
symmetryS S

Article

Semiclassical Spectral Series Localized on a Curve for the
Gross–Pitaevskii Equation with a Nonlocal Interaction

Anton E. Kulagin 1,2,*,† , Alexander V. Shapovalov 3,*,† and Andrey Y. Trifonov 1,†

����������
�������

Citation: Kulagin, A.E.;

Shapovalov, A.V.; Trifonov, A.Y.

Semiclassical Spectral Series

Localized on a Curve for the

Gross–Pitaevskii Equation with a

Nonlocal Interaction. Symmetry 2021,

13, 1289. https://doi.org/10.3390/

sym13071289

Academic Editor: Michel Planat

Received: 17 June 2021

Accepted: 11 July 2021

Published: 17 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Computer Sciences, Tomsk Polytechnic University, 30 Lenin A.,
634050 Tomsk, Russia; atrifonov@tpu.ru

2 V.E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences,
1 Academician Zuev Sq., 634055 Tomsk, Russia

3 Department of Theoretical Physics, Tomsk State University, 1 Novosobornaya Sq., 634050 Tomsk, Russia
* Correspondence: aek8@tpu.ru (A.E.K.); shpv@phys.tsu.ru (A.V.S.)
† These authors contributed equally to this work.

Abstract: We propose the approach to constructing semiclassical spectral series for the generalized
multidimensional stationary Gross–Pitaevskii equation with a nonlocal interaction term. The eigen-
values and eigenfunctions semiclassically concentrated on a curve are obtained. The curve is de-
scribed by the dynamic system of moments of solutions to the nonlocal Gross–Pitaevskii equation.
We solve the eigenvalue problem for the nonlocal stationary Gross–Pitaevskii equation basing on the
semiclassical asymptotics found for the Cauchy problem of the parametric family of linear equations
associated with the time-dependent Gross–Pitaevskii equation in the space of extended dimension.
The approach proposed uses symmetries of equations in the space of extended dimension.

Keywords: stationary Gross–Pitaevskii equation; nonlocal interaction; nonlinear spectral problem;
Bose–Einstein condensate; semiclassical approximation; symmetry operators

1. Introduction

The collective modes of coherent quantum atom ensembles in the Bose–Einstein
condensate (BEC) confined by a trap field in the mean-field approximation are described by
the nonlinear Schrödinger equation, the Gross–Pitaevskii equation (GPE) (see, e.g., [1–4]):{

− ih̄∂t −
h̄2

2m
∆ + Vtr(~x) +κŴ[Ψ](~x, t)

}
Ψ(~x, t) = 0. (1)

Here, ∂t =
∂

∂t
, ∆ is the Laplace operator, m is the particle mass, κ is the nonlinearity

parameter, Vtr(~x) is the external field (trap) potential, the function Ψ(~x, t) is the macroscopic
wavefunction of the condensate (the order parameter) such that |Ψ(~x, t)|2 is proportional
to the BEC density and its phase gradient is proportional to the BEC velocity. For the
sake of simplicity, we omit the argument h̄ of the function Ψ(~x, t, h̄) in formulas where it
does not cause the confusion.The nonlinear interaction operator Ŵ[Ψ](~x, t) in (1) is usually
chosen as

Ŵ[Ψ](~x, t) = Ŵlocal [Ψ](~x, t) = g|Ψ(~x, t)|2 (2)

and it describes the local interaction with g = 4πh̄2a/m where a is the s-wave scattering
length. However, to take into account long-range interaction, the nonlocal operators are
considered here

Ŵ[Ψ](~x, t) = Ŵnonlocal [Ψ](~x, t) =
∫
Rn

W(~x,~y)|Ψ(~y, t)|2d~y. (3)
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The local operator Ŵlocal of (2) can be treated as the limit of the nonlocal version (3)
with a delta-like function W(~x,~y) that corresponds to the short-range interaction. Some
applications in physics, specifically the BEC with the dipolar-to-dipolar interaction [5–8],
requiring accounting the long-range interaction do not allow one to get rid of nonlocality
for the sake of simplicity. In these cases, the combination of the local and nonlocal terms is
often used. We call Equation (1) with the term Ŵlocal the local GPE, and with Ŵnonlocal the
nonlocal GPE.

Substitution of Ψ(~x, t) = exp
[−iµt

h̄
]
ψ(~x) into Equation (1) yields the time-

independent GPE {
− h̄2

2m
∆ + Vtr(~x) +κŴ[ψ](~x)

}
ψ(~x) = µψ(~x), (4)

which describes the stationary states of the BEC. If solutions ψ(~x) of (4) are restricted to the
unit norm

||ψ(~x)||2 =
∫
Rn

|ψ(~x)|2d~x = 1, (5)

then eigenvalues µ of the nonlinear eigenvalue problem (4) and (5) correspond to the
chemical potential and eigenfunctions ψ(~x) minimize the energy functional

E[ψ] =
∫
Rn

[
h̄2

2m
|∇ψ(~x)|2 + Vtr(~x)|ψ(~x)|2 +

κ
2

Ŵ[ψ](~x)|ψ(~x)|2
]

d~x, (6)

where E is the energy per the BEC particle. The ground state solution corresponds to the
global minimum of the functional (6) while the exited states meet the local minima [9,10].

For the weak interaction (a small parameter κ), the stationary solutions can be found
using the perturbation theory as a correction to solutions of the so-called associated linear
Schödinger equation that inherits the GPE linear part and has not the interaction term, i.e.,
it is the Equation (4) with κ = 0. Solutions of the GPE obtained in this way are termed
solutions with linear counterpart in [11]. The opposite limit of strong nonlinearity was
also considered using the Thomas–Fermi approximation when the kinetic term can be
ignored and the local GPE (4) takes the form of an algebraic equation. For the nonlocal
case, the GPE (4) becomes an integral equation. Moreover, it was shown that there are
stationary solutions of the local GPE that do not correspond to any eigenfunctions of the
associated linear Schödinger equation for multiwell external potential in [12] (the GPE
solutions without linear counterpart).

The minima of the functional (6) can be found numerically by iterative procedure (see,
e.g., the review in [13] and references therein). The issue is that the iterative procedure
needs a proper initial approximation for the respective stationary states (4). For the weak
nonlinearity, the stationary states of the associated linear Schrödinger equation can be used
as the initial data, and, for the strong nonlinearity, the initial data can be obtained from
the Thomas–Fermi approximation [9,14,15]. Numerical methods are usually limited to
calculating only the ground state [13] and do not allow one to construct spectral series in
the general case.

The study of the GPE solutions with and without linear counterpart was continued
in [16–20].

Note that the solutions with linear counterpart inherit the symmetries of the external
field potential while these symmetries are broken for solutions without linear counterpart.

In order to avoid the limitations of the weak or strong nonlinearity, the semiclassical
approximation can be used. For example, in [21], the semiclassical approximation was used
to study the non-stationary local GPE with the special type of external field and different
orders of the nonlinear term.

Here, we propose an approach to the spectral problem (4) that deals with the arbitrary
strength of the nonlinearity and is applicable for a wide range of the external fields in
n-dimensional nonlocal GPE. Moreover, we study the nonlocal GPE solutions localized
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on curves reflecting the BEC topological features. We apply the well-known WKB-Maslov
theory of semiclassical approximation [22–24] to the problem under consideration. The ap-
proach to the eigenvalue problem (4) and (5) is based on [25], where the leading term of
semiclassical asymptotics for the Cauchy problem has been constructed explicitly in a class
of functions localized in a neighborhood of a curve in the phase space of a dynamic system
of moments of the nonlocal GPE solution termed the Hamilton–Ehrenfest system. The last
one for the n-dimensional manifolds in the phase space was studied in [26–28]. As opposed
to the linear case (κ = 0 in (4)), the variance matrix of the solutions constructed in [25] may
be bounded due to the nonlinearity. Such solutions of the Cauchy problems are termed the
semiclassical soliton-type solutions [29], and we use exactly such particular solutions for
the construction of the spectral series of the nonlocal GPE.

