), {0}) = sup
u∈[t0,t]

H
([

χ0(0) +
∫ u

t0

G(s, Xs)ds
]
	
∫ u

t0

F(s, Xs)ds, {0}
)

≤ H(χ0(0), {0}) +
∫ t

t0

H(G(s, Xs), {0})ds

+
∫ t

t0

H(F(s, Xs), {0})ds

≤ ρ(χ0, 0) + 2L
∫ t

t0

ρ(Xs, 0)ds

+
∫ t

t0

H(G(s, 0), {0})ds +
∫ t

t0

H(F(s, 0), {0})ds

≤ ρ(χ0, 0) + 2L
∫ t

t0

ρ(Xs, 0)ds

+
∫

I
H(G(s, 0), {0})ds +

∫
I

H(F(s, 0), {0})ds.

Since

ρ(Xs, 0) = sup
u∈[s−θ,s]

H(X(u), {0})

≤ sup
u∈[t0−θ,s]

H(X(u), {0})

≤ sup
u∈[t0−θ,t0]

H(X(u), {0}) + sup
u∈[t0,s]

H(X(u), {0}),

for s ≥ t0, we have

sup
u∈[t0,t]

H(X(u), {0}) ≤ (1 + 2LT)ρ(χ0, 0) + 2L
∫ t

t0

sup
u∈[t0,s]

H(X(u), {0})ds

+
∫

I
H(G(s, 0), {0})ds +

∫
I

H(F(s, 0), {0})ds.

Applying the Gronwall–Bellman inequality, we get

sup
u∈[t0,t]

H(X(u), {0}) ≤
(
(1 + 2LT)ρ(χ0, 0) +

∫
I

H(G(s, 0), {0})ds

+
∫

I
H(F(s, 0), {0})ds

)
e2L(t−t0) for t ∈ I.

Putting this result together with the initial observation in the proof, we obtain
the assertion. �



Symmetry 2021, 13, 1219 11 of 14

In the next step, we will analyze the behavior of the solution to Equation (1) in a
situation where, instead of the initial history χ0, we use a history χε

0 that is slightly different
from χ0 in the sense that the distance between these two histories is small. It is desirable
that the solutions corresponding to these two initial histories also differ only slightly.
Otherwise, the theory of equations of type (1) would not be well-posed. The following
result guarantees the expected property.

Proposition 4. Let F, G : I × Cθ → CompConv(Rd) and χ0, χε
0 ∈ Cθ . Suppose F, G, χ0 and

F, G, χε
0, both systems of data, satisfy the assumptions of Theorem 2. Then,

sup
t∈J

H
(
Xε(t), X(t)

)
≤ ρ

(
χε

0, χ0
)
(1 + 2LT)e2LT ,

where X denotes the unique solution to (1) with data F, G, χ0 and Xε symbolizes the unique solution
to (1) with data F, G, χε

0.

Proof. First, it is obvious that

sup
t∈[t0−θ,t0]

H(Xε(t), X(t)) = ρ(χε
0, χ0).

For t ∈ [t0, t0 + T], we can write

sup
u∈[t0,t]

H
(
Xε(u), X(u)

)
= sup

u∈[t0,t]
H
([

χε
0(0) +

∫ u

t0

F(s, Xε
s)ds

]
	
∫ u

t0

G(s, Xε
s)ds,

[
χ0(0) +

∫ u

t0

F(s, Xs)ds
]
	
∫ u

t0

G(s, Xs)ds
)

≤ H
(
χε

0(0), χ0(0)
)
+
∫ t

t0

H
(

F(s, Xε
s), F(s, Xs)

)
ds

+
∫ t

t0

H
(
G(s, Xε

s), G(s, Xs)
)
ds.

The Lipschitz type assumption imposed on F and G leads us to

sup
u∈[t0,t]

H
(
Xε(u), X(u)

)
≤ H

(
χε

0(0), χ0(0)
)
+ 2L

∫ t

t0

ρ(Xε
s , Xs)ds

≤ ρ(χε
0, χ0) + 2L

∫ t

t0

ρ(Xε
s , Xs)ds.

Going forward,

sup
u∈[t0,t]

H
(
Xε(u), X(u)

)
≤ ρ(χε

0, χ0) + 2L
∫ t

t0

sup
u∈[s−θ,s]

H(Xε(u), X(u))ds

≤ ρ(χε
0, χ0) + 2L

∫ t

t0

sup
u∈[t0−θ,t0]

H(Xε(u), X(u))ds

+2L
∫ t

t0

sup
u∈[t0,s]

H(Xε(u), X(u))ds

≤ ρ(χε
0, χ0)(1 + 2LT) + 2L

∫ t

t0

sup
u∈[t0,s]

H(Xε(u), X(u))ds.

