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Abstract: We consider the problem of calculation of the critical amplitudes at infinity by means
of the self-similar continued root approximants. Region of applicability of the continued root
approximants is extended from the determinate (convergent) problem with well-defined conditions
studied before by Gluzman and Yukalov (Phys. Lett. A 377 2012, 124), to the indeterminate (divergent)
problem my means of power transformation. Most challenging indeterminate for the continued
roots problems of calculating critical amplitudes, can be successfully attacked by performing proper
power transformation to be found from the optimization imposed on the parameters of power
transform. The self-similar continued roots were derived by systematically applying the algebraic
self-similar renormalization to each and every level of interactions with their strength increasing,
while the algebraic renormalization follows from the fundamental symmetry principle of functional
self-similarity, realized constructively in the space of approximations. Our approach to the solution
of the indeterminate problem is to replace it with the determinate problem, but with some unknown
control parameter b in place of the known critical index β. From optimization conditions b is found
in the way making the problem determinate and convergent. The index β is hidden under the
carpet and replaced by b. The idea is applied to various, mostly quantum-mechanical problems. In
particular, the method allows us to solve the problem of Bose-Einstein condensation temperature
with good accuracy.

Keywords: continued root approximants; critical amplitude; critcal index; indeterminate problem;
minimal sensitivity; power transfrom; optimization

1. Introduction

Power transformation [1] could be combined with continued root approximants [2].
Through its application we intend to extend the applicability of the continued roots to a
broader class of problems of finding the critical amplitudes and indices.

Generally speaking, the problem of finding the critical amplitudes is equivalent to
calculating the constant value of the functions at infinity, another old problem existing in
applied mathematics [3]. On the other hand, by applying the so-called DLog transforma-
tion, one can attack the problem of critical indices by means developed for the problem of
critical amplitudes [4].

The self-similar continued roots were derived in [2] by systematically applying the
algebraic self-similar renormalization to each and every level of interactions with their
strength increasing, while the algebraic renormalization follows from the functional self-
similarity principle implied in the space of approximations, as shown in [5]. In turn, power
transformation can be viewed as an algebraic transformation applied to the continued root
approximant as a whole.

Special features of the continued root approximants were also discussed in our recent
work [6]. Mind that one can explicitly accomplish partial summation of the expression for
the effective critical index in infinite order, and find an optimal value for the critical index
in each order of perturbation theory [2].

The related body of work preceding or inspiring our own research, was performed by V.I.
Yukalov in [7,8], by Kadanoff and Houghton in [9], by Stevenson [10], by M. Suzuki [11,12]
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and H. Kleinert [13]. More information can be found in our recent papers [6,14,15]. Feyn-
man’s inspirational ideas were documented in [16].

Formally, we are dealing with a real function φ(x) of a real variable x ∈ [0, ∞). In
practice, one is able to develop the perturbation theory which yields truncated asymptotic
expansions representing the function

φ(x) ' φk(x) (x → 0) (1)

at a small variable x, with k = 0, 1, . . . standing for perturbation order.
Thus in kth order we are in possession of the truncated expansion in powers of x,

φk(x) = a0 +
k

∑
n=1

anxn . (2)

Unless otherwise stated the normalization a0 = 1 is chosen. The truncated series (2)
will be subjected to resummation. We are concerned with the typical power law behavior
of the form

φ(x) ' Bxβ (x → ∞) , (3)

and intend to calculate the constants B (critical amplitude) and β (critical index) based on
the coefficients of the small variable expansion (2).

The amplitude is always positive. The critical exponent could be positive or negative.
When the critical index is known one has to calculate only the amplitude.

In our preceding work [2], in low-orders we derived the following self-similar contin-
ued root approximants,

R∗1(x) = (1 + A1 x)s, R∗2(x) =
(
1 + A1 x(1 + A2 x)s)s,

R∗3(x) =
(

1 + A1 x
(
1 + A2 x(1 + A3 x)s)s

)s
.