Differing from the associated linear Schödinger equation in the sense of [11], our method
uses a parametric family of the associated linear Gross–Pitaevskii equations that include
terms corresponding to both the external field and the interaction. Among the solutions of
these equations, the solution of the initial nonlinear GPE (4) can be found.

Our consideration is not limited to the convolution nonlinearity with the kernel
W(~x,~y) = W(~x−~y), which naturally arise in the BEC application. Although the convolu-
tion nonlinearity is usually simpler for calculations, it is unsubstantial for our approach.
Moreover, the consideration of the wider class of kernels W(~x,~y) allows one to apply this
approach to the GPE with the modulated nonlinearity that was studied in [18,19].

The WKB-Maslov method sometimes leads to quite complex classical equations (the
Hamilton–Ehrenfest system) that need semi-analytical considerations. However, the devel-
opment of numerical-analytical math packages, such as Wolfram Mathematica, breathed
new life into the semiclassical method [30]. In [31], it was applied to the nonlocal gen-
eralization of the Fokker–Plank equation with solutions localized on a zero-dimensional
manifold (a point). In [32,33], the WKB-Maslov method allowed to construct asymptotic
solutions concentrated on curves for the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov
equation. Semiclassical spectral series were constructed in [34,35] for the Hartree type
equation with the special type of the external potential Vtr.

Our method focuses on formal mathematical structures, so it is applicable for construct-
ing solutions of a wider class of equations. In particular, the approach can be generalized
for nonlinear Schrödinger-like equations such as Lugiato–Lefever equation, which is an
amplitude equation for an optical pulse in the pumped ring resonator [36]. The interest
in this equation was encouraged by discovery of the frequency comb associated with the
Kerr temporal solitons [37–39]. The results of our paper may be of value for the theoretical
study of the Bose–Einstein condensation phenomena that occurs in a gas of atoms and of
various quasiparticles [3,40–44]. Note that the conception of condensation is even involved
in the study of dark matter [45,46].

The paper is structured as follows. In Section 2, we describe the asymptotic partic-
ular solutions of the non-stationary nonlocal GPE concentrated on curves. In Section 3,
we construct the asymptotic solutions of the stationary nonlocal GPE based on the Section 2.
In Section 3, the semiclassical spectral series are obtained. In Section 4, our formalism is
illustrated by an example for the specific 2D stationary nonlocal GPE. The semiclassical
solutions of the spectral problem for this equation are obtained in the analytical form. In
Section 5, the concluding remarks are given. In Appendix, the auxiliary equations involved
are given.

2. Nonlocal Gross–Pitaevskii Equation

The semiclassical approach to the spectral problem (4) can be developed for the
nonlocal stationary GPE of a more general form{

H(ẑ)[ψ]− µ(h̄)
}

ψ(~x) = 0,

H(ẑ)[ψ] = V(ẑ) +κ
∫
Rn

W(~x,~y) |ψ(~y)|2d~y. (7)



Symmetry 2021, 13, 1289 4 of 22

Here, ẑ = (~̂p,~x), ~x ∈ Rn, ~̂p = −ih̄∂~x, and V(ẑ) is a linear partial differential operator
depending on ẑ with a symbol V(z) = V(~p,~x) smoothly depending on ~p and ~x (~p ∈ Rn).
Our approach to the problem (7) relies on the method proposed in [25] for solution of the
Cauchy problem in the semiclassical approximation for the non-stationary nonlocal GPE:{

− ih̄∂t + H(ẑ)[Ψ]
}

Ψ(~x, t) = 0,
Ψ(~x, t)|t=0 = ψ(~x).

(8)

This method allows one to construct the asymptotical solutions to the problem (8)
in the class of functions semiclassically concentrated on curves of the phase space of the
dynamical system of moments of the desired solution.

The core idea of the approach proposed is as follows. The method of [25] provides a
practical possibility to select from the set of asymptotical solutions Ψ(~x, t) to the Cauchy
problem (8), found for various initial functions ψ(~x), those Ψ(~x, t) that have the form

Ψ(~x, t) = exp
[
− i

h̄
µt
]
· ψ(~x). (9)

In the process of finding the functions (9), we come to ψ(~x) and µ which are the eigenfunc-
tions and eigenvalues of the problem (7).

Consider solutions of (8) concentrated in a vicinity of the one-dimensional manifold
Λ1

t (the curve) in the 2n-dimensional phase space M2n = Rn ×Rn, ~p ∈ Rn, ~x ∈ Rn:

Λ1
t =

{
z = (~p,~x) = Z(t, s, h̄) =

(
~P(t, s, h̄), ~X(t, s, h̄)

)∣∣
s ∈ [0, ωT], t ∈ [0, T]

}
, T, ω > 0.

(10)

Here, s is the curve Λ1
t parameter and:

Z(t, s, h̄) = Z(t, s) + h̄Z(1)(t, s) + O(h̄3/2). (11)

For the functions Ψ semiclassically concentrated on the curve Λ1
t , the dynamics of the

curve in the limits h̄→ 0 is determined by the (1, 1)-type Hamilton–Ehrenfest system (the
term (1, 1) implies that the parameter s is a one-dimensional variable and the vector Z(s, t)
corresponds to the first order moments of the function Ψ(~x, t), see [25] for details):

~̇X(t, s) = V~p
(
Z(t, s)

)
,

~̇P(t, s) = −V~x
(
Z(t, s)

)
− κ||Ψ||2

ωT

ωT∫
0

W~x
(
~X(t, s), ~X(t, r)

)
dr.

(12)

Here, ||Ψ|| is the L2-norm, which is conserved for exact solutions of the non-stationary
nonlocal GPE (8). Hereinafter, for the sake of simplicity, we will use the unit normalization
||Ψ|| = 1.

The class J τ
h̄ of functions semiclassically concentrated on curves Λ1 is given by

J τ
h̄ =

{
Φ : Φ(~x, t, h̄) = χ(~x, t, s, h̄)

∣∣∣
s=ωτ(~x,t)

, χ(~x, t, s, h̄) ∈ P t
h̄(s)

}
, (13)

where P t
h̄ is a class of trajectory-concentrated functions [47]:

P t
h̄(s) =

{
χ : χ(~x, t, s, h̄) = ϕ

(∆~x√
h̄

, t, s, h̄
)

exp
[ i
h̄
(
S(t, s, h̄) + 〈~P(t, s), ∆~x〉

)]}
. (14)

In this definition, the function ϕ(~ξ, t, s, h̄) belongs to a Schwarz space S in the variable
~ξ ∈ Rn, smoothly depends on t and s, and regularly depends on

√
h̄ as h̄→ 0; the function
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S(t, s, h̄) together with functions Z(t, s) = (~P(t, s), ~X(t, s)) define the class and are to be
determined; the family of hypersurfaces s = ωτ(~x, t) are given by relation [23,24]〈

~Xs(t, s), ∆~x
〉
= 0, ∆~x = ~x− ~X

(
t, s
)
. (15)

Hereinafter, we assume that
rank ~Xs(t, s) = 1. (16)

This condition ensures the nondegeneracy of the localization curve (10) and the nonsingu-
larity of the BEC density on the curve.

