
symmetryS S

Article

A New Feature Selection Method Based on a Self-Variant
Genetic Algorithm Applied to Android Malware Detection

Le Wang 1, Yuelin Gao 2,* , Shanshan Gao 1 and Xin Yong 1

����������
�������

Citation: Wang, L.; Gao, Y.; Gao, S.;

Yong, X. A New Feature Selection

Method Based on a Self-Variant

Genetic Algorithm Applied to

Android Malware Detection.

Symmetry 2021, 13, 1290. https://

doi.org/10.3390/sym13071290

Academic Editors: Kóczy T. László

and István A. Harmati

Received: 10 June 2021

Accepted: 14 July 2021

Published: 18 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Northern Minzu University, Yinchuan 750021, China;
sdnywll@163.com (L.W.); 13008030953@163.com (S.G.); yongxin_Azure@163.com (X.Y.)

2 Ningxia Province Key Laboratory of Intelligent Information and Data Processing, North Minzu University,
Yinchuan 750021, China

* Correspondence: gaoyuelin@263.net; Tel.: +86-139-9510-0900

Abstract: In solving classification problems in the field of machine learning and pattern recognition,
the pre-processing of data is particularly important. The processing of high-dimensional feature
datasets increases the time and space complexity of computer processing and reduces the accuracy of
classification models. Hence, the proposal of a good feature selection method is essential. This paper
presents a new algorithm for solving feature selection, retaining the selection and mutation operators
from traditional genetic algorithms. On the one hand, the global search capability of the algorithm is
ensured by changing the population size, on the other hand, finding the optimal mutation probability
for solving the feature selection problem based on different population sizes. During the iteration
of the algorithm, the population size does not change, no matter how many transformations are
made, and is the same as the initialized population size; this spatial invariance is physically defined
as symmetry. The proposed method is compared with other algorithms and validated on different
datasets. The experimental results show good performance of the algorithm, in addition to which we
apply the algorithm to a practical Android software classification problem and the results also show
the superiority of the algorithm.

Keywords: feature selection; machine learning; asexual; genetic algorithm; android malicious
application detection

1. Introduction

Data classification is one of the tasks of data mining in the field of machine learning
and in the framework of pattern recognition [1]; the quality of the data has a significant
impact on the performance of these data mining methods. When training machine learning
models, irrelevant, redundant, and noisy data have an enormous impact on the time and
the spatial complexity of the machine and can also affect the algorithm’s performance.
Therefore, pre-processing techniques for data are necessary [2]. In machine learning
classification tasks, the dataset’s size determines the number of features in the dataset, but
not all features are helpful for training classifier models, and high-dimensional features
can instead lead to dimensionality disasters. Data dimensionality reduction methods
include feature extraction(FE), where features are transformed into a smaller dimension,
and feature selection(FS) [3], where features are selected from the complete set of features
to build a subset of features without transformation [4]. The method chosen in this paper
is feature selection, the aim of which is to identify the most distinct subset of features in the
whole feature set and thus provide a suitable recognition rate for a particular classifier [5].

Traditional feature selection methods can be divided into three main categories: filter,
wrapper and embedded algorithms. In filter algorithm, the feature selection phase is
carried out independently of the training learner phase. The method uses traditional
information theory, chi-square tests, mutual information and correlation coefficients to
make a rough selection of features. For example, the Mutual Information based Feature

Symmetry 2021, 13, 1290. https://doi.org/10.3390/sym13071290 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2021-2097
https://doi.org/10.3390/sym13071290
https://doi.org/10.3390/sym13071290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13071290
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13071290?type=check_update&version=2

Symmetry 2021, 13, 1290 2 of 21

Selection method [6,7] and the Conditional Mutual Information Maximization [8] etc. These
methods propose to pre-process the feature set and filter out the least relevant features
to reduce the feature set’s dimensionality, but due to the complexity of the formulae and
the high time, complexity can only be used for smaller data sets and pre-classification.
Wrapper algorithm differ from filter algorithm in that the performance results of the learner
determine the selection of a subset of features. Embedded algorithm complete feature
selection and learner training in the same optimization process. Wrapper algorithms select
features mostly in conjunction with machine learning classifiers and intelligent algorithms.
In this paper, the meta-heuristic algorithm decides whether a feature in the full set of
features is added to the feature subset, and the performance of the algorithm determines
the number of features selected, so the use of the algorithm to determine feature selection
belongs to the wrapper algorithm.

Assuming that there are n features in the feature set, the search space for feature
selection is 2n . Feature selection being an NP-hard problem, traversing it to get all possible
solutions is impossible in some cases [9]. Meta-heuristics have the advantages of high
efficiency, superiority, and robustness compared to the traditional greedy algorithm hill-
climbing algorithm and the ability to obtain a solution or several near-optimal solutions
within a sufficient space and time scale, and are therefore increasingly used by researchers
to solve complex optimization problems. As part of the meta-heuristic algorithm, the
evolutionary algorithm is inspired by the phenomenon of biological evolution in nature.
Dr. Holland first proposed the genetic algorithm in 1975 [10], which follows Darwin’s
’survival of the fittest, natural selection’ law of evolution, whereby populations are renewed
by three leading evolutionary operators: selection, crossover, and mutation. However, in
nature, species reproduce not only sexually in pairs but also in a few species that have only
one parent and do not require gametes. The brood itself does not combine with sex cells
to produce offspring such as lower multicellular animals, unicellular plants, algae, ferns,
fungi, and bacteria. These species are characterized by a small number of species and a
single community that can reproduce in a short period. However, this is both an advantage
and a disadvantage; when there is a sudden change in the environment, the community’s
organisms die off in large numbers, indicating that the populations produced by asexual
reproduction are not well adapted. In 2009, J Cantó et al. [11] proposed an asexual
genetic algorithm for solving complex mathematical function maximization problems with
two variables and optimizing the parameters of the chi-square test in model fitting. The
algorithm does not require crossover operators to generate offspring, and offspring are
renewed like the way bacterial cells are divided by a single parent randomly selecting
different points within a narrow domain, and both parents are always retained if they are
more suitable than the offspring. Experimental results showed that this codeless asexual
genetic approach is more efficient than traditional genetic algorithms in solving continuous
optimization problems, and it is also computationally cheap and requires fewer generations
to reach a global solution. In 2010, Alireza Farasat et al. [12] built mathematical models
based on the budding mechanism of asexual reproduction to solve optimization problems
and decision problems. The experimental results proved the convergence of the algorithm.
They verified that the asexual reproduction algorithm has excellent advantages in solving
real-time decision problems by exploring the search space without limiting the convergence
time and has superior performance compared to these swarm intelligence algorithms of
PSO. In 2013, Anabela Simões et al. [13] proposed an asexual permutation genetic algorithm
inspired by the DNA sequence structure discovered by Barbara McClintock in the 1950s.
Unlike the simple permutation of a sexual mechanism, the asexual permutation genetic
algorithm has single parents, while transposons and insertion points are made on a single
individual. The genetic algorithm is compared to genetic algorithms with single, multiple,
and random crossover operators and finds that it always finds better optima than other
sexual reproduction algorithms for both large and small populations. In 2015, Mehrdad
Amirghasemi et al. [14] proposed an effective asexual genetic algorithm to solve JSP
problems, which combined asexual genetics, an elite pool, and tabu search, with the biased

Symmetry 2021, 13, 1290 3 of 21

mutation to increase the diversity of the search space and update to the elite pool used to
balance exploration and exploitation. The results also demonstrated the effectiveness and
efficiency of using this asexual genetic algorithm in solving JSP problems.

The advantages of asexual genetic algorithms in solving optimization problems in
different domains have been reviewed above. The genetic algorithm itself, a discrete coding
approach, is naturally well equipped to solve feature selection problems, and there is a
dearth of research on single asexual genetic algorithms for FS problems, so the following
analysis is given in this paper to demonstrate that the algorithm performs equally well in
solving FS problems. The main contributions of this paper are concluded as follows:

(1) The effect of population size on the genetic algorithm was verified.
(2) There is no crossover operator in the asexual genetic algorithm, so this paper verifies

the effect of different mutation probabilities on the algorithm foe feature selection.
(3) The performance of the improved genetic algorithm is demonstrated in Android

malicious application detection.
(4) The improved genetic algorithm is implemented for feature selection.

