
symmetryS S

Article

Temporal Moduli of Non-Differentiability for Linearized
Kuramoto–Sivashinsky SPDEs and Their Gradient

Wensheng Wang * and Changkai Zhou

����������
�������

Citation: Wang, W.; Zhou, C.

Temporal Moduli of

Non-Differentiability for Linearized

Kuramoto-Sivashinsky SPDEs and

Their Gradient. Symmetry 2021, 13,

1306. https://doi.org/10.3390/

sym13071306

Academic Editors: Pedro José

Fernández de Córdoba Castellá and

Juan Carlos Castro-Palacio

Received: 16 June 2021

Accepted: 19 July 2021

Published: 20 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Economics, Hangzhou Dianzi University, Hangzhou 310018, China; zhouchangkai@hdu.edu.cn
* Correspondence: wswang@hdu.edu.cn

Abstract: Let U = U(t, x) for (t, x) ∈ R+ × Rd and ∂xU = ∂xU(t, x) for (t, x) ∈ R+ × R be the
solution and gradient solution of the fourth order linearized Kuramoto–Sivashinsky (L-KS) SPDE
driven by the space-time white noise in one-to-three dimensional spaces, respectively. We use
the underlying explicit kernels and symmetry analysis, yielding exact, dimension-dependent, and
temporal moduli of non-differentiability for U(·, x) and ∂xU(·, x). It has been confirmed that almost
all sample paths of U(·, x) and ∂xU(·, x), in time, are nowhere differentiable.

Keywords: L-KS SPDEs; space-time white noise; temporal modulus of non-differentiability; Hölder
regularity

1. Introduction

We are concerned with delicate regularity properties of paths of the fourth order
linearized Kuramoto–Sivashinsky (L-KS) SPDE driven by the space-time white noise in
one-to-three dimensional spaces. The fundamental kernels related to the deterministic
versions of this class are built on the Brownian-time process (BTP) in [1–3] and extensions
thereof. In this article, we provide exact, dimension-dependent, and temporal moduli of
non-differentiability for the important class of stochastic equations: ∂U

∂t
= − ε

8
(∆ + 2ϑ)2U +

∂d+1W
∂t∂x

, (t, x) ∈ R̊+ ×Rd;

U(0, x) = u0(x), x ∈ Rd,
(1)

where ∆ is the d-dimensional Laplacian operator, R̊+ = (0, ∞), (ε, ϑ) ∈ R̊+ ×R is a pair
of parameters, the noise term ∂d+1W/∂t∂x is the space-time white noise corresponding to
the real-valued Brownian sheet W on R̊+ ×Rd, d = 1, 2, 3, and the initial data u0 is Borel
measurable, deterministic, and twice continuously differentiable on Rd.

This class of SPDEs is connected to the model of pattern formation phenomena
accompanying the appearance of turbulence (see [1,4–8]) and was introduced by Allouba
in a series of articles [1–6,9,10]. It includes stochastic versions of prominent nonlinear
equations such as the Swift–Hohenberg PDE and variants of the L-KS PDE, as well as
many new ones (see [4]). Among other things, [4,5] investigated classical examples of
deterministic and stochastic pattern formation PDEs and [1,4–6] investigated the L-KS class
and its connection to many classical and new examples of deterministic and stochastic
pattern formation PDEs. The authors of [4,5,9,10] investigated the existence/uniqueness
of sharp dimension-dependent Hölder regularity of the linear and nonlinear noise version
of Equation (1). The authors of [6] investigated the exact, dimension-dependent, spatio-
temporal, and uniform and local moduli of continuity for the L-KS SPDE in the time variable
t and space variable x. The authors of [11] investigated the solutions to Equation (1) in time
and possessing an infinite quadratic variation. Temporal asymptotic distributions for the
realized power variations of the L-KS SPDEs Equation (1) were investigated in [11]. These
results naturally cause the following motivating questions:
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• Are the solutions to L-KS SPDE Equation (1) temporal continuously differentiable?
• What are the temporal moduli of continuity for L-KS SPDEs?
• What are the temporal moduli of non-differentiability for L-KS SPDEs?

The authors of [6] investigated the exact moduli of continuity for the fourth order L-KS
SPDEs and their gradient. These results provided the answers to temporal continuity and
exact moduli of continuity of the solutions to Equation (1) and provided partial answers to
above questions. In this article, we investigate temporal differentiability of the solutions
to Equation (1). We are concerned with the exact moduli of non-differentiability of the
process U and its gradient in time. It builds on and complements works in [6] and together
answers all of the above questions.