The construction of solutions of the form

Ψ(~x, t) = χ(~x, t, s)
∣∣∣
s=ωτ(~x,t)

(17)

to the non-stationary GPE (8) in the class of functions J τ
h̄ in the semiclassical approximation

with the accuracy of O(h̄3/2) can be reduced to the solution of the associated linear GPE:[
− ih̄∂t + H(t, s, h̄)[g(t, s)] + 〈Hz(t, s), ∆ẑ〉+ 1

2
〈∆ẑ, Hzz(t, s)∆ẑ〉

]
χ(~x, t, s) = 0, (18)

with the additional algebraic constraint

â0(t, s)χ(~x, t, s) = 0. (19)

Here, we denoted

H
(
t, s, h̄

)
[g(t, s)] = V

(
Z(t, s)

)
+

κ
ωT

ωT∫
0

dr
{

W
(
~X(t, s), ~X(t, r)

)
+

+ h̄
〈

W~y
(
~X(t, s), ~X(t, r)

)
, ~X(1)(t, r)

〉
+

1
2

Sp
[
Wyy

(
~X(t, s), ~X(t, r)

)
· σxx(t, r)

]}
,

Hz(t, s) = Vz
(
Z(t, s)

)
+

κ
ωT

ωT∫
0

dr Wz
(
~X(t, s), ~X(t, r)

)
, Wz =

(
~0, W~x

)>
, (20)

Hzz(t, s) = Vzz
(
Z(t, s)

)
+

κ
ωT

ωT∫
0

dr Wzz
(
~X(t, s), ~X(t, r)

)
, Wzz =

(
0 0
0 Wxx

)
,

â0(t, s) = 〈~Ps(t, s), ∆~x〉 − 〈~Xs(t, s), ∆~̂p〉,
∆ẑ = (∆~̂p, ∆~x) = ẑ− Z(t, s),

and functions g(t, s) =
(

Z(1)(t, s, h̄), ∆2(t, s)
)

, where ∆2 =

(
σpp σpx
σxp σxx

)
, are the solutions

of the second order Hamilton–Ehrenfest system with integration constants determined
from the initial condition for the function χ(~x, t, s). In general case, these functions are
given by:

Z(1)(t, s) =
1
h̄
〈〈∆ẑ〉〉, ∆2km(t, h̄) =

〈〈1
2
(
∆ẑk∆ẑm + ∆ẑm∆ẑk

)〉〉
, k, m = 1, 2n. (21)

Here, 〈〈Â〉〉 is the mean value of the operator with a Weyl symbol A(z, t) in the class J τ
h̄ :

〈〈Â〉〉(t, s) =
1

ωT

∫
D

χ∗(~x, t, s)A(ẑ, t)χ(~x, t, s)dξ, (22)
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where ξ is (n− 1)-dimensional vector of variables that complement the variable s = ωτ(~x, t)
to form the coordinate system in Rn, D is the domain of the variables ξ, and the operator ẑ
acts subject to the condition s = const .

The particular solution of (18) with auxiliary algebraic constraint (19) can be written
in terms of solutions of the variational system, which is the linear Hamiltonian system:

ȧ(t, s) = JHzz(t, s)a(t, s), (23)

where a(t, s) ∈ C2n, J =
(

0 −In×n
In×n 0

)
is unit symplectic matrix, (In×n is the unit n× n-

matrix). The function a0(t, s) = Ż(t, s) is the particular solutions of (23). Let (n− 1) linear
independent solutions of (23) be known and satisfy the conditions

{a0, ak} = 0, {a0, a∗k} = 0,
{al , ak} = 0, {a∗l , ak} = 2iδlk, l, k = 1, (n− 1).

(24)

Here, δlk is the Kronecker symbol, {·, ·} is the skew-orthogonal product.
Denote ak(t, s) =

(
~Wk(t, s), ~Zk(t, s)

)
. Then, the particular solutions of (18) reads [47]

χ0(~x, t, s)[g(t, s)] =
N√

det C(t, s)
exp

{
i
h̄

[ t∫
0

(
〈~P(τ, s), ~̇X(τ, s)〉−

−H(τ, s, h̄)[g(t, s)]
)

dτ + 〈~P(t, s), ∆~x〉+ 1
2
〈∆~x, Q(t, s)∆~x〉

]}
,

(25)

where N is the normalization coefficient, and

Q(t, s) = B(t, s)C−1(t, s),
B(t, s) =

(
~Ps(t, s), ~W1(t, s), ..., ~Wn−1(t, s)

)
∈ Cn×n,

C(t, s) =
(
~Xs(t, s), ~Z1(t, s), ..., ~Zn−1(t, s)

)
∈ Cn×n.

(26)

The conditions (16) and (24) ensures the non-degeneracy of matrix C(t, s). In order to make
sure that function (40) satisfies the auxiliary constraint (19) it is enough to check the validity
of the identity

~Ps(t, s)−Q(t, s)~Xs(t, s) = ~Ps(t, s)− B(t, s)C−1(t, s)~Xs(t, s) = 0, (27)

which results from the property

C−1(t, s)~Xs(t, s) = (1, 0, ..., 0)>, (28)

following from the definition of the matrix C(t, s).
Let us introduce first order operators of the form

âk(t, s) =
1√
2h̄
〈ak(t, s), J>∆ẑ〉,

â+k (t, s) =
1√
2h̄
〈a∗k (t, s), J>∆ẑ〉, k = 1, n− 1.

(29)

Due to (24), the following commutation relations hold:

[â0, âk] = [â0, â+k ] = [âk, âm] = [â+k , â+m ] = 0,
[âk, â+m ] = δkm, k, m = 1, n− 1.

(30)

These operators are the symmetry operators of (18) that preserve the property (19) of the so-
lutions. Thus, the operators â+k , k = 1, n− 1 are creation operators of (18), and the operators
âk, k = 0, n− 1 are annihilation operators. The function |0, t〉 (40) is the “vacuum” solution.
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Let us construct the “occupation number representation” for (18) by determination of the
following countable set of solutions:

χν(~x, t, s) =
n−1

∏
k=1

1√
νk!

(
â+k (t, s)

)νk χ0(~x, t, s). (31)

Here, ν ∈ Zn
+ is a (n − 1)-dimensional multiindex, ν = (ν1, ν2, ..., νn−1), νk = 0, ∞,

k = 1, n− 1:

ν! =
n−1

∏
k=1

νk!, ~a ν =
n−1

∏
k=1

aνk
k . (32)

In the next Section, we will construct stationary solutions of the GPE based on the solutions
(31) and (25).

3. Stationary Solutions of the GPE

In order to obtain solutions that do not depend on time, we construct time-invariant
curves. Let us consider curves determined by the following form of functions Z(t, s):

Z(t, s) = Z(t + s/ω),
Z(t + T) = Z(t),

(33)

Here, a parameter ω is the ratio between the periods by s and by t. The curve Λ1
t determined

by such the functions is mapped into itself with change of t, i.e., Λ1
t = Λ1 does not depend

on t. By the change of variables (t + s/ω)→ t and (t + r/ω)→ r, the system (12) can be
written in the following form:

~̇X(t) = V~p
(
Z(t)

)
,

~̇P(t) = −V~x
(
Z(t)

)
− κ

T

T∫
0

W~x
(
~X(t), ~X(r)

)
dr.

(34)

In this case, the equation of hypersurfaces s = ωτ(~x, t) has the form s = ωτ(~x) + t or

t + s/ω = τ(~x). (35)

Let the solutions of the second order Hamilton–Ehrenfest satisfy the relations g(t, s) =
g(t + s/ω), g(t + T) = g(t), i.e.