The rest of this paper is organized as follows. Section 2 introduces background and
method. Section 3 proposes the algorithm of this paper. Section 4 applies the algorithm to
the Android malware detection problem. Section 5 demonstrates the effectiveness of the
algorithm proposed in this paper through experiments. Section 6 summarizes the article.

2. Background and Method
2.1. Feature Selection

The feature selection problem differs from traditional optimization problems. It is
identified as a discrete binary problem where the search space is an n-dimensional lattice
space of Boolean type, and the solution to feature selection is to display and update at each
corner of the hypercube [15].

Xi = (xi1, xi2,xiD), xij ∈ {0, 1} (1)

where xij = 1 represents the j-th feature is selected into the i-th feature subset xi, whereas
xij = 0 means this feature is not selected.

Thus, the feature selection problem can be formulated as the following optimiza-
tion problem: 

max f (X)

s.t.X = (x1, x2,xD), xi ∈ {0, 1}
1 6 {Xi} 6 D

(2)

where {X} represents the set of selected feature subsets, i.e., a subset of features. f (X) de-
notes the fitness of the selected feature subset X, which is the accuracy of the classification.

2.2. Genetic Algorithm

The purpose of feature selection is to select some of the most compelling features
from the original features in order to reduce the dimensionality of the dataset. A subset
of the selected features will result in higher classification accuracy [9]. As a class of
optimization problems, many researchers have applied evolutionary algorithms and swarm
intelligence optimization algorithms to this. The particle swarm optimization algorithm
is a collaborative group-based search algorithm that simulates the foraging behavior of
a flock of birds, using the individual extremum pbest and the group extremum gbest to
find the algorithmic optimum (solution) [16,17]. The artificial bee colony algorithm is an
optimization algorithm based on the honey bee colony’s honey harvesting behavior [18].
The grey wolf optimization algorithm, inspired by the predatory behavior of grey wolf
packs, finds optimal solutions through collaboration between wolf packs [19,20]. The
pigeon flocking algorithm simulates pigeon homing behavior with minimal adjustment
parameters and is easy to implement [21]. Genetic algorithm, one of the most classical

Symmetry 2021, 13, 1290 4 of 21

evolutionary algorithms, is a learning method inspired by biology. It is a random search
and optimization algorithm. Genetic algorithms balance the exploration and exploitation of
algorithms through three major evolutionary operators: selection, crossover and mutation,
preventing premature maturation of the algorithm and thus finding the optimal solution.
It has now been widely used in various fields, such as circuit wiring problems, task
scheduling, and machine learning classification tasks. For example, in 1998 Jing-Wein
Wang et al. [22] proposed the use of a genetic algorithm as an evaluation function for
feature selection, which largely improved the performance of the selected subset of features.
The algorithm searches a huge candidate object space and finds the best performing objects
according to the fitness function. Individuals with good fitness will be retained during
the iteration. Flawed individuals are eliminated or selectively mutated to enter the next
iteration. As the iterative process increases, the initial population is updated until the
termination conditions are satisfied, or a certain threshold is reached to obtain the final
individuals. The flow of the above algorithm to solve the FS problem is shown in Figure 1.

Figure 1. Intelligence algorithm optimization model.

The standard genetic algorithm simulates the evolution process of natural organisms,
and the selection operator embodies the environmental selection process of “natural selec-
tion, the survival of the fittest” in the evolution of organisms. The crossover and mutation
operators play a key role in population renewal during the iterative process. The crossover
operator simulates the mating process of individuals in nature, thus increasing the popu-
lation diversity and theoretically improving the global search capability of the algorithm;
unlike the crossover operator, the mutation operator simulates the genetic mutation of
individuals in the population by mutating a gene position of an individual (chromosome)
from the individual itself, thus improving the local search capability of the algorithm.

2.3. Random Forest Algorithm

The random forest algorithm is part of a large branch of machine learning currently
known as ensemble learning. As the name suggests, the algorithm is derived from the
decision tree algorithm, where a number of weak classifiers make predictions and then
the final strong classifier gives the result. The more correlated any two trees in the forest
are, the greater the error rate, while the stronger the classification ability of each tree, the

Symmetry 2021, 13, 1290 5 of 21

lower the error rate of the whole forest, i.e., the random forest integrates the advantages of
each tree’s classification result. The classifiers before the fourth section all use the random
forest algorithm.

3. The Proposed Self-Variant Genetic Algorithm (SV-GA)
3.1. Theoretical Basis

In general, the feature selection problem is encoded in binary, and even if the feature
values correspond to real values, they are mapped to binary space when solving the
problem.To theoretically demonstrate the redundancy of the crossover operator, we first
simulated the process of chromosome change in the algorithm.

A population M(t) with n chromosomes is randomly generated, and each chromo-
some is composed of a string p of size N. Each position i in the string represents the locus
of each chromosome, p_i = 1 means that the feature is selected, p_i = 0 means that the
feature is not selected, that is, the current gene position is assigned a value of 1, and the
number of 1 in the chromosome gene position represents the number of features carried by
the current chromosome. The chromosome initialization code is shown in Figure 2.

Figure 2. Feature encoding method.

To better understand the advantages of asexual genetic algorithms in feature selection,
this paper proposes to analyze its principles by fictionalizing different individuals.

Individual 1 with random 0–1 sequence, as shown in Figure 3:

Figure 3. Individual 1.

Individual 2 with random 0–1 sequence, as shown in Figure 4:

Figure 4. Individual 2.

Individual 3 with random 0–1 sequence, as shown in Figure 5:

Figure 5. Individual 3.

In a standard genetic algorithm, two different or identical chromosomes can be crossed
by a single point to obtain a new and different chromosome from the parent, that is,
randomly find a cut, exchange its head or tail to obtain a new individual, and reproduce

Symmetry 2021, 13, 1290 6 of 21

the process biological reproduction. The single-point crossing process of the above two
benign individuals is as follows:

The single point of intersection of individual 1 and individual 2 is shown in Figure 6:

Figure 6. Schematic diagram of single point crossing.

Get new offspring individuals 3, 4, as shown in Figure 7:

Figure 7. Crossingto produce new individuals.

The Individual 2 mutates to obtain the Individual 3 situation, as shown in Figure 8:

Figure 8. Schematic representation of the changes in individuals after mutation.

From the above crossover variation process, it is clear that the paternal chromosome
crossover may only change the value of one gene locus, with no change in the rest of
the gene locus other than the crossover point, and the same is true for two-point and
multi-point crossovers, where only the value of the gene near the crossover point changes.

3.2. Fitness Function

In machine learning classification tasks, the accuracy of the classification is usually
used as a fitness function. Still, for feature selection problems, the fitness function is
determined not only by considering the classification accuracy but also by taking into
account the number of feature subsets. When different algorithms have the same accuracy,
it is better to choose the algorithm with fewer features. The fitness function is defined
as follows:

Fitness(Xi) = f (Li), f (Li) =
correctly predicted samples

total number o f samples
(3)

Fitness = α f (Li) + β
n
N

(4)

where Xi and Li are the i-th individual and corresponding feature subset, f (Li) is the
accuracy of the random forest classifier, n is the number of features selected, and N is the
number of features in the dataset, where α usually takes 0.99 and β takes 0.01 as know
in [23].

3.3. The Algorithm Flow of the SV-GA

According to the above description, we can find that in solving the feature selection
problem, what affects the accuracy of the classifier is the number of selected feature bits

Symmetry 2021, 13, 1290 7 of 21

in the individual, i.e., the number of sign bits of 1. Then the corresponding ones in the
genetic algorithm are the gene bits of each chromosome. When the chromosome undergoes
mutation, each gene bit can be operated by changing 0 to 1 and 1 to 0. At this point we can
roughly assume that a single mutation operation can satisfy the needs of the features when
performing classification. The steps of its application in feature selection are as follows:

Step1: Initialize the population N, t is the number of current iterations, and the total
number of features is P.

