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Abstract: In this article, by making use of the q-Srivastava-Attiya operator, we introduce and investi-
gate a new family SWΣ(δ, γ, λ, s, t, q, r) of normalized holomorphic and bi-univalent functions in
the open unit disk U, which are associated with the Bazilevič functions and the λ-pseudo-starlike
functions as well as the Horadam polynomials. We estimate the second and the third coefficients
in the Taylor-Maclaurin expansions of functions belonging to the holomorphic and bi-univalent
function class, which we introduce here. Furthermore, we establish the Fekete-Szegö inequality for
functions in the family SWΣ(δ, γ, λ, s, t, q, r). Relevant connections of some of the special cases of the
main results with those in several earlier works are also pointed out. Our usage here of the basic or
quantum (or q-) extension of the familiar Hurwitz-Lerch zeta function Φ(z, s, a) is justified by the
fact that several members of this family of zeta functions possess properties with local or non-local
symmetries. Our study of the applications of such quantum (or q-) extensions in this paper is also
motivated by the symmetric nature of quantum calculus itself.

Keywords: holomorphic functions; univalent functions; bi-univalent functions; Hurwitz-Lerch zeta
function; Srivastava-Attiya operator; Bazilevič functions; λ-pseudo-starlike functions; Horadam poly-
nomials; Taylor-Maclaurin expansions; coefficient estimates; Fekete-Szegö problem; subordination
between holomorphic functions; q-Srivastava-Attiya operator; Hadamard product (or convolution)
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1. Introduction and Preliminaries

We indicate by A the collection of functions, which are holomorphic in the open
unit disk U given by

U = {z : z ∈ C and |z| < 1}

and have the following normalized form:

f (z) = z +
∞

∑
n=2

anzn. (1)
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We denote by S the sub-collection of the set A consisting of functions, which are also
univalent in U. According to the Koebe one-quarter theorem [1], every function f ∈ S has
an inverse f−1 defined by

f−1( f (z)
)
= z (z ∈ U)

and

f
(

f−1(w)
)
= w

(
|w| < r0( f ); r0( f ) =

1
4

)
,

where

g(w) = f−1(w) = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

We say that a function f ∈ A is bi-univalent in U if both f and it inverse f−1 are
univalent in U. Let Σ stand for the family of bi-univalent functions in U given by (1).
Beginning with the pioneering work [2] on the subject by Srivastava et al. [2], a large
number of works related to the subject have been (and continue to be) published (see,
for example, Refs. [3–7]). From the work of Srivastava et al. [2], we choose to recall the
following examples of functions in the family Σ :

z
1− z

, − log(1− z) and
1
2

log
(

1 + z
1− z

)
.

We notice that the family Σ is not empty. However, the Koebe function is not a
member of Σ. The problem to find the general coefficient bounds on the Taylor-Maclaurin
coefficients

|an| (n ∈ N; n = 3)

for functions f ∈ Σ is still not completely addressed for many of the subfamilies of the
bi-univalent function family Σ.

Finding an upper bound for the functional
∣∣a3 − µa2

2

∣∣ ( f ∈ S) constitutes the Fekete-
Szegö type inequality (or problem) (see [8]). It originates from their disproof of the
Littlewood-Paley conjecture that the coefficients of odd univalent functions are bounded
by 1. For some recent developments and examples, see [9,10].

A function f ∈ A is called a Bazilevič function in U if the following inequality holds
true (see [11]):

<
(

z1−γ f ′(z)(
f (z)

)1−γ

)
> 0 (z ∈ U; γ = 0).

On the other hand, a function f ∈ A is called a λ-pseudo-starlike function in U if the
following inequality holds true (see [12]):

<
(

z
(

f ′(z)
)λ

f (z)

)
> 0 (z ∈ U; λ = 1).

Next, we recall the definition of subordination between holomorphic functions. For two
functions f , g ∈ A, we say that the function f is subordinate to g, if there exists a Schwarz
function ω, which is holomorphic in U with the following property:

ω(0) = 0 and |ω(z)| < 1 (z ∈ U),

such that
f (z) = g

(
ω(z)

)
.

