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Abstract: The isotopically enriched cyanide anion, (13C≡15N)−, has a great potential as the NMR
probe of non-covalent interactions. However, hydrogen cyanide is highly toxic and can decompose
explosively. It is therefore desirable to be able to theoretically estimate any valuable results of certain
experiments in advance in order to carry out experimental studies only for the most suitable molecular
systems. We report the effect of hydrogen bonding on NMR properties of 15N≡13CH···X and
13C≡15NH···X hydrogen bonding complexes in solution, where X = 19F, 15N, and O=31P, calculated at
the ωB97XD/def2tzvp and the polarizable continuum model (PCM) approximations. In many cases,
the isotropic 13C and 15N chemical shieldings of the cyanide anion are not the most informative NMR
properties of such complexes. Instead, the anisotropy of these chemical shieldings and the values of
scalar coupling constants, including those across hydrogen bonds, can be used to characterize the
geometry of such complexes in solids and solutions. 1J(15N13C) strongly correlates with the length of
the N≡C bond.

Keywords: cyanide; hydrogen bonding; non-covalent interactions; NMR; chemical shift anisotropy;
scalar coupling; DFT; GIAO

1. Introduction

Hydrogen cyanide and cyanide salts are ubiquitous compounds. They can be both the
starting ingredients of life [1,2] and the reason for its end [3–5]. The most distinctive feature
of the cyanide anion is that its two ends are capable of almost equal non-covalent interac-
tions [6]. As a result, its orientation in crystalline cyanide salts is often disordered [7–11].
The same feature is responsible for the polymerization of hydrogen cyanide, resulting
in materials with different characteristics and properties [12–15]. Dimers [16–18] and
linear clusters [19,20] of hydrogen cyanide, its crystal structure [21], and its aggregates
with the cyanide anion [22] and other proton acceptors [23–26] were studied both experi-
mentally and theoretically. The knowledge gained in these studies was used in practical
applications [27–32].

A deeper understanding of the properties of non-covalent interactions involving
the cyanide anion in condensed matter systems can be obtained using Nuclear Mag-
netic Resonance (NMR) spectroscopy. Although it can be done using naturally abundant
(12C≡14N)− [33,34], (13C≡14N)− [8,35], and (12C≡15N)− [36], more can be learned with
isotopically enriched (13C≡15N)− [37–41]. It appears that the isotropic 13C and 15N NMR
chemical shifts of the cyanide anion change characteristically when the corresponding atom
participates in covalent or non-covalent interactions and can therefore be used to study
these interactions [42,43]. In this sense, the properties of these isotropic chemical shifts are
similar to the 15N isotropic chemical shift of pyridines [44,45]. However, even for pyridines,
non-covalent interactions of different nature can lead to similar changes in the 15N isotropic
chemical shift [46]. Direct covalent or non-covalent interactions are not the only factors
that can have a measurable effect on the isotropic chemical shift. The vibrational wave
function of the molecule [47–49], solvent effects [50,51], molecular exchange [52], and the
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crystal field [53] are important as well. All of these factors are particularly important for the
cyanide anion, which has two similar active centers for non-covalent interactions. However,
it is this feature that can be used to solve the problem.

Isotropic chemical shifts are not the only NMR parameters that can be useful. In solu-
tion, the structure of hydrogen bonded complexes can be elucidated using scalar spin-spin
couplings including those across hydrogen bonds [54–59]. For 12C≡15N-H···19F dissolved
in a CDF3/CDF2Cl mixture, three scalar couplings were measured experimentally at 130 K:
|1J(15N1H)| = 92 Hz, |2hJ(15N19F)| = 61 Hz, and |1hJ(1H19F)| = 63 Hz [60]. Even when
some couplings are not available or averaged to zero by rapid molecular exchange, the
1J(13C15N) coupling can still provide important information about the qualitative struc-
ture of such complexes. In solids, the anisotropy of the chemical shielding is much more
sensitive to external influences [61,62] and molecular dynamics [63,64] than the isotropic
value. Consequently, (13C≡15N)− is an ideal hydrogen bond acceptor for NMR studies
both in solutions and in solids, because several independent parameters can be measured
for the same sample under the same experimental conditions. However, hydrogen cyanide
is highly toxic and can decompose explosively. It is therefore desirable to theoretically esti-
mate any valuable results of certain experiments in advance and to carry out experimental
studies only for the most suitable molecular systems.