Z(1)(t, s) = (~P(1)(t, s), ~X(1)(t, s)) = Z(1)(t + s/ω), Z(1)(t + T) = Z(1)(t),
∆2(t, s) = ∆2(t + s/ω), ∆2(t + T) = ∆2(t).

(36)

The second order Hamilton–Ehrenfest system and the way of obtaining the functions
satisfying the relations (36) are considered in the Appendix A.

For the solutions of the (1, 1)-type Hamilton–Ehrenfest system satisfying (33), the vari-
ational system (23) reads

ȧ(t) = JHzz(t)a(t), (37)

where we put
a(t, s) = a(t + s/ω), (38)

and made the change of the variable (t + s/ω)→ t. Since Hzz(t) is the periodic function,
we can pose the Floquet problem for the variational system (37). We know at least one
solution of the Floquet problem for (37), namely a0(t) = Ż(t) (the T-periodic solution).
Let there be (n− 1) more linear independent solutions of the Floquet problem for (37) that
satisfy the following Floquet conditions:

ak(t + T) = exp[iΩkT]ak(t), Im Ωk = 0, k = 1, (n− 1) (39)
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and the skew-orthogonality condition (24). Since only linearly stable Λ1 are of interest for
us, we consider the solutions of (37) with the real Floquet exponent Ωk.

If conditions (33), (36) and (38) are met, the particular solutions (25), (31) of (18) read

χν(~x, t, s)[gν(t + s/ω)] = exp
[
− i

h̄
µνt
]
χν(~x, t + s/ω, µν)[gν(t + s/ω)], where

χ0(~x, t, µ0)[g0(t)] =
N√

det C(t)
exp

{
i
h̄

[ t∫
0

(
〈~P(r), ~̇X(r)〉−

−H(r, h̄)[g0(t)] + µ0(h̄)
)

dr + 〈~P(t), ∆~x〉+ 1
2
〈∆~x, Q(t)∆~x〉

]}
,

(40)

χν(~x, t, µν)[gν(t)] =
n−1

∏
k=1

1√
νk!

(
â+k (t)

)νk χ0(~x, t, µν)[gν(t)]. (41)

Then, considering (9) and (35), the relation (17) is as follows:

ψν(~x) = χν(~x, t, µν)[gν(t)]
∣∣∣
t=τ(~x)

. (42)

The transition (42) from the extended (n + 1)-dimensional space to the n-dimensional
configuration space can give the multi-valued function ψ(~x). However, the function ψ(~x)
is the single-valued one if the following periodicity condition holds:

χν(~x, t + T, µν)[gν(t)] = χν(~x, t, µν)[gν(t)]. (43)

In the next Section, we will study what constraints are caused by this condition.

4. Semiclassical Spectral Series

In view of the theorems given in Appendix B and relation (39), the condition (43) for
solutions (40) and (41) reads [24]

T∫
0

[
〈~P(t), ~̇X(t)〉 − H(t, h̄)[gν(t)] + µν(h̄)

]
dt = 2πh̄l + h̄T

n−1

∑
k=0

Ωk
(
νk +

1
2
)
, l ∈ Z. (44)

Let us denote H(t, h̄)[g(t)] = H(0)(Z(t)) + h̄H(1)(t)[g(t)], where

H(0)(Z(t)) = V
(
Z(t)

)
+

κ
T

T∫
0

W
(
~X(t), ~X(r)

)
dr,

H(1)(t)[g(t)] =
κ
T

T∫
0

dr
(〈

W~y
(
~X(t), ~X(r)

)
, ~X(1)(r)

〉
+

+
1

2h̄
Sp
[
Wyy

(
~X(t), ~X(r)

)
· σxx(r)

])
,

(45)

and assume
µ(h̄) = µ(0) + h̄µ(1)(h̄), (46)

where µ(1)(h̄) regularly depends on h̄.
We consider the periodic trajectories of the (1, 1)-type Hamilton–Ehrenfest system

with the period T = T(µ(0)) determined by the following integral of motion of (34):

H(0)
(

Z
(
t, T(µ(0))

))
= µ(0). (47)
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Then, the quantization condition (44) is satisfied if

T(µ(0))∫
0

〈~P
(
t, T(µ(0))

)
, ~̇X
(
t, T(µ(0))

)
〉dt = 2πh̄l,

µ
(1)
ν =

1
T

T∫
0

H(1)(t)[gν(t)]dt +
n−1

∑
k=0

Ωk
(
νk +

1
2
)
.

(48)

The first equation in (48) implicitly determines µ(0). The energy per particle for constructed
semiclassical spectral series is given by

Eν = E(0) + h̄E(1)
ν + O(h̄3/2),

E(0) =
1
T

T∫
0

dt

[
V
(
Z(t)

)
+

1
2
κ
T

T∫
0

W
(
~X(t), ~X(r)

)
dr

]
,

E(1)
ν =

1
T

T∫
0

dt

[〈
Vz
(
Z(t)

)
, Z1(t)

〉
+

1
h̄

Sp
[
Vzz
(
Z(t)

)
· ∆2(t)

]
+

+
1
2
κ
T

T∫
0

dr
(〈

W~x
(
~X(t), ~X(r)

)
, Z(1)(t)

〉
+

1
h̄

Sp
[
Wxx

(
~X(t), ~X(r)

)
· σxx(t)

]
+

+
〈

W~y
(
~X(t), ~X(r)

)
, ~X(1)(r)

〉
+

1
2h̄

Sp
[
Wyy

(
~X(t), ~X(r)

)
· σxx(r)

])]
.

(49)

Note that the quantization condition (48) describes the spectrum well in the linear theory
when l ∼ 1/h̄.

5. Example

In this section, we will illustrate the formalism of our approach by a simple but
nontrivial example that admits the analytical integration of the Hamilton–Ehrenfest system.
We consider the following two-dimensional nonlocal Gross–Pitaevskii equation:{

H(ẑ)[ψ]− µ
}

ψ(~x) =
{

V(ẑ) +κ
∫
R2

W(~x,~y)|ψ(~y)|2d~y− µ

}
ψ(~x) = 0,

V(ẑ) =
1
2
(
~̂p 2 +~x 2), W(~x,~y) = exp

[−(~x−~y)2

2γ2

]
.

(50)

Here, the units of length and energy are given by such the scales that the term V(ẑ)
corresponds to

(
− h̄2

2m ∆ + 1
2 mω2

harm~x
2) in (1) in those notations. This equation can be

treated as the nonlocal generalization of the model that describes the BEC in a radially
symmetric trap. When κ > 0, the nonlinear term in (50) corresponds to the repulsive
interaction. For the unit normalization of the wave function ψ(~x), the coefficient κ is
proportional to the number of condensate particles. Since the equation has the axial
symmetry, the (1, 1)-type Hamilton–Ehrenfest system (34) admits solutions corresponding
to the circumference in the configuration space. We look for a solution to the Equation (12)
of the form

~X(t + s/ω) = R
(

cos(ωt + s), sin(ωt + s)
)
, (51)

where the parameter s is the angle in polar coordinates. The (1, 1)-type Hamilton–Ehrenfest
system (34) for the GPE (50) reads
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
~̇X(t) = ~P(t),

~̇P(t) = −~X(t)− κ
T

T∫
0

W~x
(
~X(t), ~X(r)

)
dr, W~x(~x,~y) =

~y−~x
γ2 exp

[−(~x−~y)2

2γ2

]
.