This subordination is symbolically written as follows:

f ≺ g or f (z) ≺ g(z) (z ∈ U).
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It is well known that if the function g is univalent in U, then the following equivalence
holds true (see [13]):

f ≺ g (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊆ g(U).

Jackson [14,15] introduced the q-derivative operator Dq of a function f as follows:

Dq f (z) =
f (z)− f (qz)
(1− q)z

(0 < q < 1; z 6= 0).

The following limit relationship is clear:

lim
q→1−

Dq f (z) = f ′(z) and Dq f (0) = f ′(0).

For more conceptual details on the q-derivative operator Dq, see [16–18].
For a function f ∈ A defined by (1), we deduce the following result:

Dq f (z) = 1 +
∞

∑
n=2

[n]qanzn−1,

where [n]q, called the q-analogue of n ∈ N, is given by

[n]q =
1− qn

1− q
(n ∈ N \ {1}),

N being the set of positive integers.
As q −→ 1−, we have [n]q −→ n and [0]q = 0.
The widely and extensively studied Srivastava-Attiya operator was defined by Srivas-

tava and Attiya [19] by using the Hurwitz-Lerch zeta function Φ(z, s, a) which is systemati-
cally discussed in the recent survey articles [20,21]. For details about the relationships of
the function Φ(z, s, a) with several important functions of the analytic number theory, the
interested reader can refer to Chapter I in [22]).

Shah and Noor [23] (see also [24]) studied the following q-analogue of the Hurwitz-
Lerch zeta function Φ(z, s, a):

φq(s, t; z) =
∞

∑
n=0

zn

[n + t]sq
, (3)

where t ∈ C \Z−0 , s ∈ C when |z| < 1 and <(s) > 1 when |z| = 1. The normalized form of
the series (3) is defined by

ψq(s, t; z) = [1 + t]sq

(
φq(s, t; z)− [t]−sq

)
= z +

∞

∑
n=2

(
[1 + t]q
[n + t]q

)s

zn. (4)

By using (1) and (4), Shah and Noor [23] defined the q-Srivastava-Attiya operator
Jsq,t f : A −→ A as follows:

Definition 1 (see [23]; see also [24]). The q-Srivastava-Attiya operator Jsq,t f : A −→ A is
defined by

Jsq,t f (z) = ψq(s, t; z) ∗ f (z) = z +
∞

∑
n=2

(
[1 + t]q
[n + t]q

)s

anzn,

where the symbol ∗ stands for the Hadamard product (or convolution).
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In recent years, several authors studied many applications of q-calculus associated
with various families of holomorphic and univalent (or multivalent) functions (see, for ex-
ample, [10,25–33]).

In his recently-published survey-cum-expository review article, Srivastava [34] ex-
plored the mathematical applications of q-calculus, fractional q-calculus and the fractional
q-derivative operators in Geometric Function Theory of Complex Analysis. Srivastava [34]
also exposed the not-yet-widely-understood fact that the so-called (p, q)-variation of clas-
sical q-calculus is a rather trivial and inconsequential variation of classical q-calculus,
the additional parameter p being redundant or superfluous (see, for details, [34], p. 340).

Here, in this paper, we made use of the basic or quantum (or q-) extension φq(s, t; z)
which, when q→ 1−, yields the familiar Hurwitz-Lerch zeta function Φ(z, s, t). Just as we
pointed out above, local or non-local symmetries are known to exist in some properties of
several members of the family of the Hurwitz-Lerch zeta functions. Further motivation for
our study of the applications of such quantum (or q-) extensions in this paper can be found
in the book chapter entitled Symmetric Quantum Calculus, in [35].

Remark 1. The operator Jsq,t is a generalization of several known operators studied in earlier
investigations, which are recalled below.