In this work we report on a computational study of a variety of 15N≡13C-H···X and
13C≡15N-H···X hydrogen bonded complexes, where X = 19F-R, 15N-R, O=31P-R and cover
a wide range of basicity. (Li15N13C)4···(1H4

15N)+ and (Li13C15N)4···(1H4
15N)+ hydrogen

bonded aggregates have been used to study the effect of competing non-covalent inter-
actions. The objective of this study was to explore the dependence of NMR parameters
on the properties of hydrogen bonding. For each of these parameters, we assessed the
amplitude of possible changes and the ability to use these changes to differentiate between
different interactions.

2. Materials and Methods

Gaussian 09.D.01 program package was used [65]. Geometry optimizations were done
in theωB97XD/def2tzvp approximation [66,67]. The identity of minima was confirmed
by the absence of imaginary vibrational frequencies. NMR parameters were calculated
using the Gauge-Independent Atomic Orbital GIAO method [68] in the ωB97XD/pcJ-2
approximation [69,70]. All calculations were done using the Polarizable Continuum Model
(PCM) with water as a solvent [71–73], unless otherwise noted. The default SCRF=PCM
method was used to construct the solute cavity.

TheωB97XD functional and the pcJ-2 basis set are capable of correctly reproducing
the experimental values of the chemical shielding and scalar spin-spin coupling [50,53,74].
On the contrary, both the PCM and the solvation model based on density (SMD) approx-
imation [75] underestimate solvent effects on the geometry of hydrogen bonded com-
plexes [51,76]. The resulting deviations can only be neglected in specific cases [77–79]. For
polar solvents, a change in the values of the dielectric constant has a negligible effect. There
are a number of approaches that can be used to properly simulate solvent effects [80–85].
None of these approaches are universal and effortlessly applicable to an arbitrary molec-
ular system. Consequently, the geometries of the molecular complexes used below do
not correspond to either the averaged or the most expected experimental geometries in a
polar medium. These geometries are used only for a qualitative assessment of the NMR
parameters that can be expected in solution for such complexes.

Chemical shieldings are tensor quantities. For the cyanide anion, the principal compo-
nents of the 13C and 15N shielding tensors, σ11 ≤ σ22 ≤ σ33, can be easily represented in
the molecular coordinate system. One of these components is parallel to the C≡N bond
and the other two are normal to this bond and are equal. In this paper the isotropic value
of these shielding tensors, σiso = (σ11 + σ22 + σ33)/3, and their span, Ω = σ33 − σ11, will be
discussed. More detailed description can be found elsewhere [86–88].
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3. Results and Discussion

Figure 1 shows the structures of NCH and CNH complexes with various proton
acceptors and their relative energies. For most of these complexes, the NCH···X form is
energetically more preferable than the CNH···X form. The opposite situation is observed
for complexes with pyridine-4-amine and 1-azabicyclo[2.2.2]octane, Figure 1e,f. This result
is associated with the fact that the energy of hydrogen cyanide is 65 kJ/mol lower than
the energy of hydrogen isocyanide, Figure 1a. This difference is much smaller in their
complexes with proton acceptors. Consequently, one can say that the binding energy of
the CNH···X form is much higher [89], and this form may be stable if the carbon atom
participates in another covalent or non-covalent interaction [43,90–92]. The analysis of
the energetically most favorable structures with the hydrogen bonded cyanide anion at
different conditions is beyond the scope of this study. The NMR parameters of both forms
are reported below.

Figure 1. The structure of NCH and CNH complexes with proton acceptors and their relative energies
∆E = E(CNH-form) − E(NCH-form) obtained at theωB97XD/def2tzvp and PCM = water approxima-
tions. (a) No acceptor, (b) fluoride anion (F−), (c) ammonia (NH3), (d) pyridine, (e) pyridine-4-amine
(4AP), (f) 1-azabicyclo[2.2.2]octane (ABCO), (g) phosphoric acid (P=O).