Here, we would like to mention Chung’s law of the iterated logarithm (LIL) for
U(·, x) provided by Allouba and Xiao [6]. Fix x ∈ Rd. For t, h ∈ R̊+ and compact
rectangle Itime ⊂ R̊+, we consider V(t, h) = sups∈Itime :|s|≤1 |U(t + hs, x) − U(t, x)| and
V(t, h) = sups∈Itime :|s|≤1 |∂xU(t + hs, x)− ∂xU(t, x)|. In [6], the following exact temporal
Chung’s LIL for L-KS SPDE U(t, x) and the gradient process ∂xU(t, x) are obtained. (See
Theorem 1 and 2).

Theorem 1 (Reference [7]). Let x ∈ Rd be fixed and assume that ϑ = 0 and u0 = 0 in
Equation (1).

(a) Suppose d ∈ {1, 2, 3}. For any t0 ∈ R̊+, we have the following:

lim inf
h→0+

ρ(h)V(t0, h) = c1,1 a.s., (2)

where c1,1 is a positive finite d-dependent constant.

ρ(h) = (h| log(| log(h)|)|−1)−
4−d

8 . (3)

(b) Suppose d = 1. For any t0 ∈ R̊+, we have the following:

lim inf
h→0+

ν(h)V(t0, h) = c1,2 a.s., (4)

where c1,2 is a positive finite constant.

ν(h) = (h| log(| log(h)|)|−1)−
1
8 . (5)

On the other hand, elementary calculations show that the sample paths of U(·, x) are both
almost surely continuous and almost surely nowhere differentiable (see [6]). It is therefore natural to
investigate, respectively, the modulus of continuity and the modulus of non-differentiability (in the
sense of Csörgő-Révész, see [12]). This article is devoted to establishing the following exact temporal
moduli of non-differentiability for L-KS SPDE U(t, x) and the gradient process ∂xU(t, x).

Theorem 2. (Temporal moduli of non-differentiability) Let x ∈ Rd be fixed and assume that ϑ = 0
and u0 = 0 in Equation (1).

(a) Suppose d ∈ {1, 2, 3}. For any compact interval Itime ⊂ R̊+, we have the following:

lim inf
h→0+

β(h) inf
t∈Itime

V(t, h) = c
4−d

8
3,1 a.s., (6)

where c3,1 is given in (19).

β(h) = (h| log(h)|−1)−
4−d

8 . (7)

Consequently, the sample paths of U(t, x) are almost surely nowhere differentiable in t.
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(b) Suppose d = 1. For any compact interval Itime ⊂ R̊+, we have the following:

lim inf
h→0+

$(h) inf
t∈Itime

V(t, h) = c
1
8
3,2 a.s., (8)

where c3,2 is given in (20).

$(h) = (h| log(h)|−1)−
1
8 . (9)

Consequently, the sample paths of ∂xU(t, x) are almost surely nowhere differentiable in t.

Remark 1. For the above theorem, we have the following remarks:

• It is interesting to compare (2) and (6). The latter one states that the non-differentiability
modulus of U(·, x) for any fixed x is not more than β(h). On the other hand, the former tells
us that at some given point the non-differentiability modulus of U(·, x) can be much smaller,
namely ρ(h). Similarly, by (4) and (8), the non-differentiability modulus of ∂xU(·, x) for any
fixed x is not more than $(h). On the other hand, at some given point, the non-differentiability
modulus of ∂xU(·, x) can be much smaller, namely ν(h).

• Equation (6) describe the size of the minimum oscillation of the L-KS SPDE solution U(·, x)
over the compact rectangle Itime is β(h) (up to a constant factor). Equation (8) describes the
size of the minimum oscillation of the gradient of L-KS SPDE solution ∂xU(·, x) over the
compact rectangle Itime is $(h) (up to a constant factor).

• The constants c1,1 in (2) and c1,2 in (4) are equal to c
4−d

8
3,1 and c

1
8
3,2 , respectively, by virtue of the

existence of the small ball constants, one can calculate Chung’s limit inferior LIL explicitly by
making use of the standard Borel–Cantelli argument.

• Equation (6) implies that almost all sample paths U(·, x) are nowhere differentiable. Moreover,
it quantifies precisely the roughness of the sample paths of U(·, x) by β(h). For this reason,
the function β(h) is referred to as a modulus of non-differentiability of the L-KS SPDE solu-
tion. Similarly, (8) implies that almost all sample paths ∂xU(·, x) are nowhere differentiable.
The modulus of non-differentiability of the gradient of the L-KS SPDE solution is $(h).