So now, using the Gronwall–Bellman inequality we arrive at

sup
u∈[t0,t]

H
(
Xε(t), X(t)

)
≤ ρ(χε

0, χ0)(1 + 2LT)e2L(t−t0) for t ∈ I,
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and this allows us to formulate the assertion. �

The question arises of whether a similar property to the above can be obtained when
the coefficients F and G of Equation (1) change slightly. The affirmative answer is given by
the following statement.

Proposition 5. Let F, G, Fε, Gε : I × Cθ → CompConv(Rd) and χ0 ∈ Cθ be such that

max
{

H(Fε(t, χ), F(t, χ)), H(Gε(t, χ), G(t, χ))
}
≤ ε for all (t, χ) ∈ I × Cθ ,

where ε is a positive real number. Suppose F, G, χ0 and Fε, Gε, χ0, both systems of data, satisfy the
assumptions of Theorem 2. Then,

sup
t∈J

H
(
Xε(t), X(t)

)
≤ 2Te2LTε,

where X denotes the unique solution to (1) with data F, G, χ0 and Xε symbolizes the unique solution
to (1) with data Fε, Gε, χ0.

Proof. Let us mention that sup
t∈[t0−θ,t0]

H(Xε(t), X(t)) = 0. For t ∈ [t0, t0 + T], we have

sup
u∈[t0,t]

H
(
Xε(u), X(u)

)
= sup

u∈[t0,t]
H
([

χ0(0) +
∫ u

t0

Fε(s, Xε
s)ds

]
	
∫ u

t0

Gε(s, Xε
s)ds,

[
χ0(0) +

∫ u

t0

F(s, Xs)ds
]
	
∫ u

t0

G(s, Xs)ds
)

≤
∫ t

t0

H
(

Fε(s, Xε
s), F(s, Xs)

)
ds +

∫ t

t0

H
(
Gε(s, Xε

s), G(s, Xs)
)
ds

≤
∫ t

t0

H
(

Fε(s, Xε
s), F(s, Xε

s)
)
ds +

∫ t

t0

H
(

F(s, Xε
s), F(s, Xs)

)
ds

+
∫ t

t0

H
(
Gε(s, Xε

s), G(s, Xε
s)
)
ds +

∫ t

t0

H
(
G(s, Xε

s), G(s, Xs)
)
ds

Applying the assumptions, we get

sup
u∈[t0,t]

H
(
Xε(u), X(u)

)
≤ 2(t− t0)ε + 2L

∫ t

t0

sup
u∈[t0,s]

H(Xε(u), X(u))ds.

Invoking the Gronwall–Bellman inequality again, we get

sup
u∈[t0,t]

H
(
Xε(t), X(t)

)
≤ 2Te2L(t−t0)ε for t ∈ [t0, t0 + T],

which leads us to the assertion. �

4. Conclusions

In this paper, we consider set-valued functional equations with set-valued integrals
on both sides of the equation,

X(t) +
∫ t

t0

F(s, Xs)ds = χ0(0) +
∫ t

t0

G(s, Xs)ds for t ∈ [t0, t0 + T],

with initial condition
Xt0 = χ0.

This form of an equation cannot be reduced to an equation with only one integral. The
sets X(t), being the values at the time t of the solution X, for such equations do not have
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to have a monotonically changing diameter, unlike the equations with the integral on one
side of the equation only. The first main results obtained in the paper are the justification
of the existence of solutions for the above set-valued functional equations, assuming the
continuity and integrally boundedness of the mappings F and G. In this case, we also
found that the set of all solutions has the topological compactness property. Then we
proved the existence and uniqueness of the solution under a stronger assumption than
continuity, namely that F and G satisfy the Lipschitz condition. In this setting, we justified
that the solutions show continuity according to the initial condition and the coefficients,
F and G, of the equation. These properties are crucial from the point of view of the well-
posedness of the theory of such equations, as well as from the perspective of their future
applications in practice, where the initial values and relationships governing the dynamics
of modeled phenomena may be burdened with a slight ε-error. This paper can be a good
theoretical basis for future use in the modeling of real life tasks by researchers specializing
in mathematical modeling, for example, in diagnosing cancer [20,21]. Future research
may also concern theoretical problems. The justification for the existence of solutions to
Equation (1) in a more general case than the case of continuous coefficients F and G would
be good. The existence and uniqueness of the solution to the problem (1), assuming a
weaker condition than Lipschitz continuity in the functional variable, would also be in the
range of interests.
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