3.1. The Effect of Hydrogen Bonding on the NMR Parameters of NCH and CNH

The length of the N≡C bond decreases in the series (N≡C)−, C≡NH, N≡CH, Table 1.
However, the NMR parameters of these species are mainly determined by the location of
the proton, and not by this contraction. Any of these parameters can be used to distinguish
between CNH and NCH. On the contrary, the difference with (NC)−, is large only for
the atom carrying the proton. The only exception is 1J(15N13C). The absolute value of
this coupling decreases almost linearly with increasing N≡C distance. The difference of
σiso(15N) in (NC)− and CNH is similar to that in pyridine and pyridinium [44]. 1J(15N1H)
in CNH is the same as in pyridinium [93]. 2J(15N1H) and 2J(13C1H) in NCH and CNH can
be measured in the absence of proton exchange.
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Table 1. The N≡C distances, the isotropic chemical shielding, σiso, the span, Ω, of the shielding tensors of the 15N and 13C
nuclei, and scalar coupling constants of NC−, NCH, and CNH obtained at the PCM = water approximation.

Compound N≡C, Å
15N, ppm 13C, ppm 1J(15N13C),

Hz
J(15N1H),

Hz
J(13C1H),

Hzσiso Ω σiso Ω

15N≡13C− 1.1664 −46 585 10 403 −7 - -
15N≡13C1H 1.1436 −24 548 65 302 −25 −11 267
13C≡15N1H 1.1585 78 401 13 392 −14 −121 23

NCH is a weak proton donor. The proton transfer only takes place in its complex
with F− anion, (NC)−···H-F, Table 2. The N≡C distance in this complex is shorter than
that in free (NC)−, but greater than that in CNH. All other complexes have the NC-H···X
structure with the N≡C distance greater than that in free NCH, but shorter than that in free
CNH. For the weakest proton acceptor studied here, the O=P group, the N≡C distances
in (NC-H)2···O=P, and free NCH are very similar. Note, that in this work we use the
(NC-H)2···O=P complex, Figure 1g. The O=P group tends to form two hydrogen bonds
at the same time [94–96]. Moreover, the presence of the second bond does not affect the
strength of the first one. CNH is a strong proton donor. The structure CN-H···X is present
only for pyridine and the P=O group. In these CN-H···X complexes the N≡C distance
is very similar to that in (NC)−···H-F, Table 2. It is noteworthy that, for the same proton
acceptor, the H···X distance in CN-H···X is shorter than in NC-H···X.

Table 2. Geometry of NCH···X and CNH···X complexes obtained at PCM = water.

Base (X)
NCH···X CNH···X

N≡C, Å C···H, Å H···X, 1 Å C≡N, Å N···H, Å H···X, 1 Å

F− 1.1599 1.5754 1.0093 1.1636 1.5202 0.9875
H3N 1.1461 1.1072 1.9093 1.1646 1.6310 1.0790

pyridine 1.1458 1.1034 1.9051 1.1594 1.0886 1.5705
4AP 1.1463 1.1109 1.8543 1.1650 1.7032 1.0515

ABCO 1.1471 1.1282 1.7753 1.1650 1.6868 1.0578
P=O 1.1448 1.087 1.90 1.1583 1.029 1.70

1 The distance between the NCH or CNH proton and the proton accepting atom of the base.

σiso(15N) and Ω(15N) can be used to distinguish between different CN-H···X com-
plexes, Table 3. On the contrary, these parameters are very similar in all (CN)−···H-X and
NC-H···X complexes. σiso(13C) and Ω(13C) are very similar for all NC-H···X complexes.
However, these parameters can be used to distinguish between the NC-H···X, (NC)−···H-X,
and CNHX complexes.

Table 3. The isotropic chemical shielding, σiso, and the span, Ω, of the shielding tensors of the 15N
and 13C nuclei of NCH···X and CNH···X complexes obtained at PCM = water.

Base (X)
NCH···X CNH···X

15N, ppm 13C, ppm 15N, ppm 13C, ppm
σiso Ω σiso Ω σiso Ω σiso Ω

F− −33 566 25 383 −17 546 14 397
H3N −17 538 57 335 −27 560 13 398

pyridine −20 560 57 334 39 461 17 388
4AP −19 541 56 336 −28 561 11 401

ABCO −21 546 55 341 −24 559 11 403
P=O −20 544 60 331 59 434 17 389

The geometry of NC-H···X and (NC)−···H-X complexes can be quantitatively charac-
terized using 1J(13C1H), Table 4. The long range hJ(13CX) couplings across the hydrogen
bond are also large enough to be observed experimentally. The location of the mobile
proton in these complexes can be proved using any scalar coupling. This is trivial for
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1J(13C1H) and hJ(1HX). However, because the N≡C distances in NC-H···X are shorter
than in (NC)−···H-X, 1J(15N13C) ≥ 20 Hz in NC-H···X and about 10 Hz in (NC)−···H-X.
2J(15N1H) can be measured in NC-H···X but not in (NC)−···H-X. Surprisingly, 3hJ(15N19F)
in (NC)−···H-F is large.