Throughout this article, an unspecified positive and finite constant will be denoted
by c, which may not be the same in each occurrence. More specific constants in Section
i are numbered as ci,1, ci,2, .... Since we shall deal with index n which ultimately tends
to infinity, our statements, sometimes without further mention, are valid only when n is
sufficiently large.

The rest of this article is organized as follows. In Section 2, the rigorous L-KS SPDE
kernel SIE (mild) formulation, temporal spectral density and bifractional Brownian motion
(BFBM) link for L-KS SPDEs, and their gradient are discussed by using the L-KS SPDE ker-
nel SIE formulation and symmetry analysis. In Section 3, we investigate the exact temporal
small ball probability estimates and the exact temporal moduli of non-differentiability for
L-KS SPDEs and their gradient by making use of the Gaussian correlation inequality [13]
and the theory on limsup random fractals [14]. In Section 4, the results are summarized
and discussed.

2. Methodology
2.1. Rigorous Kernel Stochastic Integral Equations Formulations

We use the L-KS kernel introduced in [1,4,5] to define their rigorous mild SIE formula-
tion. The nonlinear drift diffusion L-KS SPDE is as follows. ∂U

∂t
= − ε

8
(∆ + 2ϑ)2U + a(U) + σ(U)

∂d+1W
∂t∂x

, (t, x) ∈ R̊+ ×Rd;

U(0, x) = u0(x), x ∈ Rd.
(10)
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Then, the rigorous L-KS kernel SIE (mild) formulation is the following SIE:

U(t, x) =
∫
Rd

KLKSd
ε,ϑ

t;x,y u0(y)dy

+
∫
Rd

∫ t

0
KLKSd

ε,ϑ
t−s;x,y[a(U(s, y))dsdy + σ(U(s, y))W(ds× dy)]

(11)

(see p. 530 in [7] and Definition 1.1 and Equation (1.11) in [4]). Here, KLKSd
ε,ϑ

t;x,y is the L-KS
kernel given by the following:

KLKSd
ε,ϑ

t;x,y =
∫ 0

−∞

eiϑse−|x−y|2/(2is)

(2πis)d/2 KBM
εt;s ds +

∫ ∞

0

eiϑse−|x−y|2/(2is)

(2πis)d/2 KBM
εt;s ds

= (2π)−d
∫
Rd

e−
εt
8 (−2ϑ+|ξ|2)2

ei〈ξ,x−y〉dξ

= (2π)−d
∫
Rd

e−
εt
8 (−2ϑ+|ξ|2)2

cos(〈ξ, x− y〉)dξ, (ε, ϑ) ∈ R̊+ ×R,

(12)

where i =
√
−1 and KBM

t;s = e−s2/(2t)
√

2πt
. Obviously, the mild formulation of (1) is then obtained

by setting σ ≡ 1 and a ≡ 0 in (11).

2.2. Temporal Spectral Density for L-KS SPDEs and Their Gradient

Our results are crucially dependent on the following temporal spectral density for
L-KS SPDEs, which is Lemma 2.1 in [6].

Lemma 1. Let KLKSd
ε,ϑ

t;x be the (ε, ϑ) L-KS kernel. The spatial Fourier transform of the (ε, ϑ) L-KS
kernel in (12) is provided by the following.

K̂LKSd
ε,ϑ

t;ξ = (2π)−d/2e−
εt
8 (−2ϑ+|ξ|2)2

; (ε, ϑ) ∈ R̊+ ×R. (13)

Here, the following symmetric form of the spatial Fourier transform has been used.

f̂ (ξ) = (2π)−d/2
∫
Rd

f (u)e−iξ·udu.

2.3. Bifractional Brownian Motion Link for L-KS SPDEs and Their Gradient

We consider the temporal probability law for L-KS SPDEs and their gradient in one-
to-three dimensions. Recall that the BFBM {BH,K(t), t ∈ [0, T]} with indices H ∈ (0, 1)
and K ∈ (0, 1] and introduced by Houdré and Villa in [15] is a centered Gaussian process
with covariance.

RH,K(t, s) :=
1

2K

((
t2H + s2H

)K
− |t− s|2HK

)
, s, t ∈ [0, T]. (14)

Lemma 2. Let x ∈ Rd be fixed and assume that ϑ = 0 and u0 = 0 in Equation (1).