(4)

The amplitudes Ak could be found iteratively. They are given in all orders by sim-
ple expressions:

A1 = a1
s , A2 = a1

2(−s)+a1
2+2a2s

2a1s2 ,

A3 =
a1

4(−(s−1))(s+1)(5s−3)+12a1
2a2s(s2−1)−24a1a3s3+12a2

2(s−1)s2

12a1s3(a1
2(s−1)−2a2s) .

(5)

The formulas (5) follow from the requirement of an asymptotic equivalence with the
truncated series (2).

In general case we have

R∗k (x) =
(

1 + A1 x
(
1 + A2 x . . . (1 + Ak x)s)s . . .

)s
, (6)

with k = 1, 2 . . .. As x → ∞
R∗k ' Bkxβk ,

with
βk = s + s2 + . . . sk.

The critical amplitudes are given by the recursion

Bk = Bk−1 Ask

k , k = 1, 2 . . . ,

with the initial condition B0 = a0.
With exactly found as k→ ∞, control parameter

s =
β

1 + β
, β > −1

2
, (7)
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the sequence of continued roots converges to the limit expression with the correct critical
index β at infinity in the infinite order [2]. Of course, we have to know β in advance to
make the formulas work.

The case when the inequality (7) is satisfied will be called determinate. In the opposite
case, β ≤ − 1

2 , we are dealing with a divergent indeterminate problem. The primary goal of
the paper is to solve (approximately) the indeterminate problem. More precisely we would
like to calculate the critical amplitudes and indices in such a case.

Similar indeterminate problem for the Padè approximants was discussed in [17,18].
Most intriguing quantum paradoxes could be associated with indeterminate moment
problems [19]. Before proceeding to the indeterminate case, let us first illustrate the strength
of continued roots for a couple of examples corresponding to the determinate problem.

2. Determinate Problem Examples

Harmonium. Let us consider the ground state energy of a 2-electron harmonium
atom [20]. Such harmonium atom corresponds to the physical system of two electrons
confined by the spherically symmetric harmonic potential, modeled by the Hamiltonian

Ĥ =
1
2

2

∑
i=1

(
−∇2

i + ω2r2
i

)
+

1
2

2

∑
i 6=j

1
rij

. (8)

The nondimensional variables are used, and ω2

2 stands for the harmonic oscillator
force constant [20], while ri ≡ |ri|, rij ≡ |ri − rj| .

By introducing the new variable x ≡ ω1/3 , we arrive at the following truncation for
the ground state energy of harmonium

e(x) ' 1.19055x2(1 + 1.98734x + 0.102887x2) (x → 0) .

As x → ∞
e(x) ' Bx3,

with B = 3. We have a determinate case with β = 1 and s = 1/2. It is then pretty much
straightforward to calculate

B1 = 2.37355, B2 = 2.85418, B3 = 2.93264.

The last estimate results from adding a trial value for the third-order coefficient, a3 = 0.
It brings the error of only 2.25%.

Fröhlich optical polaron. Consider the problem of the effective mass of the celebrated
Fröhlich optical polaron. One can develop a perturbation theory in powers of the coupling
constant g [21]. It reads as follows,

m(g) ' 1 +
1
6

g + 0.0236276g2 (g→ 0). (9)

For large value of the coupling constant the effective mass behaves as a power law [21],

m(g) ' Bg4 (g→ ∞) , (10)

with the amplitude
B = 0.022702 . (11)

We have a determinate case with β = 4 and s = 4/5. It is then pretty much
straightforward to calculate

B1 = 0.285106, B2 = 0.102836, B3 = 0.0252002.

