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Abstract: The task of pitch estimation is an essential step in many audio signal processing applications.
In this paper, we propose a data-driven pitch estimation network, the Dual Attention Network (DA-
Net), which processes directly on the time-domain samples of monophonic music. DA-Net includes
six Dual Attention Modules (DA-Modules), and each of them includes two kinds of attention:
element-wise and channel-wise attention. DA-Net is to perform element attention and channel
attention operations on convolution features, which reflects the idea of "symmetry". DA-Modules
can model the semantic interdependencies between element-wise and channel-wise features. In the
DA-Module, the element-wise attention mechanism is realized by a Convolutional Gated Linear
Unit (ConvGLU), and the channel-wise attention mechanism is realized by a Squeeze-and-Excitation
(SE) block. We explored three kinds of combination modes (serial mode, parallel mode, and tightly
coupled mode) of the element-wise attention and channel-wise attention. Element-wise attention
selectively emphasizes useful features by re-weighting the features at all positions. Channel-wise
attention can learn to use global information to selectively emphasize the informative feature maps
and suppress the less useful ones. Therefore, DA-Net adaptively integrates the local features with
their global dependencies. The outputs of DA-Net are fed into a fully connected layer to generate a
360-dimensional vector corresponding to 360 pitches. We trained the proposed network on the iKala
and MDB-stem-synth datasets, respectively. According to the experimental results, our proposed
dual attention network with tightly coupled mode achieved the best performance.

Keywords: pitch estimation; dual attention; element-wise attention; channel-wise attention

1. Introduction

F0, or pitch, is one of the most useful acoustical features that determines an audible
pitch level. Pitch estimation is important in monophonic or polyphonic music signal
processing. The monophonic pitch tracking method is used to generate pitch labels for
multi-track datasets [1] or as a core step of melody extraction algorithms [2,3].

In recent years, this research has attracted increasing attention with the demand for
singing processing [4], music information retrieval [5], large-scale analysis of different
musical styles [6], and the automatic transcription of music [7]. F0 is the lowest frequency
of quasi-periodic vibration of the vocal cords. Pitch is a perceptual property, and F0 is
a physical property of audio. However, the pitch is determined by the F0. Despite this
important distinction, pitch and F0 are generally used interchangeably outside the field of
psychoacoustics.

Traditionally, simple signal processing approaches have been proposed to F0 estima-
tors, working either in the time domain, in the frequency domain, or both, followed by
a post-processing algorithm to smooth the pitch trajectory. Time-domain F0 estimation
methods include YIN [8], which is based on the auto-correlation function. The pYIN [9]
algorithm is an improved method of the YIN and adopts an HMM in post-processing to
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improve the robustness. Frequency domain methods utilize template matching with the
spectrum of a sawtooth waveform (e.g., SWIPE [10]).

YAAPT [11] combines frequency domain processing, time-domain processing, and
normalized cross-correlation. Nebula [12] uses F0 and voicing status estimation algorithms
for high-quality speech analysis/synthesis. These are both time-frequency domain F0
estimation methods. A obvious trend in the methods [8–12] is that the derivation of a
good F0 estimation method depends on devising a robust candidate generating function or
sophisticated pre- or post-processing steps. These are all not learned from data directly.
Even the best performing algorithms, such as the pYIN [9] method can also produce noisy
results for challenging audio recordings.

In recent years, neural network pitch estimators of audio have emerged. For example,
Zhang et al. [13] used the PEFAC algorithm [14] to extract spectral domain features from
each frame as input and proposed to exploit RNN-BLSTM to model the two pitch contours
of a mixture of two speech signals. However, recently, some data-driven methods using
various neural networks have been proposed for monophonic pitch estimation [15,16] and
multi-pitch [17,18] or melody tracking [19–23], outperforming previous results.

In [24], an end-to-end regression model based on a neural network was proposed,
where a voice detector and a proposed F0 value estimator work jointly to highlight the
trajectory of the pitch. Manu Airaksinen et al. [25] explored multiple speech data aug-
mentation methods for the task of pitch estimation with neural networks under noisy
conditions. CREPE [26] is a deep convolutional neural network for pitch estimation that
performs directly on the time-domain waveform and produced outstanding results.