Step2: Calculate the fitness value of individuals in the current population, and obtain
the fitness value F(n) of each chromosome after n calculations, that is, obtain the fitness
value of each individual with different characteristics.

Step3: Selection. In the SV-GA algorithm, the selection method is tournament selection,
and the number of individuals selected each time is 3, and the tournament selection method
is replacement sampling. Three individuals are randomly selected from the population to
calculate their fitness, and the better individual directly enters the next generation.

Step4: Mutation. According to a certain mutation probability, a mutation operation is
performed on each chromosome in the population, and the mutated individuals differ from
those after the selection operation and carry different characteristics, and these individuals
with different characteristics constitute a new population.

Step5: Algorithm termination conditions. If it satisfies the artificially set number of
iterations, the algorithm terminates, set the number of iterations then output the feature
subset selected by the algorithm and skip to Step6 at the end of the iteration. If not, then
execute Step2.

Step6: Output results. The individual with the highest fitness value is output and the
feature with a gene position of 1.

3.4. Computational Complexity Analysis

In SV-GA, the factors affecting the time complexity of the algorithm are not only the
population size N, but also the number of iterations t. The feature selection problem, as a
class of optimization problems, aims to improve the classification accuracy by reducing
the number of features for training, and the dimensionality D of the features in the sample
set also affects the efficiency of the algorithm in the process of algorithm optimization. In
summary, the time complexity of the algorithm can be summarized as O(t ∗ N ∗ D), and
the number of individuals in the population and the feature dimension are the main factors
affecting the computational complexity.

3.5. Numerical Analysis

The SV-GA changes the iterative process of the traditional genetic algorithm, and
increases the diversity of individuals in the population by changing the population size.
The impact of mutation operations on the performance of the algorithm should not be
underestimated. In this section we first verified the effect of different mutation probabilities
on the algorithm, comparing the performance of GA and SV-GA, and then we verified
the effect of different population sizes on the algorithm. All results are mean results from
10 independent runs with 100 iterations.

3.5.1. Datasets

To verify the effectiveness and applicability of the algorithms, this paper uses SV-GA
to test on different UCI standard binary classification test datasets [24]. Table 1 provides
the name of the dataset, the number of samples contained in the dataset, the total number
of features, and the number of features selected by different algorithms.

Symmetry 2021, 13, 1290 8 of 21

Table 1. Dataset Properties.

No. Dataset Number of Samples Number of Features

D1 SPECT Heart 267 22
D2 CMC 962 9
D3 Sonar 207 60
D4 Credit6000 6000 65
D5 Heart-statlog 270 13
D6 Spambase 4600 57

3.5.2. Results with Different Mutation Rate

In the meta-heuristic algorithm, the search operator will deal with the overall selection
pressure, convergence problem, randomization, and diversity, which are all dedicated
to exploration and exploitation [25]. Based on the characteristics of the feature selection
problem, we retain the selection and mutation operators in the SV-GA algorithm. On the
one hand, we change the number of initial population sizes to increase the diversity of
the population, i.e., to improve the global search capability of the algorithm, and on the
other hand, we experimentally verify the effect of the mutation rate on the accuracy while
keeping the population size constant. This subsection is to verify the effect of mutation
probabilities on the performance of SV-GA.

To ensure that the variables are unique, the population size for the results of the
iterative curve shown in Figure 9 is set to 30 (pop = 30). The results on the six datasets show
that the algorithm performs poorly when the mutation rate is set to 0.01, 0.02 and 0.6. The
results on all six datasets are the worst when the rate is 0.01. It is not difficult to analyze
that the performance of the genetic algorithm with the crossover operator omitted depends
on the magnitude of the variance, and when the variance is set to 0.01, the algorithm is
close to 0 variance, i.e., the features involved in the classification are initialized features,
the structure of the population does not change significantly and the algorithm falls into a
local optimum solution. Overall, on both the SPECT heart and the Spambase, the algorithm
performed optimally when the probability of variation of the algorithm was set to 0.2,
when the population was best adapted.

Figure 9. The evolutionary curves of different mutation rate for datasets.

Symmetry 2021, 13, 1290 9 of 21

3.5.3. Comparison between GA and SV-GA

Table 2 shows the parameter settings for GA and SV-GA when comparing experiments
on different UCI datasets.

Table 2. Parameter settings.

Algorithms Parameter Value

population 30
GA Selection Tournament Tournize = 3

Crossover One-point Cxpb = 0.5
Simple Mutate Mupb = 0.2

population 30, 50, 100
SV-GA Selection Tournament Tournize = 3

Simple Mutate Mupb = 0.2

The iteration curves shown in Figure 10 show a comparison of the algorithms for GA
and SV-GA. The algorithms were both iterated 100 times, with a population size of 30 for
both GA and SV-GA and a mutation probability of 0.2, with a crossover probability of
0.5 for the former. From the experimental results, it is easy to see that the fitness value
of SV-GA is increasing with the number of iterations. The effect is more evident on the
SPECT Heart, CMC, Sonar, Credit6000, and Spambase datasets, while in Heart-statlog, the
fitness value of the algorithm is unstable if not as good as GA. Still, the algorithm later
convergence is faster than the former. It is easy to see from the graphs of the iterations of the
two algorithms on different datasets that the asexual genetic algorithm has an advantage
in solving the feature selection problem.

Figure 10. The evolutionary curves of GA and SV-GA.

3.5.4. Symmetry Theory and Algorithms

Symmetry is defined in both mathematics and physics. Mathematically, symmetry
is defined as graphical symmetry and numerical palindromes; physically, symmetry is
defined as invariance after some operation, both in time and space. In the asexual genetic
algorithm proposed in this paper for solving the feature selection problem, the population
size does not change due to a change in strategy. For example, if the number of individuals
in the initialized population is 30, then as the number of iterations increases, the number of
individuals remains at 30. The optimal solution is the best value (maximum or minimum)

Symmetry 2021, 13, 1290 10 of 21

among the 30 individuals when solving the optimization problem. Therefore, in the
following subsection, we verify the algorithm results for population sizes of 30, 50, and
100, respectively.

3.5.5. Results of the Population Size

A comparison of the fitness values of the standard GA with those of the SV-GA
algorithm for different population sizes is shown in Table 3, where the SV-GA algorithm
selects the operator for tournament selection and the mutation probability is set to the
best mutation probability of 0.2 as experimentally demonstrated above. Analysis of the
values in this table shows that the algorithm with a population size of 100 performs
better than the algorithm with population sizes of 30 and 50 while keeping the variation
probability constant.

Table 3. Mean and standard deviation results of acc on fitness and its competitors for six Datesets.

GA SV-GA(30) SV-GA(50) SV-GA(100)
Mean (Std) Mean (Std) Mean (Std) Mean (Std)

D1 0.865 (0.006) 0.882 (0.003) 0.887 (0.008) 0.897 (0.006)
D2 0.752 (0.008) 0.747 (0.004) 0.748 (0.006) 0.755 (0.007)
D3 0.868 (0.015) 0.871 (0.012) 0.882 (0.013) 0.887 (0.013)
D4 0.846 (0.002) 0.849 (0.001) 0.849 (0.002) 0.850 (0.002)
D5 0.891 (0.018) 0.894 (0.020) 0.898 (0.016) 0.904 (0.012)
D6 0.938 (0.002) 0.939 (0.001) 0.940 (0.002) 0.943 (0.002)

The reason for this is that the local search capability of the algorithm is stable when
the variation probability is constant, while the more individuals within the population, the
greater the diversity of the population, i.e., the greater the global search capability of the
algorithm. By varying the population size and variation probability, the SV-GA balances
the exploitation and exploration capability of the algorithm, thus facilitating the algorithm
to find the global optimal solution.