1. For q −→ 1−, the function φq(s, t; z) reduces to the Hurwitz-Lerch zeta function
(see [20,21]) and the operator Jsq,t coincides with the Srivastava-Attiya operator in [19].
Various applications of the Srivastava-Attiya operator are found in [36–38] and in the
references cited in each of these earlier works.

2. For s = 1, the operator Jsq,t reduces to the q-Bernardi operator (see [39]).
3. For s = t = 1, the operator Jsq,t reduces to the q-Libera operator (see [39]).
4. For q −→ 1− and s = 1, the operator Jsq,t reduces to the Bernardi operator (see [40]).
5. For q −→ 1−, s = 1 and t = 0, the operator Jsq,t reduces to the Alexander operator

(see [41]).

Recently, Hörçum and Koçer [42] considered the familiar Horadam polynomials hn(r),
which are given by Definition 2 below, from Geometric Function Theory of Complex Analysis.

Definition 2 (see [42,43]). The Horadam polynomials hn(r) are given by the following recurrence
relation:

hn(r) = prhn−1(r) + qhn−2(r) (r ∈ R; n ∈ N = {1, 2, 3, · · · }) (5)

with
h1(r) = a and h2(r) = br,

for some real constants a, b, p and q. Moreover, the characteristic equation of the recurrence
relation (5) is given by

t2 − prt− q = 0,

which has the following two real roots:

α =
pr +

√
p2r2 + 4q
2

and β =
pr−

√
p2r2 + 4q
2

.

Remark 2. We record here some special cases of the Horadam polynomials hn(r) by appropriately
choosing the parameters a, b, p and q.

1. Taking a = b = p = q = 1, we obtain the Fibonacci polynomials Fn(r).
2. Taking a = 2 and b = p = q = 1, we get the Lucas polynomials Ln(r).
3. Taking a = q = 1 and b = p = 2, we have the Pell polynomials Pn(r).
4. Taking a = b = p = 2 and q = 1, we find the Pell-Lucas polynomials Qn(r).
5. Taking a = b = 1, p = 2 and q = −1, we obtain the Chebyshev polynomials Tn(r) of

the first kind.
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6. Taking a = 1, b = p = 2 and q = −1, we have the Chebyshev polynomials Un(r) of
the second kind.

For widespread usages and applications of various families of orthogonal polynomials
and other special functions and specific polynomials, see [43–46].

The Horadam polynomials hn(r) are generated by (see [42]):

Π(r, z) =
∞

∑
n=1

hn(r)zn−1 =
a + (b− ap)rz
1− prz− qz2 . (6)

The Horadam polynomials hn(r) were recently applied in a similar context by Srivas-
tava et al. [47]. It was followed by many sequels to [47] (see, for example, [48–54]).

Remark 3. The motivation of our present investigation stems, at least in part, from the need for
the upper bounds of the Taylor-Maclaurin coefficients of normalized functions belonging to various
subclasses of analytic and univalent (or multivalent) functions in the open unit disk U. The proof of
the celebrated 68-year-old Bieberbach conjecture, which is attributed to Ludwig Bieberbach (1886–
1982), by Louis de Branges in the year 1984 has indeed provided impetus to studies on coefficient
estimate problems as well as on Fekete-Szegö type coefficient inequalities in recent years.

2. A Set of Main Results

We begin this section by defining the new family SWΣ(δ, γ, λ, s, t, q, r).

Definition 3. For 0 5 δ 5 1, γ = 0, λ = 1 and r ∈ R, a function f ∈ Σ is said to be in the
family SWΣ(δ, γ, λ, s, t, q, r) if it fulfills the following subordination conditions:

(1− δ)
z1−γ

(
Jsq,t f (z)

)′
(
Jsq,t f (z)

)1−γ
+ δ

z
[(

Jsq,t f (z)
)′]λ

Jsq,t f (z)
≺ Π(r, z) + 1− a

and

(1− δ)
w1−γ

(
Jsq,tg(w)

)′
(
Jsq,tg(w)

)1−γ
+ δ

w
[(

Jsq,tg(w)
)′]λ

Jsq,tg(w)
≺ Π(r, w) + 1− a,

where a is real constant and the function g = f−1 is given by (2).