(52)

From the first equation of the system (52) and (51), we have

~P(t) = ~̇X(t) = ωR · (− sin ωt, cos ωt).

For the function (51), the integrals in the Equations (52) are as follows:

1
T

T∫
0

Wx1(~X(t), ~X(r)) dr =
Γ
R

e−Γ ·
(

I0(Γ)− I1(Γ)
)

cos ωt,

1
T

T∫
0

Wx2(~X(t), ~X(r)) dr =
Γ
R

e−Γ ·
(

I0(Γ)− I1(Γ)
)

sin ωt,

where I0, I1 are modified Bessel functions of the first kind, Γ =
R2

γ2 . Here, we have taken

into consideration that ω =
2π

T
and have used the property

In(z) =
1

2π

π∫
−π

ez cos ϕ cos nϕdϕ, n = 0, ∞.

As a result, the (1, 1)-type Hamilton–Ehrenfest system yields the following equation for R:

ω2 = 1−κ 1
γ2 exp[−Γ] ·

(
I0(Γ)− I1(Γ)

)
. (53)

Consider the approximation R� γ. It meets the strongly local interaction. The following
asymptotic estimate holds for the modified Bessel functions:

I0(x) =
1√
2πx

ex(1 +
1

8x
+ O(1/x2)),

I1(x) =
1√
2πx

ex(1− 3
8x

+ O(1/x2)).

Then, we have
R3 =

κγ

2
√

2π(1−ω2)
(1 + O(γ4/R4)). (54)

This equation has the unique solution. Thus, the right-hand side of (53) satisfies the
solvability condition with respect to R for at least sufficiently small γ (the strongly local
interaction). Note that the Equation (53) degenerates into ω = 1 for κ = 0, i.e., the period
T depends on the chemical potential µ(0) only in the presence of the nonlinearity in (50).
The first quantization condition in (48) for the solutions (53) reads

ωl R2
l = h̄l(h̄), µ

(0)
l =

1
2

R2
l (1 + ω2

l ) +κ exp
[
−

R2
l

γ2

]
I0

(R2
l

γ2

)
, l ∈ Z.

The quantized values of µ(0) for h̄ = 0.1 and for various values of κ, γ are shown in
Figure 1. Note that the eigenvalue µ(0) linearly depends on l in the linear case (κ = 0).
The greater the positive value of κ, the greater a contribution of the nonlinearity to this
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dependence. The increase in γ leads to the decrease in the range of eigenvalues µ(0) for
the given range of quantum numbers l. For the large values of κ, there are not closed
trajectories z = Z(t).

0 5 10 15
l

0.8

1.0

1.2

1.4

1.6

1.8

μ(0)

Figure 1. The values of µ(0) for various quantum numbers l and for κ = 1, γ = 1 (black), κ = 1√
2

,

γ = 1 (red), κ = 1√
2

, γ =
√

2 (blue).

The energy per particle the zeroth order approximation with respect to h̄ is as follows:

E(0)
l =

1
2

R2
l (1 + ω2

l ) +
κ
2

exp
[
−

R2
l

γ2

]
I0

(R2
l

γ2

)
.

The Equation (15) for the function t + s/ω = τ(~x) for the curve (51) reads

−x sin(ωt + s) + y cos(ωt + s) = 0,

and it has the solution

t + s/ω = τ(~x) =
1
ω

Arg (x1 + ix2) =
ϕ

ω
. (55)

The semiclassical solutions of (50) for ν = 0 and ν = 1 are obtained in Appendices C
and D, respectively.

The solution for ν = 0 (the vacuum solution) reads

ψ0(~x) = N
(2θ)

1
4

√
ωR

exp
[
− θ(ρ− R)2

h̄
+ i · l(h̄)ϕ

]
, ~x = (ρ cos ϕ, ρ sin ϕ)>, (56)

where θ is the positive constant defined in Appendix C.
The solution for ν = 1 is given by

ψ1(~x) = N1
2(θ3R2 + 1)

θ
5
2 R2
√

h̄

(2θ)
1
4

√
ωR

(ρ− R) exp
[
− θ(ρ− R)

h̄
+ i · l(h̄)ϕ

]
. (57)

In Figures 2 and 3, the plots of |ψν(~x)|2 and Arg [ψν(~x)] are shown for ν = 0 (56) and
ν = 1 (57) when γ = 1, κ = 1, h̄ = 0.1, and l = 10 (it corresponds to ω ≈ 0.883, R ≈ 1.06,
θ ≈ 0.528).
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(a) ν = 0 (b) ν = 1

Figure 2. Density plots of |ψν(~x)|2.

(a) ν = 0 (b) ν = 1
-3

-2

-1

0

1

2

3

Figure 3. Density plots of Arg [ψν(~x)].

The phase incursion of 20π along the localization curve (Figures 2 and 3) indicates that
we have the vortex solution that corresponds to the solutions of the GPE with 10 quantum
vortices [48]. However, since we construct asymptotics only in the neighborhood of the
circumference, it do not allows us to obtain the complete information about the phase
features in the center.

6. Conclusions

We applied the method proposed in [25] to constructing the solutions of the spectral
problem for the stationary nonlocal GPE (7). The considered equation has rather general
form with the limitation of the smoothness of the kernel of the nonlocal nonlinearity and of
the symbol of the linear part. The solutions of the spectral problem were obtained by choos-
ing the special solutions of the non-stationary nonlocal GPE semiclassically concentrated
on time-invariant curves. Such solutions are found in terms of periodic solutions of the
second order Hamilton–Ehrenfest system (A2) and (A5) and the set of linear independent
skew-orthogonal Floquet solutions of the variational system (37).

The generalization of the method [25] for the stationary GPE is based on the following
ideas. The time independence of the Equation (8) operator yields the symmetry (33) with
respect to the t- and s-shift for the Equation (12) if the system (34) admits periodic solutions.
The property (33) provides to the same symmetry for the second order Hamilton–Ehrenfest
system, which leads to the Equations (A2) and (A5), and to the periodicity of coefficients
in the variational system (23), that allows us to pose the Floquet problem for (37). Then,
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the periodic solutions of (A2) yield the symmetry for the associated linear GPE (18) and
(20) that effectively reduces the number of independent variables in (18) from (n + 2)
(n variables ~x, t, and s) to (n + 1) (n variables ~x, and (t + s/ω)). This symmetry together
with the Floquet solutions of (37) allows us to obtain the particular solutions (40) and (41)
of the associated linear GPE (18) and (20) that give the solutions (42) of the stationary GPE
(7) subject to the quantization conditions (48).

The feature of our method is that we do not reduce the initial n-dimensional problem
to the one-dimensional. It means that, in general, our approach does not require the GPE
to have some special symmetries. Nevertheless, various concepts of symmetries may be
required for analytical integration of the auxiliary Equations (34), (37) and (A5) (e.g., [49]).

The solution constructed for the simplest form of the external field reminds the giant
hole solution that was studied in [50]. It is known that vortices in the BEC are quantized
so that each vortex corresponds to the phase incursion of 2π (see, e.g., [48]). The giant
hole solutions are characterized by the proximity of vortex centres so that they form one
density pit of the BEC [50] like our example. The indistinguishability of the vortex centres
is the consequence of the semiclassical approximation. The centres of vortices likely can be
identified within our approach by the consideration of a less trivial localization curve that
is an open problem.