The last estimate is obtained with a3 = 0, bringing the error of 11%.
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We had also studied the effect of adding one more trial term to the expansion for the
ground state energy of the nonlinear Schrödinger model. Basic information concerning
some mathematics and physical applications of the model could be found in [2]. The critical
point is located at infinity, and

e(g) ' Bg2/3,

with B = 3/2. The expansion at small g is available up to the 5th order in the coupling
constant g [2]. Let us add one more trial coefficient to the expansion at small g, i.e., a6 = 0.
After standard calculations we find an almost perfect numerical convergence to the value
B6 = 1.50765.

Also, the technique pertinent to the determinate case can be applied to the critical
amplitudes of Schwinger model [22]. The ground state energy of the model [23], is known
to decay as the power law

e(x) ' 0.6418x−1/3,

where x stands for the inverse coupling constant (see, e.g., [22] and references therein).
After standard calculations with the second-order expansion at small x (see, e.g., [22] and
referencing therein), we find some very reasonable estimates for the critical amplitude,
B1 = 0.6403, B2 = 0.5581.

3. Indeterminate Problem Method

The fresh challenge starts when we are dealing with situations when β ≤ −1/2. As of
now we are confronted with an indeterminate problem as long as the continued roots are
concerned. Mind that the key point for the effective solution of the determinate problem is
our knowledge of β and the ability to express the control parameters s through β. Last but
not least, the region of β allowing for convergence of continued roots, is strictly defined as
is simply expressed by the expressions (7).

Our approach to the solution of the indeterminate problem is to replace it with the
determinate problem, but with some unknown parameter b in place of the known β.
The problem is going to be reduced to defining an additional condition(s) to find b, while
making the problem convergent. But first we need to put β under the carpet and replace
it by b. After b is found explicitly from optimization conditions, β is returned to play my
means of inverse power transform.

We are going to approach the indeterminate problem my means of the power trans-
forms [1,24,25]. First, we apply the power transform to the truncated expansion (2),

P̂k(x, b) ≡ (φk(x))b/β . (12)

The transformed expression can be expanded in powers of x,

P̂k(x, b) '
k

∑
n=0

cn(b)xn . (13)

The expansion (13) is subjected to self-similar renormalization. We are supposed to
arrive at an approximantR∗k (x, b), and in our case to the self-similar continued root.

Then, we have to accomplish the inverse transformation

F̂k(x, b) = [R∗k (x, b)]β/b . (14)

Here

R∗k (x) =
(

1 + A1(b) x
(

1 + A2(b) x . . . (1 + Ak(b) x)s(b)
)s(b)

. . .
)s(b)

.

As x → ∞
R∗k (x, b) ' Bk(b)xbk(b),
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with
bk(b) = s(b) + s(b)2 + . . . s(b)k,

and the intermediate amplitudes for the transformed sequence are given by the recursion

Bk(b) = Bk−1(b)Ak(b)s(b)k
, k = 1, 2 . . . ,

with the initial condition B0 = 1. With, supposedly found as k→ ∞, control parameter b,
we have

s(b) =
b

1 + b
, b > −1

2
. (15)

And the sequence of continued roots R∗k (x, b) converges to the limit power law
expression R∗∞(x, b) ∝ xb , with the index b as x → ∞. Thus we formally reproduce the
basic scheme of [2]. With the condition (15) the problem becomes determinate provided we
can also supply the way to find b explicitly.

To find final critical amplitudes we have to accomplish the inverse transformation (14).
After the inverse transformation the sought approximation for original φ(x) is given by

φ∗k (x) = F̂k(x, b) . (16)

As x → ∞
φ∗k (x) ' B̂kx

βbk
b ,

with the sought critical amplitude expressed as follows,

B̂k = (Bk(bk))
β/b.

The parameter b and powers bk are defined by the variational condition

∂B̂k(b)
∂b

= 0 , (17)

to be called the minimal derivative, or minimal sensitivity condition. Solving (17), we find
some optimal b = b∗, and calculate the critical amplitude

B̂k = B̂k(b∗).