4. Android Malicious Application Detection Based on SV-GA Algorithm

Feature selection is an important step in processing classification tasks and in the pre-
processing phase of data mining, with the aim of improving the accuracy of the classifier.
In order to verify the performance benefits of the proposed algorithm, we apply it to the
Android malicious application detection problem and propose a framework process to
solve the problem.

4.1. Android Malicious Application Detection

With the continuous advancement of time and the increase in the number of third-
party application markets, many researchers have explored the detection methods of
Android malicious applications from a software perspective to achieve the purpose of
protecting system stability. In this paper, we focus on solving the security problem at
the application level of Android by compiling the corresponding feature sets based on
the source code information obtained by the decompiler tool and feeding them into the
classifier model for training to classify benign and malicious applications. Due to the
high dimensionality of the acquired feature attributes, it inevitably causes a dimensional
disaster or increases the time and space complexity of model training, which affects the
efficiency of Android malicious application detection. It is vital to choose a suitable feature
selection method to reduce the number of features while improving the accuracy of the
classification model.

Malicious application detection methods are frequently updated and changed with
the deepening of research. The main research trends are in the following two aspects: one is
based on the improvement of a single machine learning classification algorithm; the other
is based on the study of feature selection methods. Machine learning methods are currently

Symmetry 2021, 13, 1290 11 of 21

the most widely used technical means in the artificial field. The classification methods in
supervised learning play a driving role in the detection of Android malicious applications
(such as the KNN algorithm, Naive Bayes algorithm, Logistic Regression, and Decision Tree
algorithm). The disadvantage is that the training model speed needs to be improved, and
it can only make a simple judgment of the malicious software that has already appeared on
the market and cannot realize the detection of unknown types of applications. Feizollah A,
Nor B, Salleh R et al. [26] evaluated the performance of K-means and Mini batch K-means
clustering algorithms in Android malware detection and analyzed the network traffic of
benign and malware on two algorithms. The result showed that the overall performance
of the Mini batch K-means clustering algorithm was better than the K-means algorithm.
Nath, Hiran V et al. [27] applied the classification algorithm in machine learning to features
such as n-gram model and byte sequence extracted from malware. The algorithm included
classification methods such as decision trees and boosted decision trees. The results proved
the machine learning classification algorithm could realize the simple classification of
malware. However, only using machine learning algorithms to judge the quality of the
application is slightly thin. Rajesh Kumar et al. [28] proposed a method based on the
combination of probabilistic statistical analysis and machine learning algorithms to reduce
the dimensionality of features and achieved classification between known and unknown
benign and malicious software.

Android malicious application detection based on feature selection method is divided
into static analysis and dynamic analysis methods [29]. Static analysis involves obtaining
the source code of an Android application by decompiling software without running the
application, analyzing it to extract relevant syntactic and semantic information, permission
information in configuration files, intent, the corresponding API calls, etc., coding and
mapping its code integration into vector space, and combining it with machine learning
classification in order to achieve malicious application classification. In contrast, dynamic
analysis is similar to the black-box testing of software. The source code structure is not taken
into account, and only relevant features are obtained during the installation or use of the
application, such as network traffic analysis, application power consumption, user behav-
ioral features. Dynamic analysis has the advantage of a large feature selection space and a
wide range of input classifiers. For example, Zarni Aung et al. [30] extracted single permis-
sion as a feature for training, designed and implemented a framework based on machine
learning technology classify malware and benign software. Shanshan Wang et al. [31] con-
ducted an in-depth study on the behavior of network traffic generated by the application
during use, mapped the mobile terminal traffic information flow to the server-side, ana-
lyzed the network traffic characteristics, and combined the C4.5 algorithm to complete the
detection of malicious applications. Du W, Yin H et al. [32] proposed a method to describe
Android malware that relied on API calls and package-level information in bytecode and
determined the category of unknown application software based on known Android mali-
cious applications. Compared with the classifier based on permission features, the KNN
classifier’s accuracy was as high as 99%. Daniel Arp et al. proposed a lightweight detection
framework: Drebin [33]. This method extensively collected application characteristics
(permissions, hardware combinations, etc.) obtained from static analysis and mapped them
to the joint vector space, using traditional PCA to reduce dimensional method selection
features. The biggest advantage of this framework is the ability to identify malicious
applications on smartphones directly. Wang W, Gao Z, Zhao M et al. [34] proposed an
Android malicious application detection model: DroidEnsemble. The classification features
in the model analyze static string features such as permissions in each application code
pattern and include structural feature s such as control flow graphs and data flow graphs,
such as function call graphs. The results of classifying these two types of features show
that the model’s detection accuracy is greatly improved, while the false alarm rate is also
reduced. The approach based on feature selection has certain advantages, but it can lead
to the high dimensionality of the feature combinations, leading to the high complexity of
the algorithm’s training process in space and time and affects the accuracy of the machine

Symmetry 2021, 13, 1290 12 of 21

learning and data mining methods. Therefore, the selection of features with good detection
performance is key to the method.

4.2. Construction of Feature Sets

Feature selection aims to reduce the number of features used for classification while
maintaining classification accuracy [35]. Based on the dynamic and static analysis men-
tioned above, we have chosen the static analysis method to classify the software. One
is that the static analysis method is not only simpler but also less harmful to mobile de-
vices. When using a mobile device, the application will request a permission to respond
during installation and the system will simultaneously check whether the permission is in-
voked. Permissions become one of the indispensable static features for detecting malicious
Android applications [36].

4.3. APK Pre-Processing

The Android application package (APK) of the third-party application market is
not presented in source code but is similar to the packaged file format (zip). In order to
obtain the information in the package, it is necessary to use a decompiler tool to realize
the pre-processing of APK decompression. The tool used in this article, Apktool [37], is
a lightweight decompilation tool, a closed binary Android application tool, which can
decode resources and applications into the most primitive state of java source code, and
automatically realize file structure processing. It can be used locally and supports multiple
platform analysis applications. As shown in Figure 11 is the file resource list obtained by
decompiling a real Android application using this apktool tool.

Figure 11. Example of file resource list.

After decompiling the APK, it can see the permission information in the total con-
figuration file Androidmanifest.xml. Figure 12 shows a partial list of permissions for a
test APK. P is the total set of possible permissions that some applications in the android
platform can request. Moreover, each android application is represented in the framework
of the required permission set. Therefore, assuming that the size of P is N, each application
is represented by a binary string p of size N, where each position i of the string represents
the i-th permission in a set of possible permissions, so that p_iin0, 1. If the application does
not need permission i, then p_i = 0; if the application requires permission i, then p_i = 1.

Figure 12. Example of file resource list.

4.4. Coding

When classifying Android malware, permission features are binary coded in such
a way that if total permission sets of Android applications are defined as P, then the

Symmetry 2021, 13, 1290 13 of 21

permissions applied by each software are N(N <= P), coded one by one, and if a feature
in permission set P appears, then a permission bit in N is flagged as 1, otherwise it is 0. An
example of matching permissions for a single application is shown below :

0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,
0,0,0,0,1,0,1,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,1,0,1

There are 88 permission bits in this example. The exact number of settings is described
in the numerical experiments section. When each benign application is developed, the
permissions applied are very few (compared to the official permission set). The number of
“1” s in the gene position of each chromosome is relatively small. The number of permissions
requested by malicious applications is greater than or equal to that of benign applications.

4.5. System Framework

This paper proposes a system model based on the permissions requested by Android
applications, including three modules: decompilation, feature selection, and application
classification. The block diagram of Android malicious application detection is shown in
Figure 13. The proposed model consists of the following modules:

1. Decompilation module. Use the decompilation tool “Apktool” [37] to decompress
each application package file to obtain the total configuration file Androidmani-
fest.xml of the application and obtain the permission list for each APK. All the
extracted permissions are used as the original feature set.