The solutions obtained here within the semiclassical approach proposed have the
limit κ = 0 (the linear case) and decrease rapidly (exponentially) with distance from the
localization curve. In the sense of these properties, the solutions of the nonlocal GPE
correspond to ones studied in [11] for the one-dimensional local GPE. However, although
the solutions localized on a curve cannot be directly reduced to the one-dimensional
solutions found in [11], they explicitly reflect topological features of the BEC.

Note that the numerical calculations for the local and nonlocal GPEs show that, for the
delta-like interaction kernel, the solutions of these type weakly change with an increase in
the nonlocality coefficient γ, and qualitatively do not differ from the solutions of the local
GPE when γ is small. The solution is sensitive to the variation of γ when the localization
domain of the interaction potential becomes larger than the localization area of the BEC
density. It caused by the sharp decrease in the interaction energy. Therefore, the nonlocal
GPE can be treated not only as a separate problem but as the deformation of the local GPE
for using our approach.
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Appendix A. The Second Order Hamilton–Ehrenfest System

We can reduce the nonlocal GPE (8) to the parametric family of the associated linear
GPEs (18) and (20) due to the possibility of obtaining the dispersion matrix σxx and the
first order correction with respect to h̄ for the first order moment ~X(1) from the auxiliary
system of equations in the semiclassical approximation, which is called the second order
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Hamilton–Ehrenfest system. This system was derived in the general case in [25]. In this
Appendix, we consider the second order Hamilton–Ehrenfest system for the special type of
solutions (9) to (8).

The matrix of second order moments ∆2(t) accurate to O(h̄3/2) is determined by the
leading term of asymptotics since it corresponds to an operator with the estimate O(h̄).
The formula for ∆2(t) reads

∆2lk(t)[χν] =
1
2 〈〈∆ẑl∆ẑk + ∆ẑk∆ẑl〉〉 =

=
1
T

∫
D

χ∗ν(~x, t)
1
2
(∆ẑl∆ẑk + ∆ẑk∆ẑl)χν(~x, t)dξ + O(h̄3/2), (A1)

where l, k = 1, 2n, ξ is (n− 1)-dimensional vector of variables that complement the variable
t = τ(~x) to form the coordinate system in Rn, and D is the domain of the variables ξ. Here,
the operator ∆ẑ acts subject to the condition t = const . Note that the function H(t, h̄)[gν(t)]
included in the relation (40) affects only the phase of χν(~x, t) and commutes with ∆ẑ. Hence,
the matrix σxx(t) does not affect the result of the formula (A1), i.e., this formula is not
recursive. The function given by (A1) satisfy the equation

∆̇2(t) = JHzz(t)∆2(t)− ∆2(t)Hzz(t)J. (A2)

In general case, the solution of (A2) reads [25]

∆2(t) = A(t)D0 A>(t), (A3)

where A(t) is the solution of the matrix variational system

A(t) = JHzz(t)A(t), A(0) = I2n×2n, (A4)

and the matrix D0 = ∆2(t)
∣∣∣
t=0

is given by (A1). In view of (33) and (36), the system of

equations for Z(1)(t) =
(
~P(1)(t), ~X(1)(t)

)
can be written as

d
dt

(
h̄Z(1)(t)−Π(t)

)
= J∂z

(〈
Vz
(
Z(t)

)
, h̄Z(1)(t)

〉
+

+
1
2

Sp [Vzz
(
Z(t)

)
· ∆2(t)] +

κ
T

T∫
0

dr
(

h̄
〈

W~y
(
~X(t), ~X(r)

)
, ~X(1)(r)

〉
+

+
1
2

Sp
[
Wyy

(
~X(t), ~X(r)

)
· σxx(r) + Wxx

(
~X(t), ~X(r)

)
· σxx(t)

]
+

+h̄
〈

W~x
(
~X(t), ~X(r)

)
, ~X(1)(t)

〉))
+ O(h̄3/2),

Π(t) =
π0(t)
~̇X(t)2

(
~̇X(t),~0

)>
,

(A5)

where the operator ∂z = ∂
∂z =

(
∂

∂~p ; ∂
∂~x

)
acts on the arguments of the function V(z) and

W(~x, ·), and the function π0(t) is given by

π0(t)[χν] = T Re
[
− ih̄

∫
D

χ∗ν(~x, t)∂tχν(~x, t)dξ

]
. (A6)

It was shown in [25] that π̇0(t, h̄) = O(h̄3/2). Hence, in the system (A5), we can put

π0(t) = const = π0(t0) = π0. (A7)
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In view of (A7), the system (A5) is the system of linear integro-differential equations.
Note that, for every ν, the function ∆2(t)[χν] and π0[χν], which are included in (A5),
are different. As opposed to ∆2(t), the function Z(1)(t) is not determined by the leading
term of asymptotics. Thus, our formalism relies on the assumption that system (A5) for
every ν admits T-periodic solution under some initial conditions for Z(1)(t).

Appendix B. Auxiliary Theorems

Theorem A1. The matrix Q(t) given by (26), (24) and (37) is T-periodic, i.e.

Q(t + T) = Q(t). (A8)

Proof. In view of (26), (24) can be written as

C(t + T) = C(t) ·Λ(T), Λ(T) = diag
(
1, exp{iΩ1T}, exp{iΩ2T}, ..., exp{iΩn−1T}

)
. (A9)

This relation is also valid for B(t)

B(t + T) = B(t) ·Λ(T). (A10)

Then,

Q(t + T) = B(t + T)C−1(t + T) = B(t)Λ(T)Λ−1(T)C−1(t) = B(t)C−1(t) = Q(t). (A11)

Theorem A2. For the matrix C(t) given by (26), (24) and (37), the following relation holds:

√
det C−1(t + T) = exp

[
− iT

2

n−1

∑
k=0

Ωk

]√
det C−1(t) (A12)

Proof. The statement of this theorem directly follows from (A9).

Appendix C. The Solution of (50) for ν = 0

The variational system for the function a(t) =
(
~W(t), ~Z(t)

)> in view of (53) takes
the form  ~̇Z(t) = ~W(t),

~̇W(t) = −ω2~Z(t)−κ Γ
R2 e−Γ · D(t) · ~Z(t),

D̃(t) =
1
2

Γ
[
I0(Γ)− 2I1(Γ) + I2(Γ)

]
·
(
I2×2 + D(t)

)
,

D(t) =
(

cos 2ωt sin 2ωt
sin 2ωt − cos 2ωt

)
.

(A13)

For (A13), we seek the Floquet solutions satisfying (24).
The system (A13) can be written as{

~W(t) = ~̇Z(t),
~̈Z(t) = g~Z(t) + κ · D(t) · ~Z(t).

where g = κ − ω2, κ = −κ Γ
2γ2 e−Γ(I0(Γ)− 2I1(Γ) + I2(Γ)

)
are scalar coefficients. Let us

make the following change of variables corresponding to the rotation of the vector ~Z(t) by
the angle ωt:

~Z(t) = M(ωt) · ~U(t), M(t) =
(

cos t − sin t
sin t cos t

)
.
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Then, the variational system reads
~W(t) = ω ·M

(
ωt +

π

2

)
· ~U(t) + M(ωt) · ~̇U(t),(

D̂2 − (g + κ + ω2) −2ωD̂
2ωD̂ D̂2 − (g− κ + ω2)

)
~U(t) = 0,

where D̂ =
∂

∂t
. We seek ~U(t) in the form

~U(t) =
(

2ωD̂
D̂2 − (g + κ + ω2)

)
u(t).

In view of g = κ −ω2, this relation can be written as

~U(t) =
(

2ωD̂
D̂2 − 2κ

)
u(t).