Equation (17) simply states that critical amplitude, a physical quantity, can not possibly
depend on the formally introduced parameter of power transform.

We skip here explicitly mentioning that b∗ is also dependent on the order k. If needed,
such dependence can be made explicit.

4. Indeterminate Problem Examples

Consider first the toy model, expressed by the following function

φ(x) =
2

(2x + 1)3/4 + 1
, (18)

so that as x → 0

φ(x) ' 1− 0.75x + 0.75x2 − 0.859375x3 + 1.07813x4 − 1.44727x5 + 2.04883x6, (19)

and as x → ∞
φ(x) ' 1.18921x−3/4. (20)

In the 4th order there are two good solutions

b∗ = −0.280138, B̂4 = 1.20406; b∗ = −0.107597, B̂4 = 1.16005.
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They do frame the exact result nicely, but the leftmost solution is much better in
approximating the coefficient a6 and should be preferred. The same logic will be followed
in the forthcoming, more realistic examples, when the choice of the leftmost solution will
be made.

Solving (17) in 5th order leads to the unique solution b∗ = −0.156158, and B = B̂5 =
1.18043, a very accurate result for B.

One can approach the problem of finding b differently. Let us construct the approxi-
mant [R∗5(x, b)]β/b in general form with arbitrary b, calculate the 6th order coefficient in
the expansion as the function of b, compare it to the known a6 and find b∗ as the minimizer
of the error in predicting a6. Following this line of calculations we find b∗ ≈ −0.19986,
and B̂5+1 ≈ 1.19101.

Generally speaking, such approach could be coined as k + 1 optimization, when k
asymptotic conditions are used to construct the approximant as the function of parameter
b, but b is supposed to be found from minimizing the error in prediction of the known and
purposely withheld k + 1 coefficient.

4.1. Bose-Einstein Condensation Temperature

From statistical physics we know how to find the Bose-Einstein condensation tem-
perature T0 of ideal uniform Bose gas [26]. It is also well-known that the ideal gas is
unstable below the condensation temperature. One should explicitly introduce the atomic
interactions and stabilize the system [27]. Introducing interactions also shifts the transition
temperature to the value of Tc. The shift ∆Tc ≡ Tc− T0 appears to be linear in the parameter
γ ≡ ρ1/3as (see, e.g., review [4] and paper [17]). Namely,

∆Tc

T0
' c1γ (γ→ 0) .

Here as stands for atomic scattering length, and ρ stands for gas density. Monte Carlo
simulations (see [17] and multiple references therein), give c1 = 1.3± 0.05 . Theoretically,
the coefficient c1 can be defined [28–30] as the strong-coupling limit

c1 = lim
g→∞

c1(g) ≡ B, (21)

of a function c1(g) with the expansion at small g

c1(g) ' 0.223286g− 0.0661032g2 + 0.026446g3 − 0.0129177g4 + 0.00729073g5 , (22)

in the effective coupling parameter g.
Since β = −1, the problem of finding B is undetermined. In the 4th order there are

two good solutions

b∗ = −0.30884, B̂4 = 1.30065; b∗ = −0.165796, B̂4 = 1.18522.

Both results agree rather well with other theoretical and numerical simulation esti-
mates discussed extensively in [17]. But the leftmost solution as a less intrusive, being
closer to the original value of −1, should be preferred, the conclusion based also on the
analogy with the toy model presented above.

In the same way one can find the values of c1 for some other models. For instance,
for the O(1) field theory [29], it is represented by the following expansion at small g:

c1(g) ' 0.334931g− 0.178478g2 + 0.129786g3 − 0.115999g4 + 0.120433g5 .

Since β = −1 the problem of finding B is undetermined. In the 4th order there are two
good solutions

b∗ = −0.346347, B̂4 = 1.13982; b∗ = −0.166635, B̂4 = 0.998593.