Table 4. Scalar coupling constants in NCH ···X obtained at PCM = water.

Base (X)
1J(15N13C),

Hz

2J(15N1H),
Hz

1J(13C1H),
Hz

1hJ(1HX),
Hz

2hJ(13CX),
Hz

3hJ(15NX),
Hz

F− −10 −2 31 291 1 314 1 −22 1

H3N −22 −12 258 4 2 20 2 1 2

pyridine −22 −12 259 4 2 −21 2 1 2

4AP −22 −12 255 4 2 −24 2 1 2

ABCO −20 −12 243 2 2 −23 2 1 2

P=O −24 −12 266 −2 3 7 3 0 3

1 X = 19F. 2 X = 15N. 3 X = 31P.

A combination of 1J(15N1H), and 1hJ(1HX) can be used to quantitatively characterize
the geometry of CN-H···X and (CN)−···H-X complexes, Table 5. The long range hJ(15NX)
across the hydrogen bond are large, except 3hJ(15N31P). 2J(13C1H) can be measured in CN-
H···X only. 1J(15N13C) < 10 Hz is characteristic for (CN)−···H-X. In CN-H···X the value of
this coupling is similar to that in (NC)−···H-X. 3hJ(13C19F) in (CN)−···H-F is large enough
to be observed experimentally.

Table 5. Scalar coupling constants in CNH ···X obtained at PCM = water.

Base (X)
1J(15N13C),

Hz

1J(15N1H),
Hz

2J(13C1H),
Hz

1hJ(1HX),
Hz

3hJ(13CX),
Hz

2hJ(15NX),
Hz

F− −8 −5 3 371 1 27 1 −93 1

H3N −7 1 1 −66 2 −2 2 12 2

pyridine −13 −94 22 −5 2 −3 2 16 2

4AP −8 3 1 −97 2 −2 2 11 2

ABCO −8 4 1 −73 2 −2 2 9 2

P=O −15 −114 25 −2 3 0 3 −3 3

1 X = 19F. 2 X = 15N. 3 X = 31P.

It is worth taking a closer look at the complex of the cyanide anion with hydrogen
fluoride. It is obvious that the fluoride anion in solution interacts not only with hydrogen
cyanide but also with a cation. The later interaction is simulated here using lithium
fluoride. For hydrogen cyanide the structure of this complex is NCH···FLi both at the gas
phase and PCM approximations, Table 6. For hydrogen isocyanide the structure of this
complex is CNH···FLi at the gas phase approximation and (CN)−···(H-FLi)+ at the PCM
approximation. At the gas phase approximation, the H···F distance in CN-H···FLi is much
shorter than in NC-H···FLi. The geometry of NC-H···FLi shows that this distance changes
much more than other distances when the influence of the solvent is considered.

Table 6. Geometry of NCH···FLi and CNH···FLi hydrogen-bonded complexes obtained at the gas
phase and PCM = water approximations.

PCM
NCH···FLi CNH···FLi

N≡C, Å C···H, Å H···F, Å C≡N, Å N···H, Å H···F, Å

gas 1.1460 1.0980 1.6935 1.1602 1.0438 1.5239
water 1.1484 1.1461 1.4666 1.1605 1.2079 1.1738

The geometric changes cause changes of the chemical shieldings, Table 7. However,
these relationships are anything but self-evident. For NC-H···FLi, the use of the PCM
approximation leads to large changes in σiso(15N) and Ω(15N), although the N≡C distance
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changes only slightly. CN-H···FLi and (CN)−···(H-FLi)+ have similar σiso(13C) and very
different Ω(13C). The ambiguity of these changes suggests that correctly interpreting the
geometry of hydrogen bonded complexes based on NMR data may require comparing
several NMR parameters.