The characteristic equation

(D2 − (g + κ + ω2))(D2 − (g− κ + ω2)) + 4ω2D2 =

= D4 + 2(ω2 − g)D2 + g2 + 2gω2 + ω4 − κ2 = 0

has the roots

D = ±
√

g−ω2 ±
√

κ2 − 4ω2g.

Substitution of g = κ −ω2 into this relation yields

D1,2 = 0, D3,4 = ±
√

2κ − 4ω2.

It is clear that we have only aperiodic solutions for κ ≥ 2ω2, which do not satisfy the

Floquet condition (24). Hence, we consider the case when κ < 2ω2. Denote θ =

√
ω2 − κ

2
.

Then, the function u(t) takes the form

u(t) = C1 + C2t + C3e−2iθt + C4e2iθt.

Substitution of this relation into the formula for ~U(t) yields the following fundamental
system of solutions:

~U1(t) =
(

0
1

)
, ~U2(t) =

(
ω
−κt

)
, ~U3(t) =

(
iθe−2iθt

ωe−2iθt

)
, ~U4(t) =

(
iθe2iθt

−ωe2iθt

)
For ~Z(t), we have

~Z1(t) =
(
− sin ωt
cos ωt

)
, ~Z2(t) =

(
ω cos ωt + κt sin ωt
ω sin ωt− κt cos ωt

)
,

~Z3(t) = e−2iθt
(

iθ cos ωt−ω sin ωt
iθ sin ωt + ω cos ωt

)
, ~Z4(t) = e2iθt

(
iθ cos ωt + ω sin ωt
iθ sin ωt−ω cos ωt

)
.

The first solution corresponds to the already known solution a0(t) = Ż(t). The second
solutions does not satisfy the Floquet condition. The third and forth solutions are related
by
(
~Z3(t)

)∗
= −~Z4(t). For ~W3(t), ~W4(t), we have:

~W4(t) = ~̇Z4(t) = e2iθt
(
(ω2 − 2θ2) cos ωt + iθω sin ωt
(ω2 − 2θ2) sin ωt− iθω cos ωt

)
, ~W3(t) = −

(
~W4(t)

)∗.
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It is easy to see that{
Ż(t), ã4(t)

}
= 0, ã4(t) =

(
~W4(t), ~Z4(t)

)>,

and {
ã∗4(t), ã4(t)

}
= 4iθ3.

Thus, taking into account the normalization condition {a1(t), a∗1(t)} = 2i, we have the solution

a1(t) =
1√
2θ3

e2iθt


(ω2 − 2θ2) cos ωt + iθω sin ωt
(ω2 − 2θ2) sin ωt− iθω cos ωt

iθ cos ωt + ω sin ωt
iθ sin ωt−ω cos ωt


with the Floquet exponent Ω = 2θ = 2

√
ω2 − κ/2. Substitution of a0(t) and a1(t) into

(26) yields

det C(t) = −ie2iθt ωR√
2θ

,

Re Q(t) = ω

(
sin 2ωt − cos 2ωt
− cos 2ωt − sin 2ωt

)
, Im Q(t) = θ

(
2 cos2 ωt sin 2ωt
sin 2ωt 2 sin2 ωt

)
.

and

|χ0(~x, t)|2 = N2
√

2θ

ωR
exp

{
− 1

h̄

〈
∆~x, Im Q(t)∆~x

〉}
.

The coefficient N is obtained from the unit normalization condition:∫
R2

|χ0(~x, τ(~x)|2d~x = 1, τ(~x) =
1
ω

Arg (x + iy).

N−2 =
2π
√

πh̄
ω2 + O(h̄∞).

Then, we have

|χ0(~x, t)|2 =
ω
√

θ

Rπ
√

2πh̄
exp

{
− 1

h̄

〈
∆~x, Im Q(t)∆~x

〉}
.

Note that Vzzz(z, t) = 0 in our example. Hence, it is not necessary to obtain the whole
matrix ∆2(t) for the system (A5) but it is enough to obtain only σxx(t), which is given by

σxx(t) = T
∞∫

0

r(r− R)2(I2×2 + D(t)
) ω

√
θ

2Rπ
√

2πh̄
·

· exp
{
− θ(r− R)2

h̄R2

〈
~X(t),

(
I2×2 + D(t)

)
~X(t)

〉}
dr =

= T
(
I2×2 + D(t)

) 2ω
√

θ

Rπ
√

2πh̄

∞∫
0

r(r− R)2 exp
{
− 2θ

h̄
(r− R)2

}
dr =

=
h̄

4
√

2θωR

(
I2×2 + D(t)

)
.

Substituting (40) into (A6), the formula for π0 is as follows:

π0 =
〈〈
− h̄H(1)(t)− 〈Re Q(t)~̇X(t), ∆~x〉+ 1

2
〈∆~x, Re Q̇(t), ∆~X〉

〉〉
.
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In view of (27), we have

π0 = −h̄H(1)(t)− 〈~̇P(t), ~X(1)(t)〉+ 1
2

Sp
[

Re Q̇(t)σxx(t)
]
.

Substitution of (45) into this formula yields

π0 = −κ
T

T∫
0

dr
(

h̄
〈

W~y
(
~X(t), ~X(r)

)
, ~X(1)(r)

〉
+

1
2

Sp
[
Wyy

(
~X(t), ~X(r)

)
· σxx(r)

])
−

−〈~̇P(t), ~X(1)(t)〉+ 1
2

Sp
[

Re Q̇(t)σxx(t)
]
.

(A14)

The identity (A14) is the integral of motion of the system (A5) for ν = 0. The system (A5)
for the coordinate part of Z(1)(t) yields

~̇X(1)(t) = ~P(1)(t),

For the pulse part Z(1)(t), we have

~̇P(1)(t) +
π0

h̄R2
~X(t) = −~X(1)(t)+

+
κ

Tγ2 exp[−Γ]
T∫

0

dr exp[Γ cos(ω(r− t))]
[
In×n −

1
γ2

(
~X(t)⊗ ~X(t)

)]
~X(1)(r)+

+
κ

8
√

2
√

θωγ2R3
exp[−Γ]

[
(−2Γ + 4Γ2)I0(Γ)− (1 + 4Γ2)I1(Γ)

]
~X(t)−

− κ
γ2 exp[−Γ]

[
ΓI0(Γ)− (1 + Γ)I1(Γ)

]
·
(
I2×2 + D(t)

)
· ~X(1)(t)+

+
κ

2γ2 exp[−Γ]
[

I0(Γ)− I1(Γ)
]
~X(1)(t).

(A15)

The integral of the system (A14) can be written as

π0

h̄
=

κ
Tγ2 exp[−Γ]

T∫
0

dr exp[Γ cos(ω(r− t))]〈
(
~X(r)− ~X(t)

)
, ~X(1)(r)〉+

+ω2〈~X(t), ~X(1)(t)〉+ ω

8
√

2
√

θR
−

− κ
16
√

2
√

θωRγ2
exp[−Γ]

(
(1 + 2Γ)I1(Γ)− (2Γ− 1)I0(Γ)

)
.

(A16)

We seek the solution of (A15) in the form

~X(1)(t) = M(ωt)~U(1)(t), ~U(1) =

(
U(1)

1

U(1)
2

)
.

Then, for (A16), we get

π0
h̄

=
κ
√

Γ
Tγ

exp[−Γ]
T∫

0

dr exp[Γ cos(ω(r− t))]〈~Y(t, r), ~U(1)(r)〉+

+ω2RU(1)
1 (t) +

ω

8
√

2
√

θR
− κ

16
√

2
√

θωRγ2
exp[−Γ]

(
(1 + 2Γ)I1(Γ)− (2Γ− 1)I0(Γ)

)
,

~Y(t, r) =

(
cos(ω(r− t))− 1

sin(ω(r− t))

)
.