Symmetry 2021, 13, 1525 7 of 17

Both results, especially the leftmost solution to be selected, agree with Monte Carlo
numerical estimate c1 = 1.09± 0.09 , discussed in [17].

Similarly, for yet different case of the O(4) field theory, the following expansion was
found in the paper [29],

c1(g) ' 0.167465g− 0.0297465g2 + 0.00700448g3 − 0.00198926g4 + 0.000647007g5,

and for the indeterminate problem with β = −1, we calculate

b∗ = −0.284207, B̂4 = 1.55037; b∗ = −0.162829, B̂4 = 1.44751.

The leftmost solution to be selected, agrees with Monte Carlo numerical estimate
c1 = 1.6± 0.1 , discussed in [17].

The problem of Bose-Einstein condensation temperature was somewhat elusive even
for our most advanced technique of corrected approximants, requiring a non-trivial ap-
proach with control functions, but is captured with relative ease and with better accuracy
by the power-transformed and optimized continued roots. Although the truncation is short
it appears to be informative as one can think that the role of missing higher-order terms is
successfully mimicked by the minimal derivative condition.

4.2. Lieb-Liniger Bose Gas

Consider a one-dimensional Bose gas with contact interactions quantified by the
coupling parameter g. The ground-state energy of the Lieb and Liniger model [31], can be
written as

E(g) ' g− 4
3π

g3/2 +
1.29
2π2 g2 − 0.017201g5/2 (g→ 0) . (23)

In the limit of very large g, another expression

E(∞) =
π2

3
≈ 3.289868 , (24)

was found by Tonks and Girardeau.
In the variables e(x) ≡ E

(
x2) , g ≡ x2, the expansion (23) can be standardized, i.e.,

e(x) ' x2
(

1− 0.424413x + 0.065352x2 − 0.017201x3
)

. (25)

In this case β = −2, and we are dealing with the indeterminate problem.
Sometimes, the “inverse” approximant with b = 1, could give better results than

transformed approximants. Taking the inverse of the sought quantity can possibly restore
some lost exact asymptotic property as it happens in the theory of critical indices with the
celebrated ε-expansion [5].

How to understand the case of b = 1? Mind that pretty much standard way to calculate
the critical amplitude B was suggested in [3]. Let us calculate the critical amplitude B. First,
let us apply the power transform with fixed power to obtain power-transformed series

T(x) = φ(x)−1/β.

The transformation excludes from consideration the xβ behavior at infinity. Thus we
arrive to the following approximation to the critical amplitude

B = lim
x→∞

(xPn,n+1(x))−β,

to be calculated by means of the standard Padé approximants Pn,n+1(x), applied to the
function T(x) [3,32].

Any other approximants, including continued roots, with similar behavior at infinity
could be employed [14,18,33]. The desired approximants to series T(x) should behave
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at infinity as x−1. Such asymptotic form is required to guarantee the finite value for the
critical amplitude B. From the standpoint of the continued roots approximants the problem
appears as indeterminate.

We are concerned with application of the continued roots and would need to have at
hand a determinate problem. Naively, one can simply take the inverse of xT(x). In order
for the inverse, 1

xT(x , to be able to calculate the finite value at infinity, the desired continued

roots approximants to the series T(x)−1 should behave at infinity linearly, as x1. Now,
from the standpoint of the continued roots we arrive at the determinate problem. Here
comes the explanation of the term “standard inverse”, or just “inverse”, through sketching
the line of thought leading to the condition of b = 1.

In the case of Lieb-Liniger gas the “inverse” approximants with b = 1, give the best
results, by far better than optimized approximants. We have numerically convergent
sequence of critical amplitudes,

B̂1(1) = 2.3562, B̂2(1) = 3.20382, B̂3(1) = 3.25752,

only 0.98% off the exact Tonks-Girardeau result. Numerical convergence of the inverse
scheme is controlled only through increasing order of approximants.