2. Feature selection module. This module optimizes the original data set and selects the
feature subset that dramatically impacts the classification effect. The original subset is
randomly selected as the initial iterative group, then iterated through the improved
genetic algorithm to screen the group, and finally, get the set of permission features
that optimize the classification effect.

3. Classification module. The feature data set extracted by the decompiler module is
selected by an asexual genetic algorithm to obtain a feature subset, which is fed into
a machine learning classifier for training, and its classification accuracy judges the
feature selection method to achieve the classification of Android software.

Figure 13. System model diagram.

5. Experimental Research

In this subsection, the feasibility of the asexual genetic algorithm for binary feature
selection is further demonstrated with experimental data using different data sets and
comparisons between different feature selection methods.

Symmetry 2021, 13, 1290 14 of 21

5.1. Numerical Verification

There are 1788 benign samples and 932 malicious samples in the experimental data of
this paper. Among them, 532 malicious samples are from the Canadian Institute of Cyber
Security [38], the samples contain typical Android platform malware, such as malicious
ransomware applications, threatening SMS applications, and advertising applications;
there are also 400 malicious samples from the data set of Dr. Wang’s repository (http:
//infosec.bjtu.edu.cn/wangwei/?page_id=85 (accessed on 17 July 2020)). Total 188 benign
Android applications, mainly from Google play and Xiaomi App Market. After security
testing, these apps are released to the app market and are therefore deemed benign and
safe. Besides, there are 1600 benign samples from Dr. Wang’s database.

5.1.1. Permission Description

The number of permissions matched by the samples from Canadian Institute, Google
play market, and Xiaomi app market is the official 144 permissions, while the number of
permissions given by Dr. Wang’s dataset is the most frequently selected 88 permissions after
filtering, so the number of permissions for unified features in this paper is set to 88. The
88-feature datasets are input to logistic regression (LR), random forest (RF), Gaussian Naive
Bayes (GNB) and K-nearest neighbor (KNN) classifiers for training and testing, respectively.

5.1.2. Classifier Model Evaluation

The primary objective when classifying Android applications is to flag malicious
applications from the list, as only malicious software poses a risk to the system and user
security, and not all software can be correctly classified when the classifier is trained, so
we need an confusion matrix to describe the different types of errors and measure the
severity of the errors separately. In the confusion matrix, as shown in Table 4, each column
represents the instances in a predicted class, and each row represents the instances in
an actual class. A specific table layout allows visualization of the performance of the
classifier [17]. In this article, the positive class represented malicious applications, and the
negative class represented benign applications.

Table 4. Classification results of the four classifiers under 88 permission features.

Malware Class Benign Class

Malware prediction TP FP
Benign prediction FN TN

Let TP (True Positive) be the number of malicious applications correctly predicted as
Android malware. FP (False Positive) be the number of benign applications incorrectly
predicted as Android malware. FN (False Negative) is the number of malicious applications
that are incorrectly detected as benign applications, and TN (True Negative) be the number
of benign applications correctly detected as benign applications. The following is the
evaluation standard formula of the classifier:

Sample Accuracy (ACC) represents the percentage of the overall data set that is
correctly classified. The higher the ACC value, the better the classification effect. It is
defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(5)

True positive rate (TPR) represents the probability that a positive sample will be
correctly predicted as positive. The higher the value, the more effective the classifier is. It
is defined as follows:

TPR =
TP

TP + FN
(6)

http://infosec.bjtu.edu.cn/wangwei/?page_id=85
http://infosec.bjtu.edu.cn/wangwei/?page_id=85

Symmetry 2021, 13, 1290 15 of 21

False Positive Rate (FPR) represents the probability that a negative sample is falsely
predicted to be positive. The higher the value, the worse the effect of the classifier. It is
defined as follows:

FPR =
FP

FP + TN
(7)

Precision (P) represents the probability that a positive sample is predicted to be
positive, and is defined as follows:

P =
TP

TP + FP
(8)

Recall is the probability that a positive sample is predicted to be positive, and the
equation is the same as the true rates. It is defined as follows:

Recall =
TP

TP + FN
(9)

F1-score (F − S) This indicator considers both precision rate and recall rate, so that
both reach the highest at the same time, defined as follows:

F− S =
2 · P · Recall
P + Recall

(10)

In order to find a classifier that makes the best classification performance among
many machine learning classification models, this paper uses unselected (unpreprocessed)
datasets of features input to different classifiers, relying on the goodness of the above classi-
fication metrics to determine the classification model applied in the following comparison
experiments. The experimental results are shown in Table 5.

Table 5. Classification results of the four classifiers under 88 permission features.

No. Classifier ACC TPR FPR F − S

1 LR 0.901 0.833 0.097 0.372
2 RF 0.867 0.958 0.136 0.337
3 GNB 0.955 0.958 0.136 0.337
4 KNN 0.933 0.208 0.018 0.247

The purpose of feature selection is to improve the classification accuracy while reduc-
ing the number of features for training the classification model; therefore, high precision
and high true rate become the indicators for judging the good and bad pairs of classification
models. The experimental results show that the GNB has the highest ACC and TPR and the
model’s best overall performance when classifying the dataset without feature selection.

5.2. Discrete and Continuous Algorithms

In a feature selection optimization problem, the search space is a hypercube, and
all solutions lie only at values of 0 or 1 [20]. Genetic algorithms do not require changes
to them in solving FS problems due to their natural discrete encoding. In contrast, in
swarm intelligence algorithms such as GWO, WOA, and ACO, where the search range of
the algorithm is a continuous space, many researchers have proposed a binary form of
the algorithm in order to enable optimization of discrete problems. Kennedy proposed a
binary version of PSO in 1997 [39], and much work has been done around this version. The
algorithm uses a sigmoid function to map a vector in continuous space to a two-dimensional
space, and the mapping equation is shown below.

S
(

Xt
ij

)
=

1

1 + e−Xt
ij

(11)

Symmetry 2021, 13, 1290 16 of 21

Xt+1
ij =

{
1 i f S

(
Xt

ij

)
> σ

0 otherwise
(12)

Xt+1
ij =


(

Xt
ij

)−1
i f T

(
Xt

ij

)
> σ

Xt
ij otherwise

(13)

In addition to this, four S-shaped and V-shaped mapping functions were introduced by
Shahrzad Saremi et al. [40] to transform the continuous space. The equation for the change
in Xt+1

ij when using the S-shaped mapping function is Equation (12) and for the V-shaped
mapping function is Equation (13). The mapping functions are shown in the Table 6. Any
of the continuous optimization algorithms can achieve binary conversion by means of
S-shaped and V-shaped map functions.

Table 6. S-shaped and V-shaped mapping functions.

S-Shaped V-Shaped

S1 T(x) = 1
1+e−2x V1 T(x) =

∣∣∣∣√2
π

∫ (√π/2)x
−0 et2

dt
∣∣∣∣

S2 T(x) = 1
1+e−x V2 T(x) = |tanh(x)|

S3 T(x) = 1
1+e−(x/2) V3 T(x) =

∣∣∣(x)/
√

1 + x2
∣∣∣

S4 T(x) = 1
1+e−(x/3) V4 T(x) =

∣∣∣ 2
π arctan

(
π
2 x
)∣∣∣

5.3. Comparison Algorithm and Their Parameter Setting

The purpose of feature selection is to select a subset of feasible features by eliminating
irrelevant, redundant, or noisy features [41]. In order to evaluate the proposed algorithm,
a number of existing feature selection algorithms were selected, such as the grey wolf
optimization algorithm(GWO) [42], the whale optimization algorithm(WOA) [43] and the
ant colony algorithm(ACO) [44]. The methods used in evolutionary algorithms to solve
the feature selection problem are as follows:

• Traditional genetic algorithms [10];
• A new binary version of the grey wolf optimization algorithm [23];
• S-type binary whale optimization algorithm [45];
• Ant colony algorithm for binary encoding [46]

In order to be fair, the proposed algorithm is compared with these algorithms under
the same parameter settings. The population size for all algorithms is 30, except for the
population size for SV-GA, the number of runs is equal to be 10, the iterations is equal to 100.
In [46], this paper draws on the parameter settings of α and β in the ant colony algorithm
tested in that paper to get the best results, so that α = 1 and β = 3, for comparison with the
algorithm in this paper. To verify the performance of the proposed algorithm, we divide
each dataset into a training set and a test set, e.g., k-fold cross-validation, dividing the
sample set into k subsamples of equal size, selecting k−1 subsamples as the training set
and all the remaining subsamples as the test set. Among the many supervised classifiers,
we choose the better-performing GNB.