Luc Ardaillon et al. [27] proposed a fully-convolutional network (FCN) architecture
for pitch estimation of speech that could reduce the computational load making it more
suitable for real-time purposes. Dong et al. [28] proposed a deep convolution residual
network for vocal pitch extraction in polyphonic music. Gfeller et al. [29] proposed the
SPICE model, a self-supervised pitch estimation algorithm for monophonic audio.

CREPE [26] produces outstanding results when using a neural network to estimate
the pitch. The input of CREPE is 1024 samples (frame length) extracted from a waveform.
Six Convolutional neural network (CNN) layers produce a 2048-dimensional feature repre-
sentation, which is then fed into a fully connected layer to obtain a 360-dimensional output
vector ŷ.

Dauphin et al. [30] first proposed a gating mechanism for a language model in 2017.
Since then, the gating mechanism, also known as Gated Linear Units (GLUs), has been
widely used in speech audio processing. Tang and Wang [31] proposed a convolutional
recurrent neural network and incorporated gated linear units for complex spectral mapping,
which amounts to a causal system for monaural speech enhancement. CNN incorporating a
gating mechanism has been proposed for speech enhancement [32], speech separation [33],
and singing voice and accompaniment separation [34].

This CNN incorporates a gating mechanism denoted as convolutional gated linear unit
(ConvGLU), which can re-weight each feature element in feature maps. The element-wise
attention mechanism in this paper is realized by using ConvGLU, which will be discussed
in more detail later. Squeeze-and-Excitation Networks (SENets) were first proposed by Hu
et al. [35]. The SE block adaptively recalibrates channel-wise feature maps by explicitly
modeling the interdependencies between channels.

Since then, SE block, also known as a Channel-wise Attention mechanism, has been
widely applied to the image processing field such as Densely Squeeze-and-Excitation
Network (DSENet) [36], Deep Residual Squeeze-and-Excitation Network (DRSEN) [37],
and SERAN [38], which integrate Squeeze-and-Excitation (SE) modules and attention
modules into a ResNet-based classifier. Wu et al. [39] introduced a SENet into a CNN. The
channel-wise attention mechanism in this paper is realized by a Squeeze-and-Excitation
block, which will be discussed in Section 2.3.

Motivated by Gated Linear Units (GLUs) [30] and SENets [35], we propose a data-
driven Dual Attention Network (DA-Net) for pitch estimation. DA-Net is to perform
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element attention and channel attention operations on convolution features, which reflects
the idea of "symmetry". DA-Net adopts the CREPE structure and applies dual attention
modules to extract feature maps instead of conventional CNN in CREPE. The outputs of
DA-Net are fed into the post-processing part to obtain the final F0. Fu Jun et al. [40] initially
proposed dual attention, which process the task of scenario segmentation by capturing rich
context dependencies through the self-attention mechanism.

It consists of two attention modules, channel attention and spatial attention. The
spatial attention module selectively aggregate the features of each location through the
weighted sum of all location features and it aims to learn relationships between pixels
in the pictures, which actually is the implementation of non-local idea. Yu, S. et al [41]
proposed frequency-temporal attention, which includes frequency and temporal attention.
Frequency attention aims to select the stimulated frequency band in the spectrum, just
as in the cochlea, while the purpose of time attention is to simulate the auto-correlation
in the cortex. Zhibin Hu et al. [42] proposed a dual attention network for image and text
matching, which can infer the importance of all the words to each image region and infer
the importance of all the image regions to each word.

Bo Li [43] proposed a graph-enhanced double-attention network (GEDA) for document-
level relational extraction, which can better describe the complex interaction between the
sentences and potential relational instances, thus, improving the reasoning ability between
the sentences. Yinglin Zhu et al. [44] proposed an interactive dual attention model to
interactively learn the representation between the contextual semantics and affective orien-
tation information. Jie Wan et al. [45] designed a dual attention module to help networks
capture spatially and channel dependent road features for better semantic inference of
occluded roads.

Dual attention network in this paper includes element-wise attention realized by
ConvGLU and channel-wise attention realized by SE block. The main contributions are
as follows:

(i) For pitch estimation of monophonic music, we propose a data-driven DA-Net integrat-
ing the element-wise attention mechanism and the channel-wise attention mechanism.

