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Abstract: The derivation of conservation laws and invariant functions is an essential procedure for
the investigation of nonlinear dynamical systems. In this study, we consider a two-field cosmological
model with scalar fields defined in the Jordan frame. In particular, we consider a Brans–Dicke
scalar field theory and for the second scalar field we consider a quintessence scalar field minimally
coupled to gravity. For this cosmological model, we apply for the first time a new technique for the
derivation of conservation laws without the application of variational symmetries. The results are
applied for the derivation of new exact solutions. The stability properties of the scaling solutions are
investigated and criteria for the nature of the second field according to the stability of these solutions
are determined.

Keywords: first integrals; Brans–Dicke; scalar tensor; exact cosmological solutions

1. Introduction

The detailed analysis of recent cosmological observations indicates that the universe
has been through two accelerating phases [1–4]. The current acceleration era is assumed to
be driven by an unknown source known as dark energy, whose main characteristic is the
negative pressure which provides an anti-gravity effect [5]. Furthermore, the early-universe
acceleration era, known as inflation, is described by a scalar field, the inflaton, which is
used to explain the homogeneity and isotropy of the present universe. In particular, the
scalar field dominates the dynamics and explains the expansion era [6,7]. Nevertheless,
the scalar field inflationary models are mainly defined on homogeneous spacetimes, or on
background spaces with small inhomogeneities [8,9]. In [10] it was found that the presence
of a positive cosmological constant in Bianchi cosmologies leads to expanding Bianchi
spacetimes, evolving towards the de Sitter universe. That was the first result to support
the cosmic “no-hair” conjecture [11,12]. This latter conjecture states that all expanding
universes with a positive cosmological constant admit as asymptotic solution the de Sitter
universe. The necessity of the de Sitter expansion is that it provides a rapid expansion
for the size of the universe such that the latter effectively loses its memory on the initial
conditions, which implies that the de Sitter expansion solves the “flatness”, “horizon” and
the monopole problem [13,14].

In the literature scalar fields have been introduced in the gravitational theory in
various ways. The simplest scalar field model is the quintessence model, which consists of
a scalar field minimally coupled to gravity [15,16]. Another family of scalar fields are those
which belong to the scalar-tensor theory. In this theory the scalar field is non-minimally
coupled to gravity which makes it essential for the physical state of the theory. Another
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important characteristic of the scalar-tensor theories is that they are consistent with Mach’s
principle. The most common scalar-tensor theory is the Brans–Dicke theory [17] which is
considered in this study. For other scalar-tensor theories and generalizations we refer the
reader to [18–25] and references therein.

The Einstein field equations of general relativity are a set of ten nonlinear second-order
partial differential equations with independent variables the spacetime coordinates and
dependent variables the coefficient functions of the metric tensor. However, by assuming
specific forms for the metric tensor and the existence of collineations the field equations
are simplified by reduce the number of independent variables of to be separable, see for
instance [26–30] and references therein. According to the cosmological principle in large
scale the universe is assumed to be homogeneous, isotropic and spatially flat. This implies
that the background space is described by the Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime. This spacetime is characterized by the scale factor which defines the
radius of the three-dimensional (3d) Euclidean space, consequently because of the existence
of the spacetime isommetries, the field equations are reduced to ordinary differential
equations. Since General Relativity is a second-order theory the field equations involve
second-order derivatives of the scale factor. For simple cosmological fluids such as the
ideal gas or the cosmological constant, the field equations can be solved explicitly [31].
However, when additional degrees of freedom are introduced, such as a scalar field, the
field equations cannot be solved with the use of closed-form functions and techniques of
analytic mechanics and one looks for First Integrals (FIs) which establish their (Liouville)
integrability [32–35]. The standard method for the determination of FIs is Noether’s
theory [36]. However, there have appeared alternative geometric methods [37–42] which
use the symmetries of the metric defined by the kinetic energy to determine the FIs of the
dynamic equations. In the following, we shall make use of one such approach to determine
the FIs (conservation laws) of the field equations.

In the present study, we consider a cosmological model in which the gravitational
Action Integral is that of Brans–Dicke theory with an additional scalar field minimally
coupled to gravity [43,44]. This two-scalar-field model belongs to the family of multi-scalar
field models which have been used as unified dark energy models [45–47] or as alternative
models for the description of the acceleration phases of the universe [48–51]. Indeed
multifield inflationary models provide an alternative mechanism for the description of the
early acceleration phase of the universe. The mechanism for the end of the inflation is much
simple. Specifically, the scalar fields at the be beginning and at the end of the inflationary
are not necessary the same. Thus, this can lead to different number of e-folds and affect
the curvature perturbations [52,53]. The latter, in the non-adiabatic perturbations can
provide detectable non-Gaussianities in the power spectrum [54]. As far as, the late-time
acceleration phase, multifield cosmological models have been introduced to describe dark
energy models with varying equation of state parameter which can cross the phantom
divide line without the appearance of ghosts [54]. Such models can be solved the Hubble-
tension problem [51]. Furthermore, multi-scalar field models can attribute the additional
degrees of freedom provided by the alternative theories of gravity [55–57]. The structure of
the paper is as follows.