5.4. Experimental Results and Analysis
5.4.1. Fitness Performance

In the simulation experiments section, we compare the SV-GA algorithm with pop-
ulation sizes of 30, 50, and 100 with the GA, GWO, ACO, and WOA algorithms. All
experimental data are mean results of independent runs.

Table 7 shows the statistical results using Equation (4) as the fitness function. To
show that our proposed algorithm’s performance is significantly better than that of the
comparison algorithms, we used a non-parametric statistical test: Wilcoxon rank-sum test
with a significance level of α = 0.05. The null hypothesis is that the proposed algorithm is

Symmetry 2021, 13, 1290 17 of 21

not significantly different from the comparison algorithm, and the alternative hypothesis
is that the proposed algorithm is significantly different from the comparison algorithm.
We use the symbols +,=,− to indicate that the proposed algorithm’s performance is
significantly better, no significant difference, and significantly inferior to the corresponding
comparison algorithm.

Table 7. Comparison of Fitness results on different algorithms for different datasets.

Datasets
GA SV-GA(30) SV-GA(50) SV-GA(100) GWO ACO WOA

Mean(std) Mean(std) Mean(std) Mean(std) Mean(std) Mean(std) Mean(std)

Android
Dataset

0.922(0.004)+ 0.927(0.003)+ 0.930(0.003)+ 0.936(0.002) 0.947(0.005)− 0.935(0.004)+ 0.925(0.004)+

SPECT Heart 0.865(0.006)+ 0.882(0.003)+ 0.887(0.008)+ 0.897(0.006) 0.801(0.033)+ 0.830(0.029)+ 0.856(0.012)=
CMC 0.752(0.008)= 0.747(0.004)+ 0.748(0.006)= 0.755(0.007) 0.647(0.028)+ 0.644(0.048)+ 0.733(0.009)+
Sonar 0.868(0.015)+ 0.871(0.012)+ 0.882(0.013)= 0.887(0.013) 0.755(0.011)+ 0.750(0.045)+ 0.878(0.020)+
Credit6000 0.846(0.002)+ 0.849(0.001)= 0.849(0.002)= 0.850(0.002) 0.842(0.004)+ 0.774(0.061)+ 0.841(0.002)+
Heart-statlog 0.891(0.018)= 0.894(0.020)= 0.898(0.016)= 0.904(0.012) 0.709(0.058)+ 0.725(0.125)+ 0.841(0.029)+
Spambase 0.938(0.002)+ 0.939(0.001)+ 0.940(0.002)+ 0.943(0.002) 0.926(0.012)+ 0.833(0.047)+ 0.921(0.003)+
+/−/= 5/0/2 5/0/2 3/0/4 6/1/0 7/0/0 6/0/1

As can be seen from the table, the fitness value of SV-GA with an initial population
size of 100 on the Android, SPECT Heart, CMC, Sonar, Credit6000, Heart-statlog, and
Spambase data sets are all higher than those of traditional GA and SV-GA of population
size of 30 and 50, the fitness values are 93.6%, 89.7%, 75.5%, 88.7%, 85.0%, 90.4%, and 94.3%.
When compared with other algorithms, WOA has the best performance on the Android
dataset. In addition, the fitness value of SV-GA with a population size of 100 far exceeds
other algorithms. The results of the statistical tests showed that on the Android dataset,
SV-GA(100) results were significantly more significant than the other algorithms on the
Android dataset, except for the non-significant results compared with the GWO algorithm.
On the SPECT Heart dataset, WOA was not significantly different, and the results were
significant on the rest of the datasets. On the CMC, Sonar, Credit6000, Heart-statlog, and
Spambase datasets, the results were significant compared to the GWO, ACO, and WOA
algorithms. Overall, SV-GA(100) ranked first in terms of performance.

5.4.2. Classification and Selected Features

Table 8 shows the results of using Equation (3) as the fitness function. Unlike
Equation (4), Equation (3) does not take into account the number of features, and the
results of the classifier are used directly as the fitness function. From the experimental re-
sults in Table 8, the performance of the genetic algorithm without the crossover operator is
worse than that of the traditional genetic algorithm on the SPECT Heart, CMC, Credit6000,
and Heart-statlog datasets. The reason for this result is, on the one hand, because of the
small number of samples in the dataset and the relatively small number of features in the
examples. When no crossover operation is performed, the population’s diversity is not
guaranteed. The algorithm tends to fall into premature maturity, making it difficult to
find the global optimal solution. The results in Table 9 show that on the seven datasets of
Android, SPECT Heart, CMC, Sonar, Credit6000, Heart-statlog, and Spambase, the SV-GA
with a population size of 100 selected the smallest proportion of features in more than
half of the datasets, which is consistent with the goal of optimizing the feature selection
problem, i.e., is the accuracy of the classifier is not high, and the number of features selected
is low. Still, the final results obtained for both in proportion to specific parameters indicate
that the algorithm performance is good. It can be demonstrated that the algorithm has
some advantage in solving the FS problem. The graphical results of Tables 8 and 9 are
shown in Figure 14a,b. The red bars are the algorithms compared with other algorithms in
all experiments.

Symmetry 2021, 13, 1290 18 of 21

Table 8. Comparison of ACC results on different algorithms for different datasets.

Datasets
GA SV-GA(30) SV-GA(50) SV-GA(100) GWO ACO WOA

Mean(std) Mean(std) Mean(std) Mean(std) Mean(std) Mean(std) Mean(std)

Android
Dataset

0.917(0.004) 0.923(0.002) 0.941(0.004) 0.940(0.004) 0.947(0.005) 0.935(0.004) 0.925(0.004)

SPECT Heart 0.925(0.004) 0.811(0.006) 0.817(0.010) 0.860(0.008) 0.801(0.033) 0.830(0.029) 0.856(0.012)
CMC 0.900(0.072) 0.762(0.009) 0.821(0.103) 0.806(0.064) 0.647(0.028) 0.644(0.048) 0.733(0.009)
Sonar 0.884(0.014) 0.886(0.012) 0.871(0.012) 0.869(0.009) 0.755(0.011) 0.750(0.045) 0.878(0.020)
Credit6000 0.855(0.001) 0.853(0.002) 0.854(0.002) 0.849(0.001) 0.842(0.004) 0.774(0.061) 0.841(0.002)
Heart-statlog 0.958(0.027) 0.824(0.010) 0.892(0.011) 0.862(0.013) 0.709(0.058) 0.725(0.125) 0.841(0.029)
Spambase 0.936(0.003) 0.950(0.002) 0.947(0.002) 0.951(0.002) 0.926(0.012) 0.833(0.047) 0.921(0.003)

Table 9. Comparison of feature number on different algorithms for different datasets.