(ii) We explored three combination modes of the two attention mechanisms: serial mode,
parallel mode, and tightly coupled mode. According to the experiments, the Dual
Attention network with Tightly Coupled mode (DA-TC) obtained the best results.

(iii) We validated our network on the iKala and MDB-stem-synth datasets, respectively.
The DA-TC achieved improvement comparing with CREPE, especially on MDB-
stem-synth.

The rest of the paper is organized as follows. Section 2 describes the proposed model.
Section 3 details the experimental setup, and Section 4 shows the experimental results. We
draw our conclusions in Section 5.

2. Proposed Model

We first introduce the proposed DA-Net for pitch estimation of monophonic music.
Then, we explore three kinds of combination modes of two attention mechanisms and
describe the implementation of the tightly coupled mode in detail. Finally, we introduce
two kinds of attention mechanisms.

2.1. Dual Attention Network

Figure 1 shows the structure of the proposed DA-Net for pitch estimation of mono-
phonic music. The DA-Net including six DA-Modules processes the time-domain wave-
form directly to obtain the estimated pitch. Each DA-Module includes an element-wise
attention mechanism and channel-wise attention mechanism. The input is 1024 samples
(frame length). After being normalized to a zero mean and unit variance, the inputs
undergo six DA-Modules to obtain a potential representation of 2048 dimensions.

Finally, DA-Net outputs a 360-dimensional vector through a fully connected layer. In
summary, this network performs a frame-by-frame classification task of pitch estimation.
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As seen in Figure 1, DA-Net is an end-to-end pitch estimation network. The DA-Module
indicated by the pink box includes two kinds of attention mechanisms, which will be
discussed in more detail in Sections 2.3 and 2.4.
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Figure 1. Proposed Dual Attention Network (DA-Net).

2.2. Dual Attention Module

The DA-Module in Figure 1 is designed to extract feature maps for pitch estimation.
Each DA-Module includes an element-wise attention mechanism and channel-wise atten-
tion mechanism. Here, we explored three kinds of combination modes (serial mode, parallel
mode, and tightly coupled mode) of the two kinds of attention mechanisms. Figure 2 shows
a schematic diagram of the above three kinds of combination modes. Figure 2a denotes
the diagram of the serial mode, where the inputs are first fed into the element-wise at-
tention block and then the outputs are further fed into the channel-wise attention block.
Channel-wise attention is realized by SE block.

The left half part of Figure 2a realizes the element-wise attention mechanism. The
parallel mode (Figure 2b) includes two branches, where the upper half branch applies
convolution to extract the feature maps of inputs before sending it to the channel attention
block. The lower half branch of Figure 2b denotes an element-wise attention block. The
serial mode and the parallel mode are both loosely coupled modes. The tightly coupled
mode in Figure 2c denotes that the convolutional feature maps in the element-wise attention
block are fed into channel-wise attention block. Next, we describe the tightly coupled
mode in detail.

Tightly Coupled Mode

For the tightly coupled mode of two kinds of attention mechanisms in Figure 2c, a
detailed structure diagram is shown in Figure 3. In Figure 3, two dashed frames denote the
element-wise attention block and channel-wise attention block, respectively. In the top half
part of the element-wise attention block, the feature maps after a 1-dimension CNN opera-
tion are fed into the channel-wise attention block to learn the attention among different
channels, meanwhile, this serves as the feature maps of the element-wise attention block.

The element-wise attention mechanism is realized by the Convolutional Gated Linear
Unit (ConvGLU), and the channel-wise attention mechanism is realized by the SE block.
The outputs of the element-wise attention block and channel-wise attention block are
summed and followed with a BN and a max pooling operation. Thus, two kinds of
attention blocks are tightly coupled together. As seen in the right half part in Figure 3,
cubes with different colors denote conv1d, global average pooling, fully connected layer,
Relu, batch normalization, and max pooling operations. Max pooling with the size of 1 × 2
or 1 × 4 are used to downsample the time dimension. Our experimental results show that
the tightly coupled mode outperformed the other two modes.
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Figure 2. Schematic diagram of the combination modes of two kinds of attention mechanisms.
(a) The serial mode. (b) The parallel mode. (c) The tightly coupled mode. σ denotes the sigmoid
activation function.
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Figure 3. Illustration of the tightly coupled mode. The dashed blocks in the left half part denote the channel-wise attention
block and the element-wise attention block. Cubes denote conv1d, global average pooling, fully connected layer, Relu, batch
normalization, and max pooling.