(a) Suppose d ∈ {1, 2, 3}. Then U(·, x) L= c0B
1
2 , 4−d

4 , where we have the following.

c0 = (2π)−d 2π(d+1)/2

εΓ(d/2)
8

d−4
4 .

(b) Suppose d = 1. Then ∂xU(·, x) L= C0B
1
2 , 1

4 , where we have the following.

C0 =
1

εΓ(1/2)
8−

1
4 .
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Proof. In order to show (a), we use Parseval’s identity to obtain the covariance function
of U.

E[U(t, x)U(s, x)] =
∫
Rd

∫ s

0
KLKSd

ε,0
t−r;x,y KLKSd

ε,0
s−r;x,ydr dy

=
∫ s

0

∫
Rd

K̂LKSd
ε,0

t−r;x,ξ K̂LKSd
ε,0

s−r;x,ξdξ dr

= (2π)−d
∫ s

0

∫
Rd

e−
ε(t−r)

8 |ξ|4− ε(s−r)
8 |ξ|4 dξ dr

= (2π)−d
∫ s

0

∫
Rd

e−
ε(t+s−2r)

8 |ξ|4 dξdr.

(15)

Thus, by using the following integral formula (see Corollary on page 23 in [16]), we
have the following:

∫
Rd

f
( d

∑
i=1

u2
i

)
du1 · · · dud =

πd/2

Γ(d/2)

∫ ∞

0
yd/2−1 f (y)dy, (16)

and (15) becomes the following.

E[U(t, x)U(s, x)] = (2π)−d πd/2

Γ(d/2)

∫ ∞

0
yd/2−1

∫ s

0
e−

ε(t+s−2r)
8 y2

dr dy

=
[
(2π)−d 4πd/2

εΓ(d/2)
8

d−4
4

∫ ∞

0
e−y2

dy
]
[(t + s)1− d

4 − (t− s)1− d
4 ].

(17)

This yields (a). Similarly to (15), one has the following.

E[∂xU(t, x)∂xU(s, x)] =
∫
R

∫ s

0
∂xK

LKSd
ε,0

t−r;x,y ∂xK
LKSd

ε,0
s−r;x,ydr dy

=
∫ s

0

∫
R

ξ2K̂LKSd
ε,0

t−r;x,ξ K̂LKSd
ε,0

s−r;x,ξdξ dr

= (2π)−1
∫ s

0

∫
R

ξ2e−
ε(t−r)

8 |ξ|4− ε(s−r)
8 |ξ|4 dξ dr

= (2π)−1
∫ s

0

∫
R

ξ2e−
ε(t+s−2r)

8 |ξ|4 dξdr.

(18)

Thus, by using (16), (18) becomes the following.

E[U(t, x)U(s, x)] =
[
(2π)−1 4π1/2

εΓ(1/2)
8
−1
4

∫ ∞

0
e−y2

dy
]
[(t + s)

1
4 − (t− s)

1
4 ].

This yields (b).

3. Results
3.1. Extremes for L-KS SPDEs and Their Gradient

Our results are dependent on the following exact temporal small ball probability
estimates for L-KS SPDEs and their gradient.

Lemma 3. Let x ∈ Rd be fixed and assume that ϑ = 0 and u0 = 0 in Equation (1).
(a) Suppose d ∈ {1, 2, 3}. Then there exists a positive and finite constant c3,1 such that for all

t0 ∈ [0, 1] and r > 0, whenever u→ 0, we have the following.

P(V(t0, r) ≤ u) ∼ exp
(
−

c3,1 r

u
8

4−d

)
. (19)

(b) Suppose d = 1. Then there exists a positive and finite constant c3,2 such that for all
t0 ∈ [0, 1] and r > 0, whenever u→ 0, we have the following.

P(V(t0, r) ≤ u) ∼ exp
(
−

c3,2 r
u8

)
. (20)
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Proof. It follows from Lemma 2 (a) that, up to a constant, the L-KS SPDE solution
{U(t, x), t ∈ R+} (x ∈ Rd fixed) is a BFBM with indices H = 1

2 and K = 1 − d
4 . It

follows from Lemma 2 (b) that, up to a constant, the gradient of L-KS SPDE solution
{∂xU(t, x), t ∈ R+} (x ∈ R fixed) is a BFBM with indices H = 1

2 and K = 1
4 . Then,

by Proposition 2.1 in [17], one has (19) and (20) hold. This completes the proof.