(A17)
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The constant vector ~U(1)(t) = ~U(1) satisfies (A17). Let us show that it also satisfies the
Equation (A15). The integral (A17) with ~U(1)(t) = ~U(1) is as follows:

π0

h̄
=

κ
√

Γ
γ

exp[−Γ](I1(Γ)− I0(Γ))U
(1)
1 + ω2RU(1)

1 +

+
ω

8
√

2
√

θR
− κ

16
√

2
√

θωRγ2
exp[−Γ]

(
(1 + 2Γ)I1(Γ)− (2Γ− 1)I0(Γ)

)
.

(A18)

Substituting (A18) into (A15), taking into consideration ~̇P(1)(t) = ~̈X(1)(t) = −M(ωt)~U(1)

and multiplying the equation by the matrix M(−ωt) on the left, we get

π0

h̄R

(
1
0

)
=

=
κ

2γ2 exp[−Γ]
(

I2(Γ)− I0(Γ)− 4I1(Γ) 0
0 I0(Γ) + I2(Γ)

)
~U(1)+

+
κ

γ3
√

Γ
1

8
√

2
√

θωR
exp[−Γ]

(
(−2Γ + 4Γ2)I0(Γ)− (1 + 4Γ2)I1(Γ)

)(1
0

)
−

− κ
γ2 exp[−Γ](ΓI0(Γ)− (1 + Γ)I1(Γ))

(
1 0
0 0

)
~U(1)+

+
κ

2γ2 exp[−Γ](I0(Γ)− I1(Γ))~U(1).

(A19)

The Equation (A19) yields U(1)
2 = 0 and U(1)

1 given by

U(1)
1 =

− ω

8
√

2
√

θR2
+

κ
γ2

exp[−Γ]
16
√

2
√

θωR2

(
(1− 6Γ + 8Γ2)I0(Γ) + (−1 + 2Γ− 8Γ2)I1(Γ)

)
ω2 +

κ
2γ2 exp[−Γ]

(
(−2 + 2Γ)I0(Γ) + (5− 2Γ)I1(Γ)− I2(Γ)

) .

Finally, we obtain

~X(1)(t) =
U(1)

R
· ~X(t), ~P(1)(t) = ~U(1)R · ~P(t).

For H(1)(t), we have

H(1)(t) =
κ exp[−Γ]

γ2

[
RU(1)

(
I0(Γ)− I1(Γ)

)
+

+
1

4
√

2θωR

(
(1− 2Γ)I0(Γ) + (1 + 2Γ)I1(Γ)

)]
.

(A20)

Since H(1)(t) = H(1) does not depend on t, it does not affect the phase of the wave function
in the example considered. In view of (47) and (48), the function χ0 is as follows:

χ0(~x, t) =
N0√

det C(t)
exp

{
i
h̄

[
ω2R2t + θt + 〈~P(t), ∆~x〉+ 1

2
〈∆~x, Q(t)∆~x〉

]}
,

Then, ψ0(~x) = χ0(~x, t)
∣∣
t=ϕ/ω

yields

ψ0(~x) = N
(2θ)

1
4

√
ωR

exp
[
− θ(ρ− R)2

h̄
+ i · l(h̄)ϕ

]
, ~x = (ρ cos ϕ, ρ sin ϕ)>. (A21)
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Appendix D. The Solution of (50) for ν = 1

For ν 6= 0, the function χν(~x, t) of (41) can be written as

χν(~x, t) =
N1 · Hµ(ν)

(
~ξ(t), t

)√
det C(t)

×

× exp

{
i
h̄

[
ω2R2t + 2θ(

1
2
+ ν)t + 〈~P(t), ∆~x〉+ 1

2
〈∆~x, Q(t)∆~x〉

]}
,

~ξ(t) = −i
√

2
h̄
(
C∗(t)

)−1∆~x,

(A22)

where µ(ν) = (0, ν) is n-dimensional multiindex, Hµ(ν) are multidimensional Hermitian

polynomials that are generated by the matrix W(t) = −C+(t)
(
C−1(t)

)> and are given by

Hµ(ν)(~ξ, t) =
(−1)ν

√
ν!

( ∂

∂~ξ
−W(t)~ξ

)µ(ν)
· 1. (A23)

Here,

W(t) =

 1 0√
2

R
√

θ3
e−2iθt e−4iθt

.

For ν = 1, we have

H(0,1)(~ξ, t) =
(

W(t)~ξ
)(0,1)

=
2e−2iθt

θ5/2R3ω
√

h̄

〈(
ω(θ3R2 + 1)~X(t)− i

θ

ω
~P(t)

)
, ∆~x

〉
.

Substitution of this relation into (A1) yields

σxx(t)[χ1] =
3h̄

2
√

2θωR

(
cos2 ωt cos ωt sin ωt

cos ωt sin ωt sin2 ωt

)
.

The integral π0[χν] is given by

π0[χ1] = −
κ
T

T∫
0

dr
(

h̄
〈

W~y
(
~X(t), ~X(r)

)
, ~X(1)(r)[χ1]

〉
+

+
1
2

Sp
[
Wyy

(
~X(t), ~X(r)

)
· σxx(r)[χ1]

])
− 〈~̇P(t), ~X(1)(t)[χ1]〉+

+
1
2

Sp
[

Re Q̇(t)σxx(t)[χ1]
]
−

h̄θ
(
2θ3R3 + R + 1

)
θ3R3 + R

(A24)

or

π0[χ1]

h̄
=

κ
Tγ2 exp[−Γ]

T∫
0

dr exp[Γ cos(ω(r− t))]〈
(
~X(r)− ~X(t)

)
, ~X(1)(r)[χ1]〉−

−
θ
(
2θ3R3 + R + 1

)
θ3R3 + R

+ ω2〈~X(t), ~X(1)(t)[χ1]〉+
3ω

8
√

2
√

θR
−

− 3κ
16
√

2
√

θωRγ2
exp[−Γ]

(
(1 + 2Γ)I1(Γ)− (2Γ− 1)I0(Γ)

)
.

Then, ~X(1)(t)[χ1] = U(1)
1 [χ1]R · ~X(t) where
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U(1)
1 [χ1] = 3U(1)

1 [χ0]+

+
θ(2θ3R3 + R + 1)(

θ3R4 + R2
)(

ω2 +
κ

2γ2 exp[−Γ]
[
(−2 + 2Γ)I0(Γ) + (5− 2Γ)I1(Γ)− I2(Γ)

]) .

The relation (A20) for ν = 1 can be rearranged in the form

H(1)(t)[χν] =
κ exp[−Γ]

γ2

[
RU(1)[χν]

(
I0(Γ)− I1(Γ)

)
+

+
3

4
√

2θωR

(
(1− 2Γ)I0(Γ) + (1 + 2Γ)I1(Γ)

)]
.

(A25)

Periodic solutions of the second order Hamilton–Ehrenfest system for other ν can be
obtained in the same way. For ν = 1, the function ψ1(~x) = χ1(~x, t)

∣∣
t=ϕ/ω

is as follows:

ψ1(~x) = N1
2(θ3R2 + 1)

θ
5
2 R2
√

h̄

(2θ)
1
4

√
ωR

(ρ− R) exp
[
− θ(ρ− R)

h̄
+ i · l(h̄)ϕ

]
,

~x = (ρ cos ϕ, ρ sin ϕ)>.
(A26)
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