For the two different CNNs in ConvGLU, the kernel size, the stride, the filter size,
and the pooling size are all set with the same number. The CNN in the lower half part
of ConvGLU learns the importance of each element in the feature maps and then recali-
brates element-wise features by the multiplication operation. The channel-wise attention
mechanism adaptively recalibrates channel-wise feature responses by explicitly modeling
interdependencies between channels, selectively emphasizing informative features and
suppressing less useful ones. The parameters used for ConvGLUs of the DA-Net structure
are listed in Table 1.
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Table 1. Details of the parameters used for ConvGLUs of the DA-Net structure.

Name Kernel Size/Stride/Pooling Size Output Size (Channel, Time)

Input - (1, 1024)
DA-Module1 512/4/2 (1024, 128)
DA-Module2 64/1/2 (128, 64)
DA-Module3 64/1/2 (128, 32)
DA-Module4 64/1/2 (128, 16)
DA-Module5 64/1/2 (256, 8)
DA-Module6 64/1/2 (512, 4)

FC layer - (1, 360)

X0 is the input of the DA-Net. Xi, i ∈ {1, 2, 3, 4, 5, 6} are the outputs of each module
in the network, where i is the index of the downsampling modules. Each DA-Module
includes the outputs of two attention blocks, Xi,0 and Xi,1.

Xi,0 is the output of the Channel-wise Attention block.

Xi,0 = FSE(Wi ∗ Xi−1), (1)

where Wi is the weight matrix of the upper half part CNN of the ConvGLU, Xi−1 denotes
the output of the former, and ∗ denotes a convolution operation. The function FSE(·)
denotes the Squeeze-and-Excitation operating.

Xi,1 is the output of the Element-wise Attention block.

Xi,1 = HGLU(Xi−1) = (Wi ∗ Xi−1)� σ(W′i ∗ Xi−1), (2)

where W′i is the weight matrix of the lower half part CNN of the ConvGLU, σ is the sigmoid
activation function, and� denotes the element-wise product. HGLU(·) is the Convolutional
Gated Linear Unit (ConvGLU) operating.

Xi = Xi,0 + Xi,1 (3)

where i ∈ {1, 2, 3, 4, 5, 6}, X0 is the input of the DA-Net and Xi are the outputs of each
module in the DA-Net.

2.3. Channel-Wise Attention Mechanism

The channel-wise attention mechanism is realized by the SE block [35], which focuses
on the relationships among the channels of feature maps. The diagram of the channel-wise
attention mechanism is shown in Figure 4.

Fscale(·,·)

Fex(·,W)
Cˊ×Tˊ

C×T

Ftr(·,W) Fsq(·)

X
U

C×1

r

C C×1

C×T

×1

Figure 4. Channel-wise Attention Mechanism.

The SE block is a computational unit that can be constructed for any given transfor-
mation Ftr : X→ U, X ∈ RC′×T′ , U ∈ RC×T . Ftr here refers to the convolutional operator.

U = Ftr(X) = W ∗ X = [w1 ∗ X, w2 ∗ X, . . . , wC ∗ X] (4)
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W = [w1, w2, . . . , wC] denotes the learnable set of filter kernels. U = [u1, u2, . . . , uC]
denotes the output of the Ftr operation.