Remark 4. For brevity and convenience, the notation SWΣ(δ, γ, λ, s, t, q, r) for the holomorphic
and bi-univalent function class, which we introduced in Definition 3 above, does not include the
parameters a, b, p and q involved in Definition 1 of the Horadam polynomials hn(r). In fact, the role
of each of these notationally left-out parameters a, b, p and q, which is detailed above in Remark 2, is
to relate the Horadam polynomials hn(r) with many simpler polynomial systems (see also Remark 5
below).

Our first main result is asserted by Theorem 1 below.

Theorem 1. For 0 5 δ 5 1, γ = 0, λ = 1 and r ∈ R, let f ∈ A be in the family
SWΣ(δ, γ, λ, s, t, q, r). Then

|a2| 5
|br|[2 + t]sq

√
|br|[3 + t]sq

Λ(δ, γ, λ, s, t, q; b.r)
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(
Λ(δ, γ, λ, s, t, q; b.r)

:=
√∣∣[(Ω(δ, γ, λ, s, t, q) + Γ(δ, γ, λ, s, t, q)

)
b− pΥ(δ, γ, λ, s, t, q)

]
br2 − qaΥ(δ, γ, λ, s, t, q)

∣∣)

and

|a3| 5
|br|[3 + t]sq

[(1− δ)(γ + 2) + δ(3λ− 1)] · [1 + t]sq

+
b2r2[2 + t]2sq

[(1− δ)(γ + 1) + δ(2λ− 1)]2 · [1 + t]2sq
,

where
Ω(δ, γ, λ, s, t, q) = [(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq [2 + t]2sq , (7)

Γ(δ, γ, λ, s, t, q) =
[

1
2
(1− δ)(γ + 2)(γ− 1) + δ(2λ(λ− 2) + 1)

]
[3 + t]sq [1 + t]2sq (8)

and
Υ(δ, γ, λ, s, t, q) = [(1− δ)(γ + 1) + δ(2λ− 1)]2[3 + t]sq [1 + t]2sq . (9)

Proof. Let f ∈ SWΣ(δ, γ, λ, s, t, q, r). Then there are two holomorphic functions u, v:
U −→ U given by

u(z) = u1z + u2z2 + u3z3 + · · · (z ∈ U) (10)

and
v(w) = v1w + v2w2 + v3w3 + · · · (w ∈ U), (11)

with
u(0) = v(0) = 0 and max{|u(z)|, |v(w)|} < 1 (z, w ∈ U),

such that

(1− δ)
z1−γ

(
Jsq,t f (z)

)′
(
Jsq,t f (z)

)1−γ
+ δ

z
[(

Jsq,t f (z)
)′]λ

Jsq,t f (z)
= Π(r, u(z))− a

and

(1− δ)
w1−γ

(
Jsq,tg(w)

)′
(
Jsq,tg(w)

)1−γ
+ δ

w
[(

Jsq,tg(w)
)′]λ

Jsq,tg(w)
= Π(r, v(w))− a

or, equivalently,

(1− δ)
z1−γ

(
Jsq,t f (z)

)′
(
Jsq,t f (z)

)1−γ
+ δ

z
[(

Jsq,t f (z)
)′]λ

Jsq,t f (z)

= 1 + h1(r) + h2(r)u(z) + h3(r)u2(z) + · · · (12)
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and

(1− δ)
w1−γ

(
Jsq,tg(w)

)′
(
Jsq,tg(w)

)1−γ
+ δ

w
[(

Jsq,tg(w)
)′]λ

Jsq,tg(w)

= 1 + h1(r) + h2(r)v(w) + h3(r)v2(w) + · · · . (13)

Combining (10)–(13) yields the following relation:

(1− δ)
z1−γ

(
Jsq,t f (z)