3.2. Temporal Moduli of Non-Differentiability for L-KS SPDEs and Their Gradient

We require the following lemma, which is Theorem 1.1 in [13].

Lemma 4. Let f′ = (f′1, f′2) be an Rn-valued Gaussian random vector with mean 0, where f1 =
( f1, ..., fk)

′, f2 = ( fk+1, ..., fn)′ and 1 ≤ k < n. Then ∀u > 0 and we have the following:

P(‖f‖∞ ≤ u) ≤ φP(‖f1‖∞ ≤ u)P(‖f2‖∞ ≤ u), (21)

where ‖f‖∞ denotes the maximum norm of a vector f. the following is the case.

φ =

(
det(E[f1f′1])det(E[f2f′2])

det(E[ff′])

)1/2

. (22)

We also need the following lemma, which is Lemma 2.4 in [18].

Lemma 5. Let D = (dij, 1 ≤ i, j ≤ 2m) be a positive semidefinite symmetric matrix provided
by D = (Dij, 1 ≤ i, j ≤ 2), where Dij and 1 ≤ i, j ≤ 2 are m× m matrices. SubstituteBi =

∑2m
j=m+1 |dij| for 1 ≤ i ≤ m and = ∑m

j=1 |dij| for m + 1 ≤ i ≤ 2m. Assume the following
conditions are satisfied.

(i) There is a constant b such that for all 1 ≤ i ≤ 2m, Bi < b.
(ii) There exists a finite constant λ > 0 such that for all 1 ≤ i ≤ 2m, the following is the case:

det(D(i))

det(D)
≤ λ,

where D(i) is the submatrix of D obtained by deleting the ith row and ith column.
Then, the following obtains.

det(D) ≥ e−2bλmdet(D11)det(D22). (23)

Proof of Theorem 2. Since the proof of (8) is similar to (6), we prove (6) only. To show (6),
it suffices to show the following two inequalities ∀0 < ε < 1 is the case:

lim inf
h→0+

β(h) inf
t∈Itime

V(t, h) ≥ ((1− ε)c3,1)
4−d

8 a.s. (24)

and subsequently, we have the following.

lim inf
h→0+

β(h) inf
t∈Itime

V(t, h) ≤ ((1 + ε)c3,1)
4−d

8 a.s. (25)

In order to show the above two inequalities, without loss of generality, we assume
Itime = [0, 1]. We show (24) first. For n ∈ Z+, we define hn = θ−n and bn = θn, where θ > 1
is an arbitrary constant and will be specified latter on. For i ∈ Z+ and n ≥ 1, we substitute
the following.

Tn = {h ∈ (0, 1) : hn+1 < h ≤ hn},
Ti,n = {t ∈ Itime : ib−1

n < t ≤ (i + 1)b−1
n }.

Let us have ti,n := ib−1
n be a point in Ti,n, i ∈ [0, bn] ∩Z+. It follows from (19) that the

following is the case.
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P
(

β(hn) min
i∈[0,bn ]∩Z+

V(ti,n, hn) ≤ ((1− ε)c3,1)
4−d

8

)
≤ ∑

i∈[0,bn ]∩Z+

P(V(ti,n, hn) ≤ ((1− ε)c3,1)
4−d

8 β(hn)
−1)

≤ θ(1−
1

1−ε )n.

Hence, by Borel–Cantelli lemma, one has the following.

lim inf
n→∞

β(hn) min
i∈[0,bn ]∩Z+

V(ti,n, hn) ≥ ((1− ε)c3,1)
4−d

8 a.s. (26)

It follows from Theorem 4.1 in Meerschaert et al. [19] that the following is the case.

lim sup
n→∞

β(hn) sup
t∈[0,2]

V(t, hn) = 0 a.s. (27)

Observe that for all h ∈ (0, 1), there exists a set Tn such that h ∈ Tn and for all x ∈ I,
there exists a set Ti,n such that x ∈ Ti,n. One has the following.

lim inf
h→0+

β(h) inf
t∈[0,1]

V(t, h)

≥ lim inf
n→∞

inf
h∈Tn

min
i∈[0,bn ]∩Z+

inf
t∈Ti,n

β(h)V(t, h)

≥ lim inf
n→∞

min
i∈[0,bn ]∩Z+

inf
t∈Ti,n

(β(hn+1)/β(hn))β(hn)V(t, hn)

≥ lim inf
n→∞

min
i∈[0,bn ]∩Z+

(β(hn+1)/β(hn))β(hn)V(ti,n, hn)

− lim sup
n→∞

max
i∈[0,bn ]∩Z+

sup
t∈Ti,n

(β(hn+1)/β(hn))β(hn)|V(t, hn)−V(ti,n, hn)|

≥ lim inf
n→∞

min
i∈[0,bn ]∩Z+

β(hn)V(ti,n, hn)

−2 lim sup
n→∞

sup
t∈[0,2]

β(hn)V(t, hn).