Squeeze: Global Information Embedding

First, the global spatial information is squeezed into a channel descriptor. This is
realized by using global average pooling to obtain channel-wise statistics. A statistic z ∈ RC

is generated by compressing U through 1× T, where the c-th element of z is calculated by:

zc = Fsq(uc) =
1
T

T

∑
t=1

uc(t) (5)

Excitation: Adaptive Recalibration

To make use of the information aggregated in the squeeze operation, an excitation
operation is followed with aiming to capture the channel-wise dependencies. A simple
gating mechanism is employed with a sigmoid activation to realize an excitation operation.

s = Fex(z, W) = σ(W2 δ(W1z)) (6)

where δ refers to the ReLU activation function,W1 ∈ R
C
r
×C

and W2 ∈ R
C×

C
r . We parame-

terize the gating mechanism by forming a bottleneck with two fully connected (FC) layers.
There exists a dimensionality-reduction layer with the parameters W1 and the reduction
ratio of r, a ReLU activation function and then a dimensionality-increasing layer with
parameters W2. The reduction ratio r is an important hyperparameter that allows reducing
the capacity and computational cost of the SE blocks in the model. r was set with 16 in
our experiments. The final output of the SE block is obtained by rescaling the convolution
output U:

x̃c = Fscale(sc, uc) = sc � uc, (7)

where X̃ = [x̃1, x̃2, . . . , x̃C] is the output of the SE block, and Fscale(sc, uc) refers to the
channel-wise multiplication between the feature map uc and the scalar sc. The network
with embedded SE block can increase its sensitivity to informative features so that they can
be exploited by subsequent transforms and can suppress less useful ones.

2.4. Element-Wise Attention Mechanism

The element-wise attention mechanism is realized by ConvGLUs. ConvGLUs control
the flow of information across the network, which may allow more complex interactions to
be modeled [31]. Dauphin et al. [30] introduced the gating mechanism as follows:

Y1 � σ(Y2) = (X ∗W1 + b1)� σ(X ∗W2 + b2), (8)

and the gradient of GLUs:

∇[Y1 � σ(Y2)] = ∇Y1 � σ(Y2) + Y1 � σ′(Y2)∇Y2 (9)

has a path ∇Y1 � σ(Y2) without downscaling factors for the activated gating units in
σ(Y2). This can be thought of as a multiplicative skip connection that helps gradients flow
through the layers. Therefore, ConvGLU helps to reduce the vanishing gradient problem. A
Convolutional Gated Linear Unit (denoted as “ConvGLU”) block is illustrated in Figure 5.
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Conv
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Figure 5. Diagram of the Convolutional Gated Linear Unit (ConvGLU) block.

In our proposed DA-Net, each element-wise attention block adopts ConvGLUs. As we
can see from the above figure, the input of ConvGLU performs two parallel convolutional
operations. The size of filters (with different weights), the number of output channels
and the strides are all identical in two parallel CNNs. The output of one CNN with a
sigmoid activation function is multiplied by the output of another CNN to obtain the
final result of ConvGLU. The ConvGLU can be thought of as performing the element-wise
attention operation.

3. Experiments
3.1. Datasets and Setting

We implemented experiments on the iKala [46] and MDB-stem-synth [47] datasets.
The iKala dataset contains 352 song segments, where only 252 song clips were released as a
public subset for evaluation. Each of the song segments is 30 s long with a sampling rate
of 44,100 Hz. All the clips were recorded Chinese pop songs performed by professional
singers. The music accompaniment and the singing voice are recorded at the left and right
channels respectively. Only the singing voice was used as the samples in this paper.

The MDB-stem-synth is a collection of 230 monophonic audio clips from MedleyDB,
which uses an analysis/synthesis method [47] to generate the synthesized audio with
perfect ground truth F0 annotation that maintains the timbre and dynamic tracking of
the original audio signal. This dataset consists of 230 tracks with 25 instruments, totaling
15.56 h of audio, hence, the name MDB-stem-synth. We performed the same processing on
the iKala and MDB-stem-synth datasets.

First, the raw audio samples were downsampled to 16 kHz. The input of the pitch
estimation model was 1024 samples (frame length) with the hop sizes of 160 samples in the
MDB-stem-synth dataset and 512 samples in the iKala dataset. Second, before being sent
to the network all samples were normalized to be with zero mean and unit variance. The
network proposed in this paper performs a frame-by-frame classification task. We trained
the network on the iKala and MDB-stem-synth datasets, respectively.