In Section 2, we define the cosmological model, and we present the gravitational field
equations. In Section 3, we present some important results on the derivation of quadratic
first integrals (QFIs) for a family of second-order ordinary differential equations (ODEs)
with linear damping and perform a classification according to the admitted conservation
laws. The results are applied to the cosmological model we consider in Section 4 where
we construct the conservation laws for the gravitational field equations. Due to the non-
linearity of the field equations it is not possible to write the general solution of the field
equation in closed form. However, we find some exact closed-form solutions with potential
interest for the description of the cosmological history. The stability of these exact solutions
is investigated in Section 5. Finally, in Section 6 we summarize our results, and we draw
our conclusions.
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2. Cosmological Model

For the gravitational Action Integral, we consider that of Brans–Dicke scalar field
theory with an additional matter source leading to the expression [17,18]

S =
∫

d4x
√
−g
[

1
2

φR− 1
2

ωBD
φ

gµνφ;µφ;ν + Lψ

(
ψ, ψ;µ

)]
+ Sm (1)

where φ(xκ) denotes the Brans–Dicke scalar field and ωBD is the Brans–Dicke parameter.
The action Sm is assumed to describe an ideal gas with constant equation of state parameter
and the Lagrangian function Lψ

(
ψ, ψ;µ

)
corresponds to the second scalar field ψ(xκ) which

is assumed to be that of quintessence and minimally coupled to the Brans–Dicke scalar
field. With these assumptions the Action Integral (1) takes the following form

S =
∫

d4x
√
−g
[

1
2

φR− 1
2

ωBD
φ

gµνφ;µφ;ν −
1
2

gµνψ;µψ;ν −V(ψ)

]
+ Sm. (2)

The gravitational field equations follow from the variation of the Action Integral (2)
with respect to the metric tensor. They are

Gµν =
ωBD

φ2

(
φ;µφ;ν −

1
2

gµνgκλφ;κφ;λ

)
+

1
φ

(
φ;µν − gµνgκλφ;κλ

)
+

1
φ

Tµν (3)

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor. The energy-momentum tensor Tµν =

ψTµν + mTµν where mTµν corresponds to the ideal gas and ψTµν provides the contribution

of the field ψ
(

xk
)

in the field equations.
Concerning the equations of motion for the matter source and the two scalar fields,

we find mTµν;σgµσ = 0, while variation with respect to the fields φ(xκ) and ψ(xκ) provides
the second-order differential equations

gµνφ;µν −
1

2φ
gµνφ;µφ;ν +

φ

2ωBD
R = 0 (4)

gµνψ;µν −
dV
dψ

= 0. (5)

We assume the background space to be the Friedmann-Lemaître - Robertson-Walker
(FLRW) spacetime with line element

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

(6)

where a(t) is the scale factor of the universe and H(t) = ȧ
a is the Hubble function. We note

that a dot indicates derivative with respect to the cosmic time t.
From the line element (6) follows that the Ricci scalar is R = 6

[
ä
a +

( ȧ
a
)2
]
. Replacing

in the gravitational field Equation (3) we obtain

3
(

ȧ
a

)2
=

ωBD
2

(
φ̇

φ

)2

− 3
ȧ
a

φ̇

φ
+

ρm + ρψ

φ
(7)

2
ä
a
+

(
ȧ
a

)2
= −ωBD

2

(
φ̇

φ

)2

− 2
ȧ
a

φ̇

φ
− φ̈

φ
−

pm + pψ

φ
(8)

where ρm, pm are the mass density and the isotropic pressure of the ideal gas; and for the
quintessence field

ρψ =
1
2

ψ̇2 + V(ψ), pψ =
1
2

ψ̇2 −V(ψ). (9)
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For the equations of motion for the scalar fields we find

φ̈ + 3
ȧ
a

φ̇ =
(ρm − 3pm) +

(
ρψ − 3pψ

)
2ωBD + 3

(10)

and
ψ̈ + 3Hψ̇ +

dV
dψ

= 0. (11)

Finally, for the matter source the continuity equation mTµν;σgµσ = 0 reads

ρ̇m + 3
ȧ
a
(ρm + pm) = 0. (12)

For an ideal gas, the equation of state is pm = wmρm, where wm is an arbitrary constant.
Substituting in Equation (12) we find the solution

ρm = ρm0a−3(1+wm) (13)

where ρm0 is an arbitrary constant.
The system of the ODEs that should be solved consists of the differential

Equations (7), (8), (10) and (11).

3. Quadratic First Integrals for a Class of Second-Order ODEs with Linear Damping

Consider the second-order ODE

ẍ = −ω(t)xn + Φ(t)ẋ (14)

where the constant n 6= −1. In the following we shall determine the relation between the
functions ω(t), Φ(t) for which the ODE (14) admits a quadratic first integral (QFI). The
case of linear first integrals (LFIs) is also included in our study.