(28)

It follows from (26)–(28) that (24) holds.
Next we show (25). For every n ≥ 1, we define hn = 2−n, Θ = Θn = | log(hn)|−1,

An = {1, ..., νn}, and Bn = {1, ..., bΘ−1c}, where bac denotes the integer part of a ∈ R+

satisfying bac ≤ a < bac+ 1. For every i ∈ An, we define the following:

ti,n = ihnΘ,

and define a Bernoulli random variable Yi,n which takes the value 1 or 0 according to the
following:

max
k∈Bn

β(hn)|U(ti,n + khnΘ, x)−U(ti,n , x)| ≤ ((1 + ε)c3,1)
4−d

8

and whether it is the case or not. For every n ≥ 1, we define Sn := ∑i∈An Yi,n and
pn := E[Yi,n ]. Then, by (19), one has uniformly over i ∈ An.

pn ≥ P
(

β(hn)V(ti,n , ν) ≤ ((1 + ε)c3,1)
4−d

8

)
≥ exp( 1

1+ε log(hn)).
(29)

We want to show that almost surely Sn > 0 for infinitely many n’s. To this end, we
first estimate the following.

Var(Sn) = ∑
i,j∈An

Cov(Yi,n , Yj,n) =
νn

∑
i=1

Cov(Yi,n , Yi,n) + 2
νn

∑
i=1

νn

∑
j=i+1

Cov(Yi,n , Yj,n). (30)
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Let µ > 21/(4 + d) be a constant and νn = | log(hn)|µ+1, n ≥ 1. We make the
following claim: ∀δ > 0, whenever j > i ≥ νn and j− i ≥ νn, one obtains the following.

P(Yi,n = 1, Yj,n = 1) ≤ (1 + δ)P(Yi,n = 1)P(Yj,n = 1) (31)

We postpone the verification of (31) and prove (25) first.
It follows from (31) that Cov(Yi,n , Yj,n) ≤ δE[Yi,n ]E[Yj,n ] for all i, j ∈ An that satisfy

j > i ≥ νn and j− i ≥ νn. Thus, by (30), one has the following.

Var(Sn) ≤ 2δ
( νn

∑
i=1

pi,n

)2
+

νn

∑
i=1

Cov(Yi,n , Yi,n) + 2
νn

∑
i=1

νn

∑
j=i+1

Cov(Yi,n , Yj,n) + 2
νn

∑
i=νn+1

i+νn

∑
j=i+1

Cov(Yi,n , Yj,n).

For the covariances on the right-hand side, we use the fact that Cov(Yi,n , Yj,n) ≤
E[Yi,n ] = pi,n to derive the following.

Var(Sn) ≤ 2δ
( νn

∑
i=1

pi,n

)2
+ 5νn

νn

∑
i=1

pi,n. (32)

It follows from the Pale–Zygmund inequality (see p. 8 in [20] or [14]) that the following
will obtain.

P(Sn > 0) ≥ (E[Sn])2

E[S2
n]

.

Combining this with (32) we obtain the following:

P(Sn = 0) ≤ Var(Sn)

(E[Sn])2 ≤ 2δ +
5νn

E[Sn]

since E[Sn] = ∑νn
i=1 pi,n. Thus, by making use of (29) and the arbitrariness of δ, we see that

P(Sn = 0)→ 0 as n→ ∞. By Fatou’s lemma, one has the following.

P(Sn > 0 i.o.) ≥ lim sup
n→∞

P(Sn > 0) = 1.