The networks were trained to minimize the binary cross-entropy between the pre-
dicted vector ŷ and the target vector y:

L(y, ŷ) =
360

∑
i=1

(−yi log ŷi − (1− yi) log(1− ŷi)) (10)

where both yi and ŷi are all between 0 and 1. The ADAM optimizer was adopted [48],
and the initial learning rate was 10−4 with the decay rate of β1 = 0.96. Each DA-Module
is followed by batch normalization [49], max pooling, and a dropout layer [50] with a
dropout probability of 0.25. The batch size in this method is 512.
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3.2. Label Processing and Postprocessing

Similar to the CREPE described in [26], pitch estimation is regarded as a classification
task. The DA-Net takes the original waveform as input and outputs the probability vector
of F0 belonging to each possible output pitch class. Cent is a unit representing the intervals
relative to a reference pitch fre f in Hz, defined as follows:

c = 1200 · log2
f

fre f
(11)

where fre f = 10 Hz in this paper. Each dimension of the output vector corresponds to the
frequency bin that covers a frequency range from 32.7 Hz to 1975.5 Hz with 20 cents of
intervals. As in [17], to soften the penalty for approaching the correct prediction value,
the ground-truth label is Gaussian-blurred so that the energy around the label frequency
decays with a standard deviation of 25 cents:

yi = exp

(
−

(ci − ctrue)2

2 · 252

)
(12)

Therefore, high activation in the last fully connected layer denotes that the input
audio is likely to have a pitch that is close to the associated pitches of the nodes with this
high activation.

Through the predicted vector ŷ, the resulting pitch estimation ĉ, in cents, is computed
as follows.

ĉ =
∑I+4

i=I−4 ŷici

∑I+4
i=I−4 ŷi

, I = argmax(ŷi) (13)

This value can then be converted from cents back to Hz to obtain the final F0.

f̂ = fre f · 2ĉ/1200 (14)

3.3. Evaluation Metrics

The evaluation of the proposed network is measured at both the raw pitch accuracy
(RPA) and the raw chroma accuracy (RCA), with a threshold of 50 cents. We used the
reference implementation provided in mir_eval [51] to compute the evaluation metrics. A
brief introduction of the evaluation metrics used in this paper is shown below:

RPA: The proportion of voiced frames where the estimated pitch is within ±
1
4

tone
(50 cents) of the ground truth pitch.
RCA: The proportion of voiced frames in which the estimated pitch and the ground truth
pitch are mapped into a single octave. This gives a measure of pitch accuracy ignoring the
octave errors.

4. Results

Our proposed DA-Net is a model with great improvement based on the CREPE
structure. Here, we compared our proposed DA-Net with CREPE and explored two kinds
of single attention networks and the DA-Nets with three kinds of DA-Modules. According
to the experimental results, the DA-Net with a tightly coupled mode achieved the best
performances. We also compared our proposed DA-Net with three previous methods.

4.1. Comparison of Single or Dual Attention Networks

The CREPE model reported in [26] was trained on the MIR-1K, Bach10, RWC-synth,
MedleyDB, MDB-stem-synth, and Nsynth datasets. These six datasets are all composed
of vocal and instrumental audio. The CREPE method is, therefore, expected to work best
on this type of signal. We retrained the CREPE models on the iKala [46] and MDB-stem-
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synth [47] datasets. Table 2 shows the results of our proposed networks with different
attention mechanisms on the iKala dataset.

Table 3 shows the results of the same networks as that in Table 2 on the MDB-stem-
synth dataset. CREPE in Tables 2 and 3 denotes that we trained the CREPE model with
a six-layer CNN only on the iKala dataset and only on the MDB-stem-synth dataset,
respectively. The EA denotes the network using the element-wise attention module instead
of the DA-Module in the proposed network. The CA denotes that in the architecture of
DA-Net, the channel-wise attention module was instead of the DA-Module. The DA-S
denotes our proposed DA-Net with Serial mode. In each DA-S module, the inputs are fed
into the EA block, and its outputs are further fed into the CA block.

DA-P denotes that each DA-Module was with Parallel mode in the proposed DA-Net.
Each DA-P module includes two branches, where the top half branch applies CNN to
extract the feature maps of inputs before sending it to the CA block. The lower half branch
is the EA block. DA-TC denotes that the DA-Net was with the Tightly Coupled mode. In
the top half part of the EA block of DA-TC modules, the feature maps after a 1-dimension
CNN are fed into the CA block to learn the attention of various channels, meanwhile, it
served as the feature maps of the EA block.