)′
(
Jsq,t f (z)

)1−γ
+ δ

z
[(

Jsq,t f (z)
)′]λ

Jsq,t f (z)

= 1 + h2(r)u1z +
[

h2(r)u2 + h3(r)u2
1

]
z2 + · · · (14)

and

(1− δ)
w1−γ

(
Jsq,tg(w)

)′
(
Jsq,tg(w)

)1−γ
+ δ

w
[(

Jsq,tg(w)
)′]λ

Jsq,tg(w)

= 1 + h2(r)v1w +
[

h2(r)v2 + h3(r)v2
1

]
w2 + · · · . (15)

It is known that, if
max{|u(z)|, |v(w)|} < 1 (z, w ∈ U),

then ∣∣uj
∣∣ 5 1 and

∣∣vj
∣∣ 5 1 (∀ j ∈ N). (16)

Now, by comparing the corresponding coefficients in (14) and (15), we find that

[(1− δ)(γ + 1) + δ(2λ− 1)][1 + t]sq
[2 + t]sq

a2 = h2(r)u1, (17)

[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq
[3 + t]sq

a3

+

[
1
2 (1− δ)(γ + 2)(γ− 1) + δ(2λ(λ− 2) + 1)

]
[1 + t]2sq

[2 + t]2sq
a2

2

= h2(r)u2 + h3(r)u2
1, (18)

−
[(1− δ)(γ + 1) + δ(2λ− 1)][1 + t]sq

[2 + t]sq
a2 = h2(r)v1 (19)

and

[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq
[3 + t]sq

(
2a2

2 − a3

)

+

[
1
2 (1− δ)(γ + 2)(γ− 1) + δ(2λ(λ− 2) + 1)

]
[1 + t]2sq

[2 + t]2sq
a2

2

= h2(r)v2 + h3(r)v2
1. (20)
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It follows from (17) and (19) that
u1 = −v1 (21)

and
2[(1− δ)(γ + 1) + δ(2λ− 1)]2[1 + t]2sq

[2 + t]2sq
a2

2 = h2
2(r)(u

2
1 + v2

1). (22)

If we add (18) to (20), we find that(
2[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq

[3 + t]sq

+
2
[

1
2 (1− δ)(γ + 2)(γ− 1) + δ(2λ(λ− 2) + 1)

]
[1 + t]2sq

[2 + t]2sq

)
a2

2

= h2(r)(u2 + v2) + h3(r)(u2
1 + v2

1). (23)

Upon substituting the value of u2
1 + v2

1 from (22) into the right-hand side of (23), we
deduce the following result:

a2
2 =

h3
2(r)[3 + t]sq [2 + t]2sq (u2 + v2)

2
[
h2

2(r)(Ω(δ, γ, λ, s, t, q) + Γ(δ, γ, λ, s, t, q))− h3(r)Υ(δ, γ, λ, s, t, q)
] , (24)

where Ω(δ, γ, λ, s, t, q), Γ(δ, γ, λ, s, t, q) and Υ(δ, γ, λ, s, t, q) are given by (7)–(9), respectively.
By further computations using (5), (16) and (24), we obtain

|a2| 5
|br|[2 + t]sq

√
|br|[3 + t]sq

Λ(δ, γ, λ, s, t, q; b.r)(
Λ(δ, γ, λ, s, t, q; b.r)

:=
√∣∣[(Ω(δ, γ, λ, s, t, q) + Γ(δ, γ, λ, s, t, q)

)
b− pΥ(δ, γ, λ, s, t, q)

]
br2 − qaΥ(δ, γ, λ, s, t, q)

∣∣).

Next, if we subtract (20) from (18), we can easily see that

2[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq
[3 + t]sq

(
a3 − a2

2

)
= h2(r)(u2 − v2) + h3(r)(u2

1 − v2
1). (25)

In the light of (21) and (22), we conclude from (25) that

a3 =
h2(r)[3 + t]sq(u2 − v2)

2[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq

+
h2

2(r)[2 + t]2sq (u2
1 + v2

1)

2[(1− δ)(γ + 1) + δ(2λ− 1)]2[1 + t]2sq
.