This problem has been considered previously in [58,59] (see Equation (28a) in [58] and
Equation (17) in [59]) and has been answered partially using different methods. In [58], the
author applied the Hamiltonian formalism and investigated for a canonical transformation
in order to rewrite the Hamiltonian in a time-separable form. In [59], it was proposed direct
approach for the derivation of FIs by multiplying the equation with an integrating factor.
Moreover, in [59], it was that the two approaches are equivalent, while the the results
of [59] can be seen as ageneralization of the results of [58]. Below, we extend the results
of [59]. We note that a recent discussion of the same problem may be found in [60], where
the authors apply more general results from the integrability of time-dependent dynamical
systems of the form q̈a = −Γa

bc q̇b q̇c −ω(t)Qa(q).
Equation (14) is equivalent (see e.g., [61]) to the equation

d2x
dτ2 = −ω̄(τ)xn, n 6= −1 (15)

where the function ω̄(τ) and the new independent variable τ are defined as

τ(t) =
∫

e
∫

Φ(t)dtdt , ω̄(τ) = ω(t(τ))
(

dt
dτ

)2
⇐⇒ ω(t) = ω̄(τ(t))e2

∫
Φ(t)dt. (16)

We assume that equation (15) admits the general quadratic first integral

I = K11(τ, x)
(

dx
dτ

)2
+ K1(τ, x)

dx
dτ

+ K(τ, x) (17)
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where the unknown coefficients K, K1, K11 are arbitrary functions of τ, x. We impose
the condition

dI
dτ

= 0. (18)

Replacing the second derivatives d2x
dτ2 , whenever they appear, using Equation (15) we

find that the function K11 = K11(τ) and the following system of equations must be satisfied

K1(τ, x) = −dK11

dτ
x + b1(τ) (19)

K(τ, x) = 2ω̄K11
xn+1

n + 1
+

d2K11

dτ2
x2

2
− db1

dτ
x + b2(τ) (20)

0 =

(
2 dω̄

dτ K11

n + 1
+

2ω̄ dK11
dτ

n + 1
+ ω̄

dK11

dτ

)
xn+1 − ω̄b1xn +

d3K11

dτ3
x2

2
− d2b1

dτ2 x +
db2

dτ
(21)

where b1(τ), b2(τ) are arbitrary functions.
We consider the solution of the latter system (19)–(21) for various values of the

power n.
As will be shown for the values n = 0, 1, 2 there results a family of ‘frequencies’

ω̄(τ) parameterized with functions, whereas for the values n 6= −1 results a family of
‘frequencies’ ω̄(τ) parameterized with constants.

3.1. Case n = 0

For n = 0 the QFI (17) becomes

I = K11

(
dx
dτ

)2
− dK11

dτ
x

dx
dτ

+ b1(τ)
dx
dτ

+ c3x2 + 2ω̄(τ)K11x− db1

dτ
x +

∫
b1(τ)ω̄(τ)dτ (22)

where K11 = c1 + c2τ + c3τ2, the parameters c1, c2, c3 are arbitrary constants and the
functions b1(τ), ω̄(τ) satisfy the condition

d2b1

dτ2 = 2
dω̄

dτ
K11 + 3ω̄

dK11

dτ
. (23)

Using the transformation (16) Equations (22) and (23) become

I =

[
c1 + c2

∫
e
∫

Φ(t)dtdt + c3

(∫
e
∫

Φ(t)dtdt
)2
]

e−2
∫

Φ(t)dt ẋ2

−
[

c2 + 2c3

∫
e
∫

Φ(t)dtdt
]

e−
∫

Φ(t)dtxẋ + b1(τ(t))e−
∫

Φ(t)dt ẋ + c3x2

+ 2ω(t)

[
c1 + c2

∫
e
∫

Φ(t)dtdt + c3

(∫
e
∫

Φ(t)dtdt
)2
]

e−2
∫

Φ(t)dtx

− ḃ1e−
∫

Φ(t)dtx +
∫

b1(τ(t))ω(t)e−
∫

Φ(t)dtdt (24)

and

b̈1 −Φḃ1 = 2e−
∫

Φ(t)dt(ω̇− 2Φω)

[
c1 + c2

∫
e
∫

Φ(t)dtdt + c3

(∫
e
∫

Φ(t)dtdt
)2
]

+ 3ω

[
c2 + 2c3

∫
e
∫

Φ(t)dtdt
]

. (25)
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3.2. Case n = 1

For n = 1, we derive the well-known results of the one-dimensional (1d) time-
dependent oscillator (see e.g., [62,63]). Specifically, we find for the frequency ω̄(τ) =

− 1
b1

d2b1
dτ2 the LFI

I1 = b1
dx
dτ
− db1

dτ
x (26)

and for the frequency ω̄(τ) = − 1
2K11

d2K11
dτ2 + 1

4K2
11

(
dK11
dτ

)2
+ c0

2K2
11

, where c0 is an arbitrary

constant, the QFI. (For K11 = ρ(τ)2, where ρ(τ) is an arbitrary function, the QFI takes the
usual form of the Lewis invariant.)