Table 7. The isotropic chemical shielding, σiso, and the span, Ω, of the shielding tensors of
the 15N and 13C nuclei of NCH···FLi and CNH···FLi complexes obtained at the gas phase and
PCM = water approximations.

PCM
NCH···FLi CNH···FLi

15N, ppm 13C, ppm 15N, ppm 13C, ppm
σiso Ω σiso Ω σiso Ω σiso Ω

gas −32 561 61 330 57 436 12 395
water −16 538 52 344 16 497 18 361

In contrast, the values of scalar couplings seem to be only marginally dependent
on the use of the PCM approximation, Table 8. For NC-H···FLi the main changes, as
expected, are observed for 1J(13C1H), 1hJ(1H19F), and 2hJ(13C19F). The change of CN-H···FLi
to (CN)−···(H-FLi)+ leads to strong changes in 1J(15N1H), 1hJ(1H19F), and 2hJ(15N19F). The
contraction for the N . . . F distance in (CN)−···(H-FLi)+ causes an increase of 3hJ(13C19F).

Table 8. Scalar coupling constants in NCH ···FLi and CNH ···FLi obtained at the gas phase and
PCM = water approximations.

Complex
1J(15N13C),

Hz
J(15N1H),

Hz
J(13C1H),

Hz

1hJ(1H19F),
Hz

hJ(13C19F),
Hz

hJ(15N19F),
Hz

gas
NCH···FLi −22 −12 256 −66 146 −7
CNH···FLi −13 −110 24 −72 15 −79

water
NCH···FLi −20 −12 232 −109 252 −17
CNH···FLi −11 −57 16 47 42 −153

The complex of hydrogen cyanide with tetrabutylammonium fluoride is the only
complex that has so far been characterized in detail experimentally by means of NMR.
The experimentally measured |1J(15N1H)| = 92 Hz [60]. Consequently, this complex
has the CN-H···F− structure. Other coupling constants are |2hJ(15N19F)| = 61 Hz, and
|1hJ(1H19F)| = 63 Hz [60]. The values of these three coupling constants are close to those
calculated for CN-H···FLi in the gas phase approximation, Table 8. To a first approximation,
this result again indicates that the values of these constants depend mainly on the distances
and much less on considering the influence of the solvent field. However, the closeness
of the experimental and calculated values should not be overestimated. Compare the
expected changes in these coupling constants when going from CN-H···FLi to (CN)−···(H-
FLi)+, Table 8. 1J(15N1H) changes from −110 Hz to −57 Hz. The experimental value
|1J(15N1H)| = 92 Hz is very reasonable. 1hJ(1H19F) changes from −72 Hz to 47 Hz. The
experimental value |1hJ(1H19F)| = 63 Hz is consistent with the trend. 2hJ(15N19F) changes
from −79 Hz to −153 Hz. The experimental value |2hJ(15N19F)| = 61 Hz contradicts to
the trend. Similar problems were observed for the complex of pyridine with hydrogen
fluoride [50].

3.2. Proton Bound Dimers of Cyanide

Three proton bound dimers of cyanide are possible: [NCHCN]−, [CNHCN]−, and
[CNHNC]−. Note that the most energetically favorable structure of HN2C2 is N≡C-
C≡NH+. However, cyanogen does not form spontaneously in hydrogen cyanide solu-
tions [97] and is not discussed here. Proton bound hydrogen cyanide homodimers and
more complex clusters [98–100] are also not discussed here.
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[NC···H···CN]− is the energetically most favorable proton bound dimer of cyanide,
Table 9. In this centrosymmetric complex, the proton is equally strongly bound to both
carbon atoms. The N≡C and C···H distances are very short.

Table 9. The structure of NC−···HCN, NC−···HNC, and −CN···HNC complexes, their relative
energies ∆E, the isotropic chemical shielding, σiso, the span, Ω, of the shielding tensors, and scalar
coupling constants obtained at PCM = water.