Thus, by applying (5), we obtain the following inequality:

|a3| 5
|br|[3 + t]sq

[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq

+
b2r2[2 + t]2sq

[(1− δ)(γ + 1) + δ(2λ− 1)]2[1 + t]2sq
.
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This completes the proof of Theorem 1.

In the next theorem, we present the Fekete-Szegö inequality for SWΣ(δ, γ, λ, s, t, q, r).

Theorem 2. For 0 5 δ 5 1, γ = 0, λ = 1 and r, µ ∈ R, let f ∈ A be in the family
SWΣ(δ, γ, λ, s, t, q, r). Then

∣∣∣a3 − µa2
2

∣∣∣ 5



|br|[3+t]sq
[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq(
|ϕ− 1| 5 |[(Ω(δ,γ,λ,s,t,q)+Γ(δ,γ,λ,s,t,q))b−pΥ(δ,γ,λ,s,t,q)]br2−qaΥ(δ,γ,λ,s,t,q)|

b2r2[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq [2+t]2sq

)
|br|3[3+t]sq [2+t]2sq |µ−1|

|[(Ω(δ,γ,λ,s,t,q)+Γ(δ,γ,λ,s,t,q))b−pΥ(δ,γ,λ,s,t,q)]br2−qaΥ(δ,γ,λ,s,t,q)|(
|ϕ− 1| = |[(Ω(δ,γ,λ,s,t,q)+Γ(δ,γ,λ,s,t,q))b−pΥ(δ,γ,λ,s,t,q)]br2−qaΥ(δ,γ,λ,s,t,q)|

b2r2[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq [2+t]2sq

)
,

where, for convenience,

ϕ = ϕ(µ, r) :=
h2

2(r)[3 + t]sq [2 + t]2sq (1− µ)

h2
2(r)

(
Ω(δ, γ, λ, s, t, q) + Γ(δ, γ, λ, s, t, q)

)
− h3(r)Υ(δ, γ, λ, s, t, q)

.

Proof. It follows from (24) and (25) that

a3 − µa2
2 =

h2(r)[3 + t]sq(u2 − v2)

2[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq
+ (1− µ)a2

2

=
h2(r)[3 + t]sq(u2 − v2)

2[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq

+
h3

2(r)[3 + t]sq [2 + t]2sq (u2 + v2)(1− µ)

2
[
h2

2(r)(Ω(δ, γ, λ, s, t, q) + Γ(δ, γ, λ, s, t, q))− h3(r)Υ(δ, γ, λ, s, t, q)
]

=
h2(r)

2

[(
ϕ(µ, r) +

[3 + t]sq
[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq

)
u2

+

(
ϕ(µ, r)−

[3 + t]sq
[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq

)
v2

]
,

where, just as stated in Theorem 2,

ϕ(µ, r) =
h2

2(r)[3 + t]sq [2 + t]2sq (1− µ)

h2
2(r)(Ω(δ, γ, λ, s, t, q) + Γ(δ, γ, λ, s, t, q))− h3(r)Υ(δ, γ, λ, s, t, q)

.
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Thus, according to (5), we have the following inequality:

∣∣∣a3 − µa2
2

∣∣∣ 5



|br|[3+t]sq
[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq(

0 5 |ϕ(µ, r)| 5 [3+t]sq
[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq

)

|br|.|ϕ(µ, r)|

(
|ϕ(µ, r)| = [3+t]sq

[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq

)
,

which, after simple computation, yields the following inequality:

∣∣∣a3 − µa2
2

∣∣∣ 5



|br|[3+t]sq
[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq(
|ϕ− 1| 5 |[(Ω(δ,γ,λ,s,t,q)+Γ(δ,γ,λ,s,t,q))b−pΥ(δ,γ,λ,s,t,q)]br2−qaΥ(δ,γ,λ,s,t,q)|

b2r2[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq [2+t]2sq

)
|br|3[3+t]sq [2+t]2sq |µ−1|

|[(Ω(δ,γ,λ,s,t,q)+Γ(δ,γ,λ,s,t,q))b−pΥ(δ,γ,λ,s,t,q)]br2−qaΥ(δ,γ,λ,s,t,q)|(
|ϕ− 1| = |[(Ω(δ,γ,λ,s,t,q)+Γ(δ,γ,λ,s,t,q))b−pΥ(δ,γ,λ,s,t,q)]br2−qaΥ(δ,γ,λ,s,t,q)|

b2r2[(1−δ)(γ+2)+δ(3λ−1)][1+t]sq [2+t]2sq

)
.

We have thus completed the proof of Theorem 2.

3. Special Cases and Consequences

In this section, we choose to specialize our main results asserted by Theorem 1 and
Theorem 2.

By putting µ = 1 in Theorem 2, we are led to the following corollary.

Corollary 1. For 0 5 δ 5 1, γ = 0, λ = 1 and r ∈ R, let f ∈ A be in the family
SWΣ(δ, γ, λ, s, t, q, r). Then

∣∣∣a3 − a2
2

∣∣∣ 5 |br|[3 + t]sq
[(1− δ)(γ + 2) + δ(3λ− 1)][1 + t]sq

.

Remark 5. The family SWΣ(δ, γ, λ, s, t, q, r) generalizes several known families of bi-univalent
functions. We list them as follows.

1. For s = δ = 0, we have

SWΣ(δ, γ, λ, s, t, q, r) =: NΣ(γ, r),

where NΣ(γ, r) is the bi-univalent function family studied recently by Wanas and
Lupas [54].

2. For s = δ = γ = 0, we have

SWΣ(δ, γ, λ, s, t, q, r) =: S∗Σ(r),

where S∗Σ(r) denote the bi-univalent function family studied by Srivastava et al. [47].
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3. For s = δ = 0 and γ = 1, we have the following relationship:

SWΣ(δ, γ, λ, s, t, q, r) =: Σ′(r),

where Σ′(r) is the bi-univalent function family introduced by Alamoush [49].
4. For s = δ = 0, a = 1, b = p = 2, q = −1 and r −→ t, we have

SWΣ(δ, γ, λ, s, t, q, r) =: Bγ
Σ(t),

where Bγ
Σ(t) is the bi-univalent function family introduced by Bulut et al. [55].

5. For s = 0, δ = a = 1, b = p = 2, q = −1 and r −→ t, we have

SWΣ(δ, γ, λ, s, t, q, r) =: LBΣ(λ, t),

where LBΣ(λ, t) is the bi-univalent function family investigated by Magesh and
Bulut [56].

6. For s = δ = γ = 0, a = 1, b = p = 2, q = −1 and r −→ t, we have

SWΣ(δ, γ, λ, s, t, q, r) =: SΣ(t),

where SΣ(t) is the bi-univalent function family given by Altınkaya and Yalçin [57].
7. For s = δ = 0, γ = a = 1, b = p = 2, q = −1 and r −→ t, we have

SWΣ(δ, γ, λ, s, t, q, r) =: BΣ(t),

where BΣ(t) is the bi-univalent function family given by Bulut et al. [55].
8. For s = δ = 0, a = 1, b = p = 2, q = −1, r −→ t and

Π(t, z) =
(

1
1− 2tz + z2

)α

(0 < α 5 1),

we have
SWΣ(δ, γ, λ, s, t, q, r) =: PΣ(α, γ),

where PΣ(α, γ) is the bi-univalent function family considered by Prema and Keerthi [58].
9. For s = 0, δ = a = 1, b = p = 2, q = −1, r −→ t and

Π(t, z) =
(

1
1− 2tz + z2

)α

(0 < α 5 1),

we have
SWΣ(δ, γ, λ, s, t, q, r) =: LBλ

Σ(α),

where LBλ
Σ(α) is the bi-univalent function family considered by Joshi et al. [59].