I2 = K11

[(
dx
dτ

)2
+ ω̄x2

]
− dK11

dτ
x

dx
dτ

+
d2K11

dτ2
x2

2
. (27)

Using the transformation (16) we deduce that the original equation

ẍ = −ω(t)x + Φ(t)ẋ (28)

for the frequency
ω(t) = −ρ−1ρ̈ + Φρ−1ρ̇ + ρ−4e2

∫
Φ(t)dt (29)

admits the general solution

x(t) = ρ(t)(A sin θ + B cos θ) (30)

where A, B are arbitrary constants, ρ(t) ≡ ρ(τ(t)) and θ(τ(t)) =
∫

ρ−2(t)e
∫

Φ(t)dtdt.

3.3. Case n = 2

For n = 2, we derive the function ω̄ = K−5/2
11 and the QFI

I = K11(τ)

(
dx
dτ

)2
− dK11

dτ
x

dx
dτ

+ (c4 + c5τ)
dx
dτ

+
2
3

K−3/2
11 x3 +

d2K11

dτ2
x2

2
− c5x (31)

where c4, c5 are arbitrary constants and the function K11(τ) is given by

d3K11

dτ3 = 2(c4 + c5τ)K−5/2
11 . (32)

Using the transformation (16) the above results become

ω(t) = K−5/2
11 e2

∫
Φ(t)dt (33)

I = K11e−2
∫

Φ(t)dt ẋ2 − K̇11e−2
∫

Φ(t)dtxẋ +

[
c4 + c5

∫
e
∫

Φ(t)dtdt
]

e−
∫

Φ(t)dt ẋ

+
2
3

K−3/2
11 x3 +

(
K̈11 −ΦK̇11

)
e−2

∫
Φ(t)dt x2

2
− c5x (34)

and
...
K11 − 3ΦK̈11 − Φ̇K̇11 + 2Φ2K̇11 = 2

[
c4 + c5

∫
e
∫

Φ(t)dtdt
]

e3
∫

Φ(t)dtK−5/2
11 (35)

where now the function K11 = K11(τ(t)).
We note that for n = 2 Equation (14), or to be more specific its equivalent (15), arises in

the solution of Einstein field equations when the gravitational field is spherically symmetric
and the matter source is a shear-free perfect fluid (see e.g., [64–69]).
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3.4. Case n 6= −1

For n 6= −1 we find b1 = b2 = 0, K11 = c1 + c2τ + c3τ2 and ω̄(τ) = (c1 + c2τ +

c3τ2)−
n+3

2 where c1, c2, c3 are arbitrary constants.
The QFI (17) is

I = (c1 + c2τ + c3τ2)

(
dx
dτ

)2
− (c2 + 2c3τ)x

dx
dτ

+
2

n + 1
(c1 + c2τ + c3τ2)−

n+1
2 xn+1 + c3x2 (36)

and the function
ω̄(τ) = (c1 + c2τ + c3τ2)−

n+3
2 . (37)

It has been checked that (36) and (37) for n = 0, 1, 2 give results compatible with the
ones we found for these values of n. Using the transformation (16) we deduce that the
original system (14) is integrable iff the functions ω(t), Φ(t) are related as follows

ω(t) =

[
c1 + c2

∫
e
∫

Φ(t)dtdt + c3

(∫
e
∫

Φ(t)dtdt
)2
]− n+3

2

e2
∫

Φ(t)dt. (38)

In this case, the associated QFI (36) is

I =

[
c1 + c2

∫
e
∫

Φ(t)dtdt + c3

(∫
e
∫

Φ(t)dtdt
)2
]

e−2
∫

Φ(t)dt ẋ2

−
[

c2 + 2c3

∫
e
∫

Φ(t)dtdt
]

e−
∫

Φ(t)dtxẋ

+
2

n + 1

[
c1 + c2

∫
e
∫

Φ(t)dtdt + c3

(∫
e
∫

Φ(t)dtdt
)2
]− n+1

2

xn+1 + c3x2. (39)

These expressions generalize the ones given in [59]. Indeed if we introduce the
notation ω(t) ≡ α(t), Φ(t) ≡ −β(t), then Equations (38) and (39) for c3 = 0 become
Equations (25) and (26) of [59].

4. Cosmological Exact Solutions

We can use the above results as an alternative to the Euler-Duarte-Moreira method
of integrability of the anharmonic oscillator [70] in order to find exact solutions in the
modified Brans–Dicke (BD) theory.

Specifically, we consider the equation of motion for the quintessence scalar field ψ(t)

with potential function V(ψ) = ψn+1

n+1 , where n 6= −1. Then, Equation (11) becomes

ψ̈ = −ψn − 3
ȧ
a

ψ̇ (40)

which is a subcase of (14) for ω(t) = 1 and Φ(t) = −3 ˙(ln a). Replacing in the transforma-
tion (16), we find that

τ(t) =
∫

a−3(t)dt, ω̄(τ(t)) = a6(t). (41)

where Equation (40) now reads
ψ′′ + a6ψn = 0 (42)

where ψ′ = dψ(τ)
dτ .