Parameter [NC···H···CN]− [CN]−···H-CN [CN]−···H-NC

∆E, kJ/mol 0 51 64
Base: N≡C, Å 1.1515 1.1655 1.1611
Base: X···H, Å 1.2220 1 1.1756 2 1.4362 2

Acid: H-Y, Å 1.2220 3 1.2917 3 1.0847 4

Acid: N≡C, Å 1.1515 1.1528 1.1532
Base: σiso (15N), ppm −6 −17 −22

Base: Ω(15N), ppm 525 548 555
Acid: σiso (15N), ppm −6 −19 28

Acid: Ω(15N), ppm 525 544 481
Base: σiso (13C), ppm 32 21 16

Base: Ω(13C), ppm 377 385 394
Acid: σiso (13C), ppm 32 32 23

Acid: Ω(13C), ppm 377 376 382
Base: 1J(15N13C), Hz −13 −8 −9
Acid: 1J(15N13C), Hz −13 −13 −14
Base: J(13C1H), Hz 95 14 5
Acid: J(13C1H), Hz 95 95 24
Base: J(15N1H), Hz −8 −44 −9
Acid: J(15N1H), Hz −8 −8 −87

2hJ(XHY), Hz 113 5 −57 6 20 7

1 X = C. 2 X = N. 3 Y = C. 4 Y = N. 5 2hJ(13C13C). 6 2hJ(13C15N). 7 2hJ(15N15N).

The hetero- and homodimers [CN]−···H-CN and [CN]−···H-NC have similar energies
and are asymmetric. The reason why some proton bound homodimers are symmetric and
others not was explained in the past [101,102] and recently reviewed [103]. In [CN]−···H-
CN, the hydrogen bond is stronger, and the position of the proton is more symmetric. In this
complex the N···H distance is shorter than the H-C distance. However, the C≡N distance
in the [CN]− unit is similar to that in free [CN]−, while in the H-CN unit this distance
is closer to that in free H-CN, Tables 1 and 9. For this reason, we call the former unit in
this complex a base, and the latter an acid, regardless of the distance to the proton. The
geometry of [CN]−···H-NC is similar to that of proton bound homodimers of pyridine [104]
and its derivatives [105]. Some of the NMR parameters of this complex and its derivatives
can be found elsewhere [106–108].

In all these complexes σiso(13C), Ω(13C), σiso(15N) and Ω(15N) are very similar and
can hardly be used to characterize both the complexes and the specific units, except for
H-NC in [CN]−···H-NC, Table 9. Scalar couplings are more characteristic. Note how large
2hJ(13C13C) and 2hJ(13C15N) can be across these hydrogen bonds.

3.3. Solvation by the Cyanide Anions

There are examples of hydrogen bonded aggregates in which several equal units are
solvating one center. For example, aggregates (FH)n . . . F− with n ≤ 6 were extensively
investigated both experimentally and theoretically [49,59,109,110]. An increase in n leads to
a weakening of each of the hydrogen bonds due to the anticooperativity of their interaction.
Here, this effect will be used to determine the amplitude of changes in NMR parameters
that are possible for the same type of interaction.

The experimentally observed CN-H···F− complex was discussed above. The energy
of this complex is similar to that of NC-H···F−, Table 10. For larger (CN-H)n···F− and
(NC-H)n···F− aggregates with n = 2−4 (NC-H)n···F− are energetically more favorable
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because hydrogen cyanide has lower energy than isocyanide. Here we are interested
whether it is possible to recognize aggregates with different n by NMR. The geometry of
these aggregates gradually changes with increasing n. These changes lead to changes in the
NMR parameters. How large are the changes in the NMR parameters and are the trends of
these changes monotonic?

Table 10. Geometry of (NCH)n···F− and (CNH)n··· F− aggregates obtained at PCM = water.

n ∆E 1

kJ/mol
(NCH)n··· F− (CNH)n···F−

N≡C, Å C···H, Å H···F, Å C≡N, Å N···H, Å H···F, Å

1 4 1.1599 1.5754 1.0093 1.1636 1.5202 0.9875
2 48 1.1485 1.1488 1.4674 1.1590 1.1086 1.3338
3 93 1.1469 1.1197 1.5819 1.1584 1.0612 1.4651
4 143 1.1461 1.1062 1.6621 1.1583 1.0412 1.5588

1 Relative energies ∆E = E(CNH-form) − E(NCH-form)

In (NC-H)n···F− with n = 2−4 all shielding parameters, σiso(13C), Ω(13C), σiso(15N)
and Ω(15N), are similar for all n and can hardly be used to distinguish between these
complexes, Table 11. In contrast, in (CN-H)n···F− only for Ω(13C) the changes are small. The
dependence of σiso(15N) and Ω(15N) on the N . . . H distance is well known. Surprisingly,
in this complex, σiso(13C) also strongly depends on this distance. Note that these changes
do not correlate with changes in the N≡C distance, Table 10.