10. For s = δ = γ = 0, a = 1, b = p = 2, q = −1, r −→ t and

Π(t, z) =
(

1
1− 2tz + z2

)α

(0 < α 5 1),

we have
SWΣ(δ, γ, λ, s, t, q, r) =: S∗Σ(α),

where S∗Σ(α) is the bi-univalent function family introduced by Brannan and Taha [60].
11. For s = δ = 0, γ = a = 1, b = p = 2, q = −1, r −→ t and

Π(t, z) =
(

1
1− 2tz + z2

)α

(0 < α 5 1),
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we have
SWΣ(δ, γ, λ, s, t, q, r) =: Hα

Σ,

whereHα
Σ is the bi-univalent function family considered by Srivastava et al. [2].

Remark 6. For particular choices of s, δ, γ, a, b, p and q, Theorem 1 and Theorem 2 reduce to a
number of known results, which are given below.

1. If we put s = δ = 0 in our Theorems, we have the corresponding results for well-
known familyNΣ(γ, r) of bi-Bazilevič functions which was studied recently by Wanas
and Lupas [54].

2. If we put s = δ = γ = 0 in our Theorems, we have the corresponding results for the
family S∗Σ(r), which was considered recently by Srivastava et al. [47].

3. If we put s = δ = 0 and γ = 1 in our Theorems, we have the corresponding results
for the known family Σ′(r), which was studied recently by Al-Amoush [49].

4. If we put s = δ = 0, a = 1, b = p = 2, q = −1 and r −→ t in our Theorems, we have
the corresponding results for the family of Bγ

Σ(t) of bi-Bazilevič functions, which was
discussed recently by Bulut et al. [55].

5. If we put s = 0, δ = a = 1, b = p = 2, q = −1 and r −→ t in our Theorems, we have
the corresponding results for the family LBΣ(λ, t) of bi-pseudo-starlike functions,
which was studied recently by Magesh and Bulut [56].

6. If we put s = δ = γ = 0, a = 1, b = p = 2, q = −1 and r −→ t in our Theorems, we
obtain the corresponding results for the family SΣ(t) of bi-starlike functions, which
was considered recently by Altınkaya and Yalçin [57].

7. If we put s = δ = 0, γ = a = 1, b = p = 2, q = −1 and r −→ t in our Theorems, we
obtain the corresponding results for the family BΣ(t) which was discussed recently
by Bulut et al. [55].

4. Conclusions

The fact that we can find many unique and effective usages of a large variety of inter-
esting special functions and specific polynomials in Geometric Function Theory of Complex
Analysis provided the primary inspiration and motivation for our analysis in this article.
Our main objective was to create a new family SWΣ(δ, γ, λ, s, t, q, r) of holomorphic and
bi-univalent functions, which is defined by means of the q-Srivastava-Attiya operator and
by also using the Horadam polynomial hn(r) given by the recurrence relation (5) and by
generating function Π(r, z) in (6). We derived inequalities for the initial Taylor-Maclaurin
coefficients of functions belonging to this newly-introduced holomorphic and bi-univalent
function class SWΣ(δ, γ, λ, s, t, q, r). Furthermore, we investigated the celebrated Fekete-
Szegö problem for this general holomorphic and bi-univalent function class. We also
pointed out several important correlations between our findings and those which were
considered in previous studies.

We remark further that, since the additional parameter p is obviously superfluous,
Srivastava ([34], p. 340) exposed the so-called (p, q)-calculus as a rather trivial and incon-
sequential variation of the classical q-calculus. So, clearly, while we do encourage and
support the q-results of the kind which we have presented in this paper as well as potential
q-extensions of other analogous developments in Applicable Mathematical Analysis, we
do not encourage and support the so-called (p, q)-variations of the suggested q-results by
inconsequentially and trivially adding a redundant parameter p.
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