The latter transformation for the background space becomes

ds2 = −a6(τ)dτ2 + a2(τ)
(

dx2 + dy2 + dz2
)

(43)
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which means that the rest of the field equations read

6φ

(
a′

a

)2

+ 6
a′

a
φ′ −ωBD

φ′2

φ
− (ψ′)2 − 2

n + 1
a6ψn+1 = 2a6ρm (44)

4φ
a′′

a
− 10φ

(
a′

a

)2

− 2
a′

a
φ′ + ωBD

(φ′)2

φ
+ 2φ′′ + (ψ′)2 − 2

n + 1
a6ψn+1 = −2a6 pm (45)

6φ
a′′

a
−ωBD

[
2φ′′ − (φ′)2

φ

]
− 12φ

(
a′

a

)2

= 0. (46)

Next, we apply the results of Section 3 for Equation (42) and we determine for several
cases of the parameter n the corresponding QFIs. The resulting QFIs are expressed in terms
of the scale factor a(τ) and other arbitrary functions of τ (i.e., K11(τ), b1(τ), b2(τ)) which
satisfy additional conditions. Solving these conditions, whenever is possible, we find a
scale factor a(τ) for which Equation (42) is integrable. Replacing this scale factor in the
original equation of motion (40) of the quintessence field, we end up with a new integrable
second-order ODE for ψ which most times can be solved using standard methods (e.g.,
Lie symmetries) from the symmetries of differential equations. As a final step, for the
computation of exact solutions, we replace the solutions a(t), ψ(t) in the remaining field
Equations (7)–(10) and we determine the BD field φ(t) and the parameter ωBD.

4.1. Case n = 0

For n = 0 the associated QFI (22) becomes

I = K11
(
ψ′
)2 − K′11ψψ′ + b1(τ)ψ

′ + c3ψ2 + 2a6K11ψ− b′1ψ +
∫

b1(τ)a6dτ (47)

where K11 = c1 + c2τ + c3τ2, the parameters c1, c2, c3 are arbitrary constants and the
functions b1(τ), a(τ) satisfy the condition

b′′1 = 12a5a′K11 + 3a6K′11. (48)

We note that for b1 = 0 we find the results of Section 4.4 below when n = 0.

4.2. Case n = 1

Using the transformation (41) equation ψ′′ = −a6ψ admits the solution

ψ(τ) = ρ(τ)(A sin θ + B cos θ) (49)

where θ =
∫

ρ−2dτ and the functions ρ(t(τ)), a(t(τ)) satisfy the condition

ρ′′ + ρa6 − ρ−3 = 0. (50)

4.3. Case n = 2

For n = 2 we have K11 = a−12/5 and the associated QFI (31) becomes

I = a−12/5(ψ′)2
+

12
5

a−17/5a′ψψ′ + (c4 + c5τ)ψ′ +
2
3

a18/5ψ3 +
6
5

[
17
5

a−22/5(a′)2 − a−17/5a′′
]

ψ2 − c5ψ (51)

where c4, c5 are arbitrary constants and the function a(t(τ)) ≡ a(τ) is given by

a′′′ − 51
5

a′

a
a′′ +

374
25

(
a′

a

)2

a′ +
5
6
(c4 + c5τ)a47/5 = 0. (52)

Substituting the given functions ω(t), Φ(t) in Equations (33)–(35) we find equiva-
lently that

a(t) = K−
5
12

11 (53)
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I = K−3/2
11 ψ̇2 − K−5/2

11 K̇11ψψ̇ +

(
c4 + c5

∫
K5/4

11 dt
)

K−5/4
11 ψ̇ +

2
3

K−3/2
11 ψ3

+

[
K̈11 −

5
4
(ln K11)

·K̇11

]
K−5/2

11
ψ2

2
− c5ψ. (54)

where the function K11 = K11(t) is given by the differential equation

...
K11 −

15
4
(ln K11)

·K̈11 −
5
4
(ln K11)

··K̇11 +
25
8

K̇3
11

K2
11

= 2
[

c4 + c5

∫
K5/4

11 dt
]

K5/4
11 . (55)

Equation (40) becomes ψ̈ = −ψ2 + 5
4 (ln K11)

·ψ̇. We note that for c4 = c5 = 0 we
retrieve the results of Section 4.4 below for n = 2.

In the special case with c5 = 0, we find for Equation (55) the special solution
K11(t) = k0t−12 with constraint c4k1/4

0 = −192 where k0 is an arbitrary constant. Moreover
from Equation (53) the scale factor is determined

a(t) = K−
5
12

11 = k−5/12
0 t5. (56)

Therefore, the Klein–Gordon Equation (40) becomes

ψ̈ +
15
t

ψ̇ + ψ2 = 0. (57)

The latter equation can be solved by quadratures. In particular it admits the Lie symmetries

Γ1 = ψ∂ψ −
1
2

t∂t , Γ2 =
(

3ψt2 − 48
)

∂ψ −
1
2

t3∂t.

Using the vector field Γ1 we find the reduced equation 1
2

d
dλ f 2 + 2λ d

dλ f + 12 f + λ2 = 0
in which f (λ) = t3ψ̇ , λ = t2ψ. The latter equation is an Abel equation of second type.
Moreover, if we assume that λ is a constant, λ = λ0 then we find ψ = λ0t−2 where by
replacing in Equation (57) it follows λ0 = 24. Therefore, we end up with the solution
ψ = 24

t2 . Let us now find the complete solution for the gravitational field equations for this
particular exact solution.