Table 11. The isotropic chemical shielding, σiso, and the span, Ω, of the shielding tensors of the 15N
and 13C nuclei of (NCH)n···F− and (CNH)n··· F− aggregates obtained at PCM = water.

n
(NCH)n···F− (CNH)n···F−

15N, ppm 13C, ppm 15N, ppm 13C, ppm
σiso Ω σiso Ω σiso Ω σiso Ω

1 −33 566 25 383 −17 546 14 397
2 −15 537 51 344 34 470 20 386
3 −16 539 55 339 47 451 29 387
4 −18 540 57 336 55 440 18 389

The composition of (NC-H)n···F− can be clearly obtained using 1J(13C1H), 1hJ(1H19F),
and 2hJ(13C19F), Table 12. For (CN-H)n···F− the same can be done using 1J(15N1H) and
2hJ(15N19F). The behavior of 1hJ(1H19F) is not monotonic, Table 12. The reason for this is as
follows [59]. J(1H19F) is very large and positive at short H . . . F distances. As this distance
increases, J(1H19F) decreases, goes through zero, and becomes negative. The absolute
value of this coupling increases again, passes through a maximum, and then decreases
to zero. In (NC-H)n···F− the H . . . F distances are larger than in (CN-H)n···F− for the
same n and J(1H19F) is close to its negative maximum already at n = 2, Tables 10 and 12.
However, J(1H19F) does not depend exclusively on the H . . . F distance and differs in
(NC-H)n···F− and (CN-H)n···F− for the same H . . . F distance. Note that the same behavior
is observed for 2hJ(15N19F) in (CN-H)n···F− as n changes from 1 to 3. The long range
2hJ(15N1H), 2hJ(13C1H), and 3hJ(15N19F) are similar for all n = 2−4. In contrast, 3hJ(13C19F)
varies greatly with n. 1J(15N13C) cannot be used to distinguish between different n = 2−4,
but this coupling is characteristic for (NC-H)n···F− and (CN-H)n···F−.
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Table 12. Scalar coupling constants in (NCH)n···F− and (CNH)n··· F− aggregates obtained at
PCM = water.

Complex
1J(15N13C),

Hz
J(15N1H),

Hz
J(13C1H),

Hz

1hJ(1H19F),
Hz

hJ(13C19F),
Hz

hJ(15N19F),
Hz

(NCH)···19F− −10 −2 31 291 314 −22
(NCH)2···19F− −20 −12 230 −108 228 −16
(NCH)3···19F− −22 −12 250 −87 171 −11
(NCH)4···19F− −22 −12 257 −68 132 −8
(CNH)···19F− −8 −5 3 371 27 −93
(CNH)2···19F− −13 −87 22 −67 29 −109
(CNH)3···19F− −14 −103 25 −73 19 −80
(CNH)4···19F− −15 −110 25 −61 13 −58

The cyanide anion is a quasisymmetric two-faced acceptor of interactions. How
strong is the anticooperativity of such interactions? Here we compare ([NC]−)4···[H4N]+,
(LiNC)4···[H4N]+, ([CN]−)4···[H4N]+, and (LiCN)4···[H4N]+ aggregates. The hydrogen
bonds in ([NC]−)4···[H4N]+ and ([CN]−)4···[H4N]+ are weak. The C . . . H and N . . . H
distances are large and the N≡C distances are close to that in free [C≡N]−, Tables 1 and 13.
The energies of these aggregates are very similar. Although the addition of terminal Li
cations weakens these bonds, the effect is small. At the same time, the presence of a new
interaction can change the preferred orientation of the cyanide anions, Table 13.

Table 13. Geometry of (NC)4
3−···(H4N)+, (LiNC)4

3−···(H4N)+, (CN)4
3−···(H4N)+, and

(LiCN)4
3−···(H4N)+ hydrogen-bonded aggregates obtained at PCM = water.