From the results in Tables 2 and 3, we can see that the scores of the network were
quite different on the two datasets. On the two datasets, the average scores of the EA, CA,
DA-S, DA-P, and DA-TC were superior to the CREPE model. On the iKala dataset, DA-TC
outperformed CREPE by 0.72% at RPA and 0.78% at RCA. On the MDB-stem-synth dataset,
the scores of EA were higher than that of CREPE by 4.85% (RPA) and 3.31% (RCA). The
scores of CA and DA-S were also slightly higher than those of the CREPE. It can be seen in
Section 2.2 that DA-TC had six fewer convolution operations than DA-P.

Compared with DA-P, DA-TC had not only fewer parameters but also higher perfor-
mance. DA-TC showed 5.60% and 3.88% improvements at RPA and RCA on MDB-stem-
synth, respectively. Therefore, the DA-TC proposed in this paper maximized the effect of
the element-wise attention mechanism and channel-wise attention mechanism to improve
the estimation performance. Figure 6 illustrates the estimated contour by DA-TC drawing
on the spectrum of a clip in the MDB-stem-synth dataset and the comparison with the
ground truth.

Table 2. Comparison of our proposed network with different attention mechanisms on the
iKala dataset.

Structure RPA RCA

CREPE [26] 91.36% 91.48%
EA 91.46% 91.62%
CA 91.71% 91.92%

DA-S 91.91% 92.07%
DA-P 91.68% 91.83%

DA-TC 92.08% 92.26%

Table 3. Comparison of our proposed network with different attention mechanisms on the MDB-
stem-synth dataset.

Structure RPA RCA

CREPE [26] 87.55% 89.53%
EA 92.40% 92.84%
CA 88.77% 89.63%

DA-S 90.30% 91.96%
DA-P 91.31% 91.76%

DA-TC 93.15% 93.41%
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(a)

(b)

(c)

Figure 6. Pitch contour of a clip in the MDB-stem-synth dataset. (a) The ground truth pitch contour
drawing on the spectrum with log-scale frequency. (b) Predicted pitch contour drawing in the same
spectrum as in (a). (c) Curves of the predicted pitch and ground truth.
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4.2. Comparison with Previous Methods

The proposed DA-TC model for pitch estimation was also compared with the pYIN [9],
SWIPE [11] and SPICE [29] algorithms. pYIN and SWIPE are the classic traditional pitch
estimators, and SPICE is based on a neural network trained in a self-supervised way.
Table 4 shows the results of pitch estimation from different methods on the MDB-stem-
synth dataset.

The results of pYIN and SWIPE were listed according to the reported results in the
paper [26]. In the reference [29], the authors only reported the results of RPA but without
that of RCA. The results in Table 4 show that the average score of DA-TC was higher than
pYIN, SWIPE, and SPICE by 1.15%, 0.65%, and 4.05% in the term of RPA.

Table 4. Comparison of the proposed method (DA-TC) and three methods on the MDB-stem-
synth dataset.

Structure RPA RCA

pYIN [9] 91.90% 93.60%
SWIPE [11] 92.50% 93.60%
SPICE [29] 89.10% −

DA-TC 93.15% 93.41%

5. Conclusions

In this paper, we proposed a data-driven method, DA-Net, for pitch estimation of
monophonic music operating on raw samples. We investigated our proposed DA-Net with
three kinds of combination modes and the single attention networks, which included EA
and CA. The iKala and MDB-stem-synth datasets were used to train and test. According to
the experimental results, we can draw our conclusions as follows:

(i) The performances of the models when introducing single attention mechanisms, such
as EA and CA, were better than CREPE.

(ii) Dual attention networks (DA-S, DA-P, and DA-TC) outperformed the CREPE model.
Among them, DA-TC, which maximizes the effect of the element-wise attention mech-
anism and the channel-wise attention mechanism, achieved the best performance.

(iii) DA-TC obtained the best results and outperformed pYIN, SWIPE, and SPICE on the
MDB-stem-synth dataset.
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