Replacing these results in the rest of the field equations for dust fluid source, i.e.,
pm = 0 and ρm = ρ0a−3 where ρ0 is a constant, the evolution equation for the Brans–Dicke
field becomes

φ̈ +
15
t

φ̇ =
1

2ω + 3

(
ρ0a−3 − ψ̇2 +

4
3

ψ3
)

which admits the general solution

φ(t) = − 1
2ω + 3

(
2016

5
t−4 +

ρ0k5/4
0

13
t−13

)
+

k1

14
t−14

where k1 is an arbitrary constant. Finally, by replacing in the constraint Equation (7) follows
(Equation (8) is satisfied identically)

ωBD = −45
16

, k1 = ρ0 = 0.

We conclude that the gravitational field equations for this model with the use of the
QFI for Equation (40) admit the following exact solution

ωBD = −45
16

, a(t) = k−5/12
0 t5, ψ(t) = 24t−2, φ(t) =

768
5

t−4 (58)
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with physical quantities

ρm = pm = 0, ρψ = 5760t−6, pψ = −3456t−6.

For the solution (58) the transformation (41) gives

τ = −
k5/4

0
14

t−14 =⇒ t =
(
−14k−5/4

0

)−1/14
τ−1/14. (59)

Then the transformed field Equations (42) and (44)–(46) admit the solutions

ωBD = −45
16

, a = k−5/12
0 (−14k−5/4

0 )−5/14τ−5/14,

ψ = 24(−14k−5/4
0 )1/7τ1/7, φ =

768
5

(−14k−5/4
0 )2/7τ2/7. (60)

4.4. Case n 6= −1

In this case, the associated QFI (36) becomes

I = (c1 + c2τ + c3τ2)
(
ψ′
)2 − (c2 + 2c3τ)ψψ′ +

2
n + 1

(c1 + c2τ + c3τ2)−
n+1

2 ψn+1 + c3ψ2 (61)

and the function a(τ) is
a(τ) = (c1 + c2τ + c3τ2)−

n+3
12 . (62)

Substituting the given functions ω(t), Φ(t) in the relation (38) we find equivalently that

a6(t) =

[
c1 + c2

∫
a−3(t)dt + c3

(∫
a−3(t)dt

)2
]− n+3

2

(63)

and the associated QFI (39) becomes

I =

[
c1 + c2

∫
a−3(t)dt + c3

(∫
a−3(t)dt

)2
]

a6(t)ψ̇2

−
[

c2 + 2c3

∫
a−3(t)dt

]
a3(t)ψψ̇

+
2

n + 1

[
c1 + c2

∫
a−3(t)dt + c3

(∫
a−3(t)dt

)2
]− n+1

2

ψn+1 + c3ψ2. (64)

We consider the following special cases for which Equation (40) admits a closed-form
solution for n 6= −3, 1. In the case n = −3 the spacetime is that of Minkowski space. Hence,
we omit the analysis.

4.4.1. Subcase |τ| << 1

For small values of |τ| (i.e., c1 = c3 = 0) the scale factor (62) is approximated as
a(τ) ' τ−

n+3
12 , therefore it follows

a(t) = B0(t− t0)
n+3

3(n−1) (65)

where B0 =
[
− c2(n−1)

4

] n+3
3(n−1) and t0 is an arbitrary constant.

For this asymptotic solution the equation of motion (40) for the second field ψ becomes

ψ̈ = −ψn − n + 3
n− 1

1
t− t0

ψ̇. (66)

For the latter equation, the QFI (64) is

I =
[
− c2(n− 1)

4

] 2(n+1)
n−1

(t− t0)
2(n+1)

n−1

(
ψ̇2 +

2
n + 1

ψn+1
)
− c2

[
− c2(n− 1)

4

] n+3
n−1

(t− t0)
n+3
n−1 ψψ̇. (67)
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This QFI for the scale factor (65) together with the results of the cases n = 0, 1, 2
produce new solutions ψ(t) which have not found before.

Furthermore, for the scale factor (65) the closed-form solution for the scalar field ψ(t)
from (66) is derived

ψ(t) = ψ0(t− t0)
− 2

n−1 , ψ0 =

(
2

n− 1

) 2
n−1

(68)

whereas for the BD field φ(t) it follows that n = 3, φ(t) = φ0
(t−t0)2 and ωBD = − 3

2 . However,
this value for the BD parameter ωBD is not physically acceptable. Hence, we do not have
any close-form solution. In all discussion above we have considered ρm = 0.

The closed-form solution found in this section is not the general solution of the field
equations. That is easy to be seen since they have less free parameters from the degrees
of freedom of the dynamical system. However, this form of solutions is of special interest
in cosmological studies because they can describe various phases of the cosmological
evolution, such as the early inflationary epoch.