Datasets
GA SV-GA(30) SV-GA(50) SV-GA(100) GWO ACO WOA

SF(%) SF(%) SF(%) SF(%) SF(%) SF(%) SF(%)

Android
Datase

46.5(52.84) 47.9(54.43) 46.8(53.18) 43.307(49.213) 43.800(49.773) 42.5(47.852) 64.400(73.182)

SPECT Heart 11.5(52.27) 10.5(47.73) 12.2(54.45) 9.9(45) 11.8(53.636) 17.4(79.090) 8.1(36.818)
CMC 6(66.67) 5.6(62.22) 3.9(43.33) 3.769(41.880) 3.9(43.333) 5.5(61.111) 5(55.556)
Sonar 29.6(49.33) 32.6(54.33) 31.3(52.17) 29.6(49.33) 27(45) 31.7(47.692) 22.4(37.333)
Credit6000 31.9(49.08) 30.7(47.23) 34.5(53.08) 31.7(48.77) 32.7(50.308) 31(47.692) 6.1(9.384)
Heart-statlog 7.368(56.680) 9(69.23) 7.6(58.46) 6.227(47.902) 7(53.846) 8(61.538) 4.9(37.692)
Spambase 32.1(56.32) 34.2(60) 32.3(56.67) 27.176(47.678) 27.6(48.421) 35.9(62.982) 40.2(70.526)

(a) Comparison of accuracy of different datasets (b) Comparison of the number of features in
different datasets

Figure 14. Comparison between different methods and different datasets on ACC and SF.

5.4.3. Running Time

In this paper, the SV-GA is influenced not only by the initial population size but also by
the variation rate. Table 10 shows the mean results for ten independent runs of the different
algorithms. It is easy to see from the results that the GA times are much higher than the
SV-GA for arbitrary populations. The reason for this result is that the crossover operator
increases the algorithm’s time complexity. When compared to the other algorithms, GWO
takes the least time, which may depend on the co-evolutionary strategy of the algorithm
itself to speed up finding the optimal solution. Still, the overall SV-GA time does not pull
away from this algorithm by a large margin, and to some extent, there is no significant gap.
When solving the feature selection problem, the time complexity depends heavily on the
number of samples and the number of features. For example, Credit6000 has the highest
number of instances of any of the seven datasets, so no matter how well the algorithm
performs, the time on that dataset is bound to exceed that on any of the remaining datasets.

Symmetry 2021, 13, 1290 19 of 21

Table 10. Comparison of running-time on different algorithms for different datasets.

Datasets GA SV-GA(30) SV-GA(50) SV-GA(100) GWO ACO WOA

Android
Dataset 102.739 10.195 9.254 9.174 8.595 10.265 198.043

SPECT Heart 57.345 4.582 4.559 5.405 3.229 1.360 14.501
CMC 70.033 5.403 6.032 7.025 3.278 11.812 39.057
Sonar 99.635 4.938 5.573 6.459 4.189 3.865 11.678
Credit6000 70.528 33.297 35.857 52.305 15.421 217.895 391.099
Heart-statlog 59.316 4.770 5.267 6.453 3.134 4.455 11.919
Spamabse 247.696 19.128 23.238 22.507 10.612 91.235 445.082

5.5. Discussions

It is necessary to understand the drawbacks of each proposed stochastic algorithm.
The algorithm proposed in this paper is designed to solve the specific optimization problem
of feature selection, and the crossover operator redundancy is only for this class of opti-
mization problems; the method may not be effective when solving continuous optimization
problems. Secondly, the FS problem is optimized for a dataset, and the number of samples
and the dimensionality of the data features are the most critical factors affecting the running
time of the algorithm, so how to apply the algorithm to high-dimensional instances without
increasing the computational complexity is a significant task for future research.

6. Conclusions

By summarizing the characteristics of the asexual genetic algorithm and analyzing the
feature selection problem, we use the asexual genetic algorithm for the first time to solve
the feature selection problem. The article demonstrates for the first time the advantages of
the asexual genetic algorithm for solving this type of problem from a theoretical point of
view, followed by the development and exploration ability of the algorithm by changing the
population size and mutation rate to balance the algorithm to get the best variation rate for
solving this type of problem, and finally the algorithm is used to solve the actual problem
of Android Malware Application Detection, the results demonstrate that the algorithm is a
feasible alternative in solving the feature selection problem.

Author Contributions: Conceptualization, L.W. and Y.G.; methodology, L.W.; formal analysis, S.G.;
review and editing, X.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China un-
der Grant (11961001), the Construction Project of first-class subjects in Ningxia higher Education
(NXYLXK2017B09), the major proprietary funded project of North Minzu University (ZDZX201901),
and postgraduate Innovation Project Funding of Northern University for Nationalities (YCX20087).

Institutional Review Board Statement: Article does not involve human research.

Informed Consent Statement: Article does not involve human research.

Data Availability Statement: The study did not report any data.

Acknowledgments: In this section you can acknowledge any support given which is not covered by
the author contribution or funding sections. This may include administrative and technical support,
or donations in kind (e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jain, A.K. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 27, 4–37. [CrossRef]
2. Jesus, J.; Canuto, A.; Araujo, D. An exploratory analysis of data noisy scenarios in a Pareto-front based dynamic feature selection

method. Appl. Soft Comput. 2020, 100, 106951. [CrossRef]
3. Nguyen, B.H.; Xue, B.; Zhang, M. A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol.

Comput. 2020, 54, 100663. [CrossRef]

http://doi.org/10.1109/34.824819
http://dx.doi.org/10.1016/j.asoc.2020.106951
http://dx.doi.org/10.1016/j.swevo.2020.100663

Symmetry 2021, 13, 1290 20 of 21

4. Ray, P.; Reddy, S.S.; Banerjee, T. Various dimension reduction techniques for high dimensional data analysis: A review. Artif.
Intell. Rev. 2021, 54, 3473–3515. [CrossRef]

5. Rodrigues, D.; Pereira, L.A.M.; Almeida, T.N.S.; Papa, J.P.; Yang, X.S. BCS: A Binary Cuckoo Search algorithm for feature selection.
Proc. IEEE Int. Symp. Circuits Syst. 2013. [CrossRef]

6. Battiti, R. Using mutual information for selecting features in supervised neural net learning. Neural Netw. IEEE Trans. 1994.
[CrossRef] [PubMed]

7. Razniewski, S.; Strzelecki, M. Evaluation of texture features based on mutual information. Ispa Int. Symp. Image Signal Process.
Anal. 2005. [CrossRef]

8. Fleuret, F. Fast Binary Feature Selection with Conditional Mutual Information. J. Mach. Learn. Res. 2004, 5, 1531–1555.
9. Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [CrossRef]
10. Holland, J. Adaptation in natural and artificial systems: An introductory analysis with application to biology. Control Artif.

Intell. 1975. [CrossRef]
11. Cantó, J.; Curiel, S.; Martínez-Gómez, E. A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm).

Astron Astrophys. 2009, 501, 1259–1268. [CrossRef]
12. Farasat, A.; Menhaj, M.B.; Mansouri, T.; Moghadam, M.R. ARO: A new model-free optimization algorithm inspired from asexual

reproduction. Appl. Soft Comput. 2010, 10, 1284–1292. [CrossRef]
13. Simoes, A.; Costa, E. Using genetic algorithms with sexual or asexual transposition: a comparative study. Proc. CEC00 2000, 10,

1196–1203.
14. Amirghasemi, M.; Zamani, R. An effective asexual genetic algorithm for solving the job shop scheduling problem. Comput. Ind.

Eng. 2015, 83, 123–138. [CrossRef]
15. Salesi, S.; Cosma, G. A novel extended binary cuckoo search algorithm for feature selection. In Proceedings of the International

Conference on Knowledge Engineering and Applications, London, UK, 21–23 October 2017; pp. 6–12.
16. Ab Razak, M.F.; Anuar, N.B.; Othman, F.; Firdaus, A.; Afifi, F.; Salleh, R. Bio-inspired for Features Optimization and Malware

Detection. Arab. J. Sci. Eng. 2018, 43, 6963–6979. [CrossRef]
17. Zhang, Y.; Wang, S.; Phillips, P.; Ji, G. Binary PSO with mutation operator for feature selection using decision tree applied to spam

detection. Knowl. Based Syst. 2014, 64, 22–31. [CrossRef]
18. Palanisamy, S.; Kanmani, S. Artificial Bee Colony Approach for Optimizing Feature Selection. IJCSI 2012, 9, 432–438.
19. Sreedharan, N.P.; Ganesan, B.; Raveendran, R.; Sarala, P.; Dennis, B. Grey Wolf Optimization-based Feature Selection and

Classification for Facial Emotion Recognition. IET Biom. 2018, 7. [CrossRef]
20. Hu, P.; Pan, J.S.; Chu, S.C. Improved Binary Grey Wolf Optimizer and Its application for feature selection. Knowl. Based Syst. 2020,

195, 105746. [CrossRef]
21. Pan, J.S.; Tian, A.Q.; Chu, S.C.; Li, J.B. Improved binary pigeon-inspired optimization and its application for feature selection.