This implies that the following obtains.

lim inf
n→∞

min
i∈An

max
k∈Bn

β(hn)|U(ti,n + khnΘ, x)−U(ti,n , x)| ≤ ((1 + ε)c3,1)
4−d

8 a.s. (33)

Thus, the following is the case.

lim inf
n→∞

inf
t∈[0,1]

max
k∈Bn

β(hn)|U(t + khnΘ, x)−U(t, x)| ≤ ((1 + ε)c3,1)
4−d

8 a.s. (34)

Note that the following obtains.

lim inf
n→∞

inf
t∈[0,1]

β(hn)V(t, hn)

≤ lim inf
n→∞

inf
t∈[0,1]

max
k∈Bn

sup
k−1≤u≤k

β(hn)|U(t + uhnΘ, x)−U(t, x)|

≤ lim inf
n→∞

inf
t∈[0,1]

max
k∈Bn

β(hn)|U(t + khnΘ, x)−U(t, x)|

+ lim sup
n→∞

sup
t∈[0,1]

max
k∈Bn

sup
k−1≤u≤k

β(hn)|U(t + uhnΘ, x)−U(t + khnΘ, x)|

≤ lim inf
n→∞

inf
t∈[0,1]

max
k∈Bn

β(hn)|U(t + khnΘ, x)−U(t, x)|

+ lim sup
n→∞

sup
t∈[0,2]

sup
|y|≤hnΘ

β(hn)|U(t + y, x)−U(t, x)|.

(35)
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It follows from Theorem 4.1 in Meerschaert et al. [19] that the following will obtain.

lim sup
n→∞

sup
t∈[0,2]

sup
|y|≤hnΘ

β(hn)|U(t + y, x)−U(t, x)| = 0 a.s. (36)

Hence, by (34)–(36), (25) holds.
Therefore, it remains to show (31). We will make use of Lemma 5 (with m = Θ−1) to

consider the determinant of (2Θ−1)× (2Θ−1) matrix Σ. We first verify that the positive
semidefinite matrix Σ satisfies Conditions (i)–(ii) of Lemma 5.

Consider the following points

ui,n = iΘ, i ∈ Bn,

and the Gaussian processes Fi,n defined by the following.

Fi,n(t) = U(ui,n + t, x)−U(ui,n , x), ∀0 ≤ t ≤ 1.

By (17), for all i, j ∈ Fn and s, t ∈ [0, 1], one has the following:

E[Fi,n(s)Fj,n(t)] = c0(Ci,j,n(s, t) + Di,j,n(s, t)), (37)

where is the case.

Ci,j,n(s, t) := −|(uj,n − ui,n) + (t− s)|
4−d

4 + |(uj,n − ui,n)− s|
4−d

4

+ |(uj,n − ui,n) + t|
4−d

4 − |uj,n − ui,n |
4−d

4 ,

Similarly, the following also is the case.

Di,j,n(s, t) := [(ui,n + s) + (uj,n + t)]
4−d

4 − [(ui,n + s) + uj,n ]
4−d

4

− [ui,n + (uj,n + t)]
4−d

4 + (ui,n + uj,n)
4−d

4 .

Thus, by Taylor’s expansion, we derive that if i < j and s ≤ t, we will have the following.

Ci,j,n(s, t) =
4− d

4
s{|(uj,n − ui,n) + (t− η1s)|

4−d
4 −1 − |(uj,n − ui,n)− η2s|

4−d
4 −1}

=
4− d

4
(

4− d
4
− 1)s(t− η1s + η2s)|(uj,n − ui,n) + η3(t− η1s + η2s)|

4−d
4 −2,

(38)

The following will also obtain:

Di,j,n(s, t) =
4− d

4
{[(ui,n + s) + uj,n + η4((uj,n + t)− uj,n)]

4−d
4 −1

× [(uj,n + t)− uj,n ]

− [ui,n + uj,n + η5((uj,n + t)− uj,n)]
4−d

4 −1[(uj,n + t)− uj,n ]}

=
4− d

4
(

4− d
4
− 1)[ui,n + uj,n + (η5 + η6(η4 − η5))((uj,n + t)− uj,n)

+ η6((ui,n + s)− ui,n)]
4−d

4 −2

× [((ui,n + s)− ui,n) + (η4 − η5))((uj,n + t)− uj,n)][(uj,n + t)− uj,n ]

=
4− d

4
(

4− d
4
− 1)[ui,n + uj,n + (η5 + η6(η4 − η5))((uj,n + t)− uj,n)

+ η6((ui,n + s)− ui,n)]
4−d

4 −2[s + (η4 − η5)t],

(39)
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where η` ∈ [0, 1] for all 1 ≤ ` ≤ 9. Thus, by noting 4−d
4 ∈ (0, 1), one has the following.

|Di,j,n(s, t)| ≤ 4− d
2

(1− 4− d
4

)u
4−d

4 −2
j,n . (40)