B ∆E 1

kJ/mol
([BNC]−)4···(NH4)+ ([BCN]−)4···(NH4)+

N≡C, Å C···H, Å N-H, Å C≡N, Å N···H, Å N-H, Å

No −6 1.1644 2.0233 1.0400 1.1655 1.8751 1.0374
Li+ 10 1.1624 2.0295 1.0382 1.1615 1.8834 1.0359

1 Relative energies ∆E = E(CNH-form) − E(NCH-form).

Surprisingly, the presence of Li has a great impact on σiso(15N) and Ω(15N), regardless
of whether it interacts with nitrogen or carbon atoms, Table 14. Its impact on σiso(13C) and
Ω(13C) can be measurable but is smaller.

Table 14. The isotropic chemical shielding, σiso, and the span, Ω, of the shielding tensors of the
15N and 13C nuclei of (15N≡13C)4

3−···(H4N)+, (Li15N≡13C)4···(H4N)+, (13C≡15N)4
3−···(H4N)+, and

(Li13C≡15N)4···(H4N)+ aggregates obtained at PCM = water.

B
([B15N≡13C]−)4···(NH4)+ ([B13C≡15N]−)4···(NH4)+

15N, ppm 13C, ppm 15N, ppm 13C, ppm
σiso Ω σiso Ω σiso Ω σiso Ω

No −37 572 15 398 −39 579 13 399
Li+ −109 691 27 384 4 520 35 378

Scalar couplings in these aggregates are small and are not easy to measure, Table 15.
However, the value of 1J(15N13C) in (Li13C≡15N)4···(H4

15N)+ is very remarkable. It shows
that this coupling increases above 15 Hz when the carbon atom participates in a strong
interaction and remains below 15 Hz when such interaction is either weak or directed
towards the nitrogen atom, Tables 1 and 15.
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Table 15. Scalar coupling constants in (15N≡13C)4
3−···(1H4

15N)+, (Li15N≡13C)4
3−···(1H4

15N)+,
(13C≡15N)4

3−···(1H4
15N)+, and (Li13C≡15N)4

3−···(1H4
15N)+ aggregates obtained at PCM = water.

Complex
1J(15N13C),

Hz

hJ(15N1H),
Hz

hJ(13C1H),
Hz

hJ(13C15N),
Hz

hJ(15N15N),
Hz

([15N≡13C]−)4···(H4
15N)+ −9 0 −7 −15 1

(Li15N≡13C)4···(H4
15N)+ −5 −1 −6 −15 0

([13C≡15N]−)4···(H4
15N)+ −7 5 0 −1 6

(Li13C≡15N)4···(H4
15N)+ −17 4 0 −1 5

4. Conclusions

This work reports on the geometry and NMR parameters of hydrogen cyanide and
isocyanide hydrogen bonded to proton acceptors, whose ability to accept protons was
distributed over a wide range. The main objective of this study was to find NMR parameters
that can be used to unambiguously determine the structure of such complexes. The most
important conclusions are as follows.

For weak proton acceptors, the most energetically favorable structure is NC-H···X. The
NMR parameters of such structures are similar to those of free hydrogen cyanide. The most
characteristic parameters of these structures are 1J(13C1H) > 200 Hz and |1J(15N13C)| > 20 Hz.

For strong proton acceptors, the most energetically favorable structure may be C≡N···H···X.
The most characteristic parameters of these structures are the 15N isotropic chemical shift, the
span of the 15N chemical shift tensor, and 1J(15N1H).

When the cyanide anion interacts with weak acids, both [NC]−···H-X and [CN]−···H-
X structures are equally possible. The NMR parameters of such structures are similar
to those of free cyanide anion. However, if the terminal nitrogen atom in [NC]−···H-X
participates in an additional interaction, its chemical shift can vary greatly.

The most energetically favorable structure of a complex of hydrogen cyanide and the
cyanide anion is symmetric, [NC···H···CN]−, with 1hJ(13C1H) about 100 Hz.

The spin-spin coupling across the N≡C bond, 1J(15N13C) strongly correlates with the
bond length and can be used to identify the structure of hydrogen bonded complexes in
cases where other spin-spin couplings are averaged to zero due to proton and molecular
exchange, Figure 2. Deviations from this correlation are possible only if both atoms
participate in external interactions.

Figure 2. The 1J(15N13C) spin-spin coupling as a function of the N≡C distance in different hydrogen
bonded complexes of the cyanide anion. NC-H···X (red circles), [NC]−···H-X (green hexagons),
CN-H···X (blue squares), [CN]−···H-X (violet diamonds), LiNC···H-X (green down triangle), and
LiCN···H-X (violet up triangle).
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