4.4.2. Subcase |τ| � 1

For large values of τ � 0 (i.e., c1 = c2 = 0), the scale factor (62) is approximated as
a(τ) ' τ−

n+3
6 . Therefore, in the original variable Equation (63) becomes

a−
6

n+3 = c
1
2
3

∫
a−3dt (69)

which implies (see Equation (31) of [43])

a(t) = A0(t− t0)
n+3

3(n+1) (70)

where A0 =
[
−
√

c3(n+1)
2

] n+3
3(n+1) and t0 is an arbitrary constant. The scale factor (70) describes

a scaling solution where the effective cosmological fluid is that of an ideal gas with effective
parameter for the equation of state we f f =

n−1
n+3 . Furthermore, for −3 < n < −1 , − 1 <

n < 0 the scale factor describes an accelerated universe. For −1 < n < 0, we f f is bounded
as −1 < we f f < − 1

3 while for −3 < n < −1, we f f crosses the phantom divide line, i.e.,
we f f < −1.

For this asymptotic solution the equation of motion (40) for the second field ψ becomes

ψ̈ = −ψn − n + 3
n + 1

1
t− t0

ψ̇ (71)

and the corresponding QFI (64) is written as

I = c3

[
(n + 1)(t− t0)

2
ψ̇ + ψ

]2

+
c3(n + 1)

2
(t− t0)

2ψn+1 (72)

where t 6= t0.
However, the system admits the closed-form solution (see Equation (32) of [43])

ψ(t) = ψ0(t− t0)
− 2

n−1 (73)

in which ψ0 is given by the expression ψ0 = (−2)
3

n−1

[
(n + 1)(n− 1)2

] 1
1−n . Replacing in

the remaining Equations (7)–(10) for the Brans–Dicke field we calculate

φ(t) = φ0(t− t0)
− 4

n−1 (74)
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in which

φ0 =
(n− 1)

4
1−n

2(n + 3)(2ωBD + 3)

[
(−2)

3(n+1)
n−1 (n + 1)

n+1
1−n − (−2)

6
n−1 (n + 1)

n−3
n−1

]
(75)

ωBD =
b1 − 3b2

1 + 2b2
(76)

while we have assumed that there is not any other matter source, i.e., ρm = 0. The constants
b1, b2 are given by the relations

b1 =
(n + 3)(n− 1)

2(n + 1)

[
(n + 3)(n− 1)

12(n + 1)
− 1
]

(77)

b2 =
n + 3

4
· 2(−2)

6
n−1 (n + 1)

2
1−n + (−2)

3(n+1)
n−1 (n + 1)

2n
1−n

(−2)
3(n+1)

n−1 (n + 1)
n+1
1−n − (−2)

6
n−1 (n + 1)

n−3
n−1

. (78)

In the following we perform a detailed study on the stability of the latter closed-
form solutions.

5. Stability of Scaling Solutions

The analysis of the stability properties of the exact solutions provides us with impor-
tant information about the evolution of the background space on the asymptotic solutions.
In particular, we can infer if an exact solution is stable, which can be seen as a future
attractor for the original dynamical system. On the other hand, in the cases of unstable
solutions the behavior of the asymptotic solution and its dynamics give us results for the
curvature and the dynamics of the metric space.

According to the methods in [15,71,72] let be

F(ψ̈, ψ̇, ψ) = 0 (79)

a second-order ODE in one dimension which admits a singular power law solution

ψc(t) = ψ0tβ (80)

where ψ0 is an arbitrary constant. To examine the stability of the solution ψc, the logarithmic
time T through t = eT is introduced, such that t→ 0 as T → −∞ and t→ +∞ as T → +∞.
We use ψ′ ≡ dψ

dT in the following discussion.
The following dimensionless function is introduced

u(T) =
ψ(T)
ψc(T)

(81)

and the stability analysis in translated into the analysis of the stability of the equilibrium
point u = 1 of a transformed dynamical system. To construct the aforementioned system
the following relations are useful:

ψ̇ = e−Tψ′, ψ̈ = e−2T(ψ′′ − ψ′), and
ψ′c
ψc

= β if ψc(t) = ψ0tβ. (82)

In this section, we use a similar procedure for analyzing stability of the scaling solutions
obtained in Section 4.4.

Case |τ| � 1

For the analysis of the solution (73) of (71) we set t0 = 0 by a time shift. Using (82)
we have

ψ′′(T) = −2ψ′(T)
n + 1

− e2Tψ(T)n. (83)
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Denoting p = − 2
n−1 we have

u′′(T) =
p2e−pTψ(T)

ψ0
+

e−pTψ′′(T)
ψ0

− 2pe−pTψ′(T)
ψ0

(84)

u′(T) =
e−pTψ′(T)

ψ0
− pe−pTψ(T)

ψ0
(85)

u(T) =
e−pTψ(T)

ψ0
. (86)

Hence

ψ′′(T) = ψ0epT
(

p2u(T) + 2pu′(T) + u′′(T)
)

(87)

ψ′(T) = ψ0epT(pu(T) + u′(T)
)

(88)

ψ(T)) = ψ0epTu(T). (89)

Equation (83) becomes

u′′(T) =
(
− 2

n + 1
− 2p

)
u′(T) + ψn−1

0

(
−eT((n−1)p+2)

)
u(T)n − p(np + p + 2)u(T)

n + 1
. (90)