Appl. Intell. 2021. [CrossRef]
22. Wang, J.W.; Chen, C.H.; Pan, J.S. Genetic Feature Selection for Texture Classification Using 2-D Non-Separable Wavelet Bases.

IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 1998, E81A, 1635–1644.
23. Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016,

172, 371–381. [CrossRef]
24. Dua, D.; Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine,

CA, USA, 2019. Available online: http://archive.ics.uci.edu/ml (accessed on 17 July 2020).
25. Tein, L.H.; Ramli, R. Recent advancements of nurse scheduling models and a potential path. In Proceedings of the ICMSA 2010,

Grand Seasons Hotel, Kuala Lumpur, Malaysia, 3–4 November 2010; pp. 395–409.
26. Feizollah, A.; Nor, B.; Salleh, R.; Amalina, F. Comparative study of k-means and mini batch k-means clustering algorithms in

android malware detection using network traffic analysis. In Proceedings of the ISBAST 2014, Kuala Lumpur, Malaysia, 26–27
August 2014. [CrossRef]

27. Nath, H.V.; Mehtre, B.M. Static Malware Analysis Using Machine Learning Methods. In Proceedings of the SNDS-2014,
Trivandrum, India, 13–14 March 2014; pp. 440–450.

28. Xiaosong, Z.; Khan, R.U.; Kumar, J.; Ahad, I.; Kumar, R. Effective and Explainable Detection of Android Malware Based on
Machine Learning Algorithms. In Proceedings of the ICCAI 2018, Chengdu, China, 12–14 March 2018; pp. 35–40.

29. Zhao, X.; Fang, J.; Wang, X. Android malware detection based on permissions. In Proceedings of the ICICT 2014, Nanjing, China,
2 October 2014. [CrossRef]

30. Aung, Z.; Zaw, W. Permission-Based Android Malware Detection. IJSTR 2013, 2, 228–234.
31. Wang, S.; Chen, Z.; Yan, Q.; Yang, B.; Peng, L.; Jia, Z. A mobile malware detection method using behavior features in network

traffic. J. Netw. Comput. Appl. 2019, 133, 15–25. [CrossRef]
32. Aafer, Y.; Du, W.; Yin, H. DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android. Springer Int.

Publ. 2013, 127, 86–103.
33. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C.E. DREBIN: Effective and Explainable Detection of

Android Malware in Your Pocket. In Proceedings of the NDSS, San Diego, CA, USA, August 2014. [CrossRef]
34. Wang, W.; Gao, Z.; Zhao, M.; Li, Y.; Liu, J.; Zhang, X. DroidEnsemble: Detecting Android Malicious Applications with Ensemble

of String and Structural Static Features. IEEE Access 2018, 6, 31798–31807. [CrossRef]

http://dx.doi.org/10.1007/s10462-020-09928-0
http://dx.doi.org/10.1109/ISCAS.2013.6571881
http://dx.doi.org/10.1109/72.298224
http://www.ncbi.nlm.nih.gov/pubmed/18267827
http://dx.doi.org/10.1109/ISPA.2005.195415
http://dx.doi.org/10.3233/IDA-1997-1302
http://dx.doi.org/10.7551/mitpress/1090.001.0001
http://dx.doi.org/10.1051/0004-6361/200911740
http://dx.doi.org/10.1016/j.asoc.2010.05.011
http://dx.doi.org/10.1016/j.cie.2015.02.011
http://dx.doi.org/10.1007/s13369-017-2951-y
http://dx.doi.org/10.1016/j.knosys.2014.03.015
http://dx.doi.org/10.1049/iet-bmt.2017.0160
http://dx.doi.org/10.1016/j.knosys.2020.105746
http://dx.doi.org/10.1007/s10489-021-02302-9
http://dx.doi.org/10.1016/j.neucom.2015.06.083
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.3390/sym13030419
http://dx.doi.org/10.1049/cp.2014.0605
http://dx.doi.org/10.1016/j.jnca.2018.12.014
http://dx.doi.org/10.14722/ndss.2014.23247
http://dx.doi.org/10.1109/ACCESS.2018.2835654

Symmetry 2021, 13, 1290 21 of 21

35. Raymer, M.L.; Punch, W.F.; Goodman, E.D.; Kuhn Leslie, A.; Jain, A.K. Dimensionality reduction using genetic algorithms. IEEE
Trans. Evol. Comput. 2000, 4, 164–171. [CrossRef]

36. Bhattacharya, A.; Goswami, R.T.; Mukherjee, K. A feature selection technique based on rough set and improvised PSO algorithm
(PSORS-FS) for permission based detection of Android malwares. Int. J. Mach. Learn. Cybern. 2018, 10, 1893–1907. [CrossRef]

37. Apktool. May 2015. [Online]. Available online: https://ibotpeaches.github.io/Apktool/ (accessed on 17 July 2020).
38. Taheri, L.; Kadir, A.F.; Lashkari, A.H. Extensible Android Malware Detection and Family Classification Using Network-Flows

and API-Calls. In Proceedings of the ICCST 2019, Cairo, Egypt, 1–3 October 2019. [CrossRef]
39. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International

Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997.
[CrossRef]

40. Saremi, S.; Mirjalili, S.; Lewis, A. How Important Is a Transfer Function in Discrete Heuristic Algorithms; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 625–640.

41. Hilda, G.T.; Rajalaxmi, R.R. Effective feature selection for supervised learning using genetic algorithm. In Proceedings of the
ICECS, Coimbatore, India, 26–27 February 2015; pp. 909–914.

42. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
43. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
44. Colorni, A. Distributed optimization by ant colonies. Proc. ECAL 1991, 142, 134–142.
45. Hussien, A.G.; Hassanien, A.E.; Houssein, E.H.; Bhattacharyya, S.; Amin, M. S-shaped Binary Whale Optimization Algorithm for

Feature Selection. Recent Trends Signal Image Process. 2019, 727, 79–87.
46. Wan, Y.; Wang, M.; Ye, Z.; Lai, X. A Feature Selection Method Based on Modified Binary Coded Ant Colony Optimization

Algorithm. Appl. Soft Comput. 2016, 49, 248–258. [CrossRef]

http://dx.doi.org/10.1109/4235.850656
http://dx.doi.org/10.1007/s13042-018-0838-1
https://ibotpeaches.github.io/Apktool/
http://dx.doi.org/10.1109/CCST.2019.8888430
http://dx.doi.org/10.1109/ICSMC.1997.637339
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.asoc.2016.08.011

	Introduction
	Background and Method
	Feature Selection
	Genetic Algorithm
	Random Forest Algorithm

	The Proposed Self-Variant Genetic Algorithm (SV-GA)
	Theoretical Basis
	Fitness Function
	The Algorithm Flow of the SV-GA
	Computational Complexity Analysis
	Numerical Analysis
	Datasets
	Results with Different Mutation Rate
	Comparison between GA and SV-GA
	Symmetry Theory and Algorithms
	Results of the Population Size

	Android Malicious Application Detection Based on SV-GA Algorithm
	Android Malicious Application Detection
	Construction of Feature Sets
	APK Pre-Processing
	Coding
	System Framework

	Experimental Research
	Numerical Verification
	Permission Description
	Classifier Model Evaluation

	Discrete and Continuous Algorithms
	Comparison Algorithm and Their Parameter Setting
	Experimental Results and Analysis
	Fitness Performance
	Classification and Selected Features
	Running Time

	Discussions

	Conclusions
	References