Consider Gaussian random vectors f′1 := (Fi,n(Θ),Fi,n(2Θ), ...,Fi,n(1)) and f′2 :=
(Fj,n(Θ), Fj,n(2Θ), ...,Fj,n(1)). Let f′ = (f′1, f′2) and Σ the covariance matrix of f. Then, we
have the following:

Σ =

(
Σ1 Σ2
Σ′2 Σ1

)
,

where Σ1 = E[f1f′1] = E[f2f′2] and Σ2 = E[f1f′2]. For simplicity of notation, set ψ(hn) =

((1 + ε)c3,1 /| log(hn)|)
4−d

8 . By Lemma 4, one obtains the following:

P
(

max
1≤k≤1/Θ

|Fi,n(kΘ)| ≤ ψ(hn), max
1≤m≤1/Θ

|Fj,n(mΘ)| ≤ ψ(hn)

)
≤ φP

(
max

1≤k≤1/Θ
|Fi,n(kΘ)| ≤ ψ(hn)

)
P
(

max
1≤m≤1/Θ

|Fj,n(mΘ)| ≤ ψ(hn)

)
,

(41)

where the following is the case.

φ =
(det(Σ1)det(Σ1)

det(Σ)

)1/2
.

It follows from (38) that for all i, j ∈ Bn with j− i ≥ νn and 1 ≤ k ≤ m ≤ 1/Θ, we
have the following.

|Ci,j,n(kΘ, mΘ)|

= |4− d
4

(
4− d

4
− 1)k(m− η1k + η2k)Θ2| |(j− i)Θ + η3(m− η1k + η2k)Θ|

4−d
4 −2

≤ c3,3 | log(hn)|−(µ−2)(2− 4−d
4 ).

(42)

It follows from (40) that for all i, j ∈ Bn with j > i ≥ νn and 1 ≤ k ≤ m ≤ 1/Θ, we
have the following.

|Di,j,n(kΘ, mΘ)|

≤ d(4− d)
8

j−(1+
d
4 )Θ−(1+

d
4 )

≤ c3,4 | log(hn)|−(µ−2)(1+ d
4 ).

(43)

Thus, combining (37) with (49) and (43), one obtains the following.

|bk,m| := |E[Fi,n(kΘ)Fj,n(mΘ)]|
≤ c3,5 | log(hn)|−(µ−2)(1+ d

4 ).
(44)

Thus, by (44), we observe the following.

∑
k∈Bn

∑
m∈Bn

bk,m ≤ c3,5 | log(hn)|−(µ−2)(1+ d
4 )+2. (45)

This verifies Condition (i) in Lemma 5 with b = c3,5 | log(hn)|−(µ−2)(1+ d
4 )+2.

In order to verify Condition (ii) in Lemma 5, we make use of the following fact on the
conditional variance.

Var
(
Fi,n(kΘ)|Fu,n(mΘ), m 6= k, m ∈ Bn, u ∈ {i, j}

)
=

det(Σ)
det(Σ(l))

. (46)
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Thus, the following obtains.

det(Σ)
det(Σ(l))

≥ Var
(

U(kΘ, x)|U(mΘ, x), m 6= k, m ∈ Bn

)
≥ c3,6 Θ

4−d
4 . (47)

This verifies Condition (ii) with λ = c3,6 Θ
4−d

4 .

Applying Lemma 5 with m = Θ−1, b = c3,5 | log(hn)|−(µ−2)(1+ d
4 )+2 and λ = c3,6 Θ

4−d
4 ,

we obtain the following.
det(Σ) ≥ e−2bλm(det(Σ1))

2. (48)

This, together with (48), yields the following.

φ ≤ ebλm. (49)

Notice that bλm → 0 as n → ∞. This, together with (49) and (37), yields that (31)
holds. The proof of Theorem 2 is completed.

4. Conclusions

In this article, we have presented that the L-KS SPDE solutions and their gradients
are almost surely nowhere differentiable in time variable t. We have established the exact
temporal small ball probability estimates and the exact, dimension dependent, and tempo-
ral moduli of non-differentiability for L-KS SPDEs and their gradient. They complement
Allouba’s earlier works on the spatio-temporal Hölder regularity of L-KS SPDEs and their
gradient. Together with the temporal Khinchin-type law of the iterated logarithm and
the uniform temporal moduli of continuity, they provide complete information on the
regularity properties of L-KS SPDEs and their gradient in time.
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