Substituting p = − 2
n−1 and ψ0 = (−2)

3
n−1

[
(n + 1)(n− 1)2

] 1
1−n it is obtained the

second-order equation

u′′(T) =
2(n + 3)u′(T)

n2 − 1
+

8u(T)n

(n− 1)2(n + 1)
− 8u(T)

(n− 1)2(n + 1)
. (91)

Defining
x = u(T), y = u′(T) (92)

we obtain the autonomous system

x′(T) = y(T) (93)

y′(T) =
2(n + 3)y(T)

n2 − 1
+

8x(T)n

(n− 1)2(n + 1)
− 8x(T)

(n− 1)2(n + 1)
. (94)

The scaling solution (73) is transformed to the equilibrium point P := (x, y) = (1, 0).
The system (93) and (94) also admits the trivial solution O := (x, y) = (0, 0) as an equilib-
rium point and in the case that n is odd, the symmetrical point P given by P̄ := (x, y) =
(−1, 0) is also an equilibrium point.

The linearization matrix of system (93) and (94) is

J(x, y) =

 0 1
8(nxn−1−1)
(n−1)2(n+1)

2(n+3)
n2−1

. (95)

For n > 1, J(0, 0) is real-valued, with eigenvalues
{

4
n2−1 , 2

n−1

}
. Then, the origin is

unstable for n > 1.
The eigenvalues of J(1, 0) are

{
− 2

n+1 ,− 4
1−n

}
. Therefore, (x, y) = (1, 0) is a sink for

−1 < n < 1. It is a saddle for n < −1, or n > 1.
If n is odd number, say n = 2k + 1, with k ∈ Z, the eigenvalues of J(−1, 0) are{

− 1
k+1 , 2

k

}
and when it exists, P̄ is a saddle.
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In Figure 1, a phase-plot of system (93) and (94) for n ∈ {2, 3, 5, 10} is presented. P is
a saddle given |n| > 1. When n is odd, the symmetrical point P̄ is a saddle given |n| > 1.
The origin O is a source, and the orbits diverge to infinity.

In Figure 2, a phase-plot of system (93) and (94) for n ∈ {1/3, 1/2, 3/2, 5/3} is
presented. When n < 1, the power law solution P is a sink, whereas in the other cases is a
saddle given |n| > 1.
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Figure 1. Phase-plot of system (93) and (94) for n ∈ {2, 3, 5, 10}. P is a saddle given |n| > 1. When n
is odd, the symmetrical point P̄ is a saddle given |n| > 1. The origin O is a source, and the orbits
diverge to infinity.
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Figure 2. Phase-plot of system (93) and (94) for n ∈ {1/3, 1/2, 3/2, 5/3}. When n < 1 the power law
solution P is a sink, whereas in the other cases is a saddle given |n| > 1.

6. Conclusions

In this work, we considered a cosmological model consisted by a Brans–Dicke field
and a minimally coupled quintessence field in a spatially flat FLRW background space. For
this cosmological model, the gravitational field equations consist of a Hamiltonian system
of six degrees of freedom. The dynamical variables correspond to the scale factor and to
the two scalar fields.

To study the integrability of the field equations, we have applied a direct method
which determines the FIs of a dynamical system without the use of Noether’s theorem.
In this approach one assumes a generic form for the FIs, say I, and directly applies the
condition dI/dt = 0 using the dynamical equations. These considerations resulted in a
system of partial differential equations involving the unknown coefficients defining I and
the dynamical quantities which characterize the dynamical system. The resulting system of
equations is solved in terms of the symmetries and the Killing tensors of the kinetic metric
and its solution provides the considered FIs.

For a power law scalar field potential function of the quintessence field, we found
conservation laws quadratic in the first order derivatives. Using the conservation laws, we
were able to find exact solutions for the field equations. In particular, we found scaling
solutions for the scale factor which describe ideal gas solutions. The stability properties of
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these solutions was investigated. We were able to recover previous published results in the
literature and to find new QFIs.

Using methods in [15,71,72], we have studied second-order ODE in one dimension
which admits a singular power law solution ψc(t) = ψ0tβ where ψ0 is an arbitrary constant.
To examine the stability of the solution ψc, the logarithmic time T through t = eT was
introduced, such that t → 0 as T → −∞ and t → +∞ as T → +∞. According to our
analysis, the scaling solution (73) is transformed to the equilibrium point P := (x, y) =
(1, 0), which is a sink for −1 < n < 1 or a saddle for n < −1, or n > 1. The dynamical
system also admits the trivial solution O := (x, y) = (0, 0) as an equilibrium point and in
the case that n is an odd, the symmetrical point P given by P̄ := (x, y) = (−1, 0) is also
an equilibrium point. The origin is unstable for n > 1. If n is an odd number, the point P̄
exists and is a saddle.

Until now, most of this kind of studies, for the investigation of conservation laws,
have been done mainly with the application of variational symmetries. Our approach
is more general and does not required the existence of a point-like Lagrangian, i.e., of
a minisuperspace description. Therefore, this generic approach can be applied in other
gravitational models without minisuperspace such are the Class B Bianchi spacetimes.
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