4.3. Calculation of the Wilson Loop

The following expression, containing the modified Bessel function of the first kind I1

φ(y) =
2 exp

(
−√y

)
I1
(√

y
)

√
y

, (26)

has a deep physical meaning. It can be interpreted as the N = 4 Super Yang-Mills circular
Wilson loop [34].

Let us introduce the new variable
√

y = x. In terms of x,

φ(x) ' 1− x +
5x2

8
− 7x3

24
+

7x4

64
− 11

320
x5, x → 0. (27)

And as x → ∞,
φ(x) ' B x−3/2.

Here the critical amplitude B =
√

2
π ≈ 0.797885. In this case β = −3/2, and we once

again have to solve the indeterminate problem.
The optimization based on the minimal derivative condition gives bad results in this

case, with the best result of only B ≈ 0.595 achieved.
The “inverse” approximants with b = 1, give good results, so that have numerically

convergent sequence of critical amplitudes,

B̂1(1) = 0.805927, B̂2(1) = 0.782096, B̂3(1) = 0.779155,

B̂4(1) = 0.777479, B̂5(1) = 0.775124.

The error incurred by the last term in the sequence equals 2.85%.
One can approach the problem of finding b differently, following the pass already

outlined above. Let us construct the approximant
[
R∗4(x, b)

]β/b in general form with
arbitrary b, calculate the 5th order coefficient in the expansion as the function of b, compare
it to the known a5 and find b∗ as the minimizer of the error in predicting a5. Following this
line of calculations we find b∗ ≈ 0.902075, and B̂4+1 ≈ 0.794868. Such an approach, coined
as 4 + 1 scheme, brings the error of only 0.38%.

Convergence is not always as fast as in the examples presented above. For instance,
in the correlation function of random branched polymers discussed in [4,18], we encounter
much slower convergence when a similar methodology is applied with a comparable
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number of terms in the expansion. Typical remedies include adding more terms when
possible, and applying different optimized approximations, or even introducing control
functions instead of control parameters [17,18]. Generally speaking, a similar to very
slow convergence problem of barren information plateaus is met in quantum machine
learning [35].

4.4. Hard-Core Scattering Problem

The problem of calculating the scattering length of a repulsive square-well poten-
tial [36], can be reduced to calculation of the integral

S(y) =
∫ y

0

(
sin t

t3 − cos t
t2

)
dt , (28)

with the exact limit
S(∞) = π/15.

Using the variable y =
√

x, one can find as x → 0,

S(x) '
√

x
(

1
9
− x

135
+

x2

2625
− 4x3

297675
+

2x4

5893965
− x5

166080925
+

x6

10672286625

)
. (29)

We see that the problem of calculating critical amplitude

B = π/15 ≈ 0.20944,

can be reduced to the indeterminate problem with β = −1/2.
The method of minimal derivative severely underestimates the amplitude, giving

the estimate B̂ ≈ 0.1. On the other hand, the “inverse” approximants with b = 1, give a
numerically convergent sequence of critical amplitudes

B̂1(1) = 0.15462, B̂2(1) = 0.185754, B̂3(1) = 0.203357,

B̂4(1) = 0.212125, B̂5(1) = 0.216145.

The error incurred by the last term in the sequence equals 3.2%.
Let us explore the 4 + 1 scheme and construct the approximant

[
R∗4(x, b)

]β/b following
the same route as in the previous example. Following this line of calculations we find
b∗ ≈ 1.0045, and B̂4+1 ≈ 0.211961. The 4 + 1 scheme brings the error of 1.2%.

When the 6th-order coefficient a6 in the expansion in the variable y is available as well,
one can extend the calculations to 4 + 2, meaning that one should predict both 5th and 6th
order coefficients, calculate the error for each of them (not forgetting to take the absolute
value of differences), and take their simple average. By minimizing such defined average
error of predicting the two withheld coefficients one can attempt to find b. Following the
idea we find b∗ ≈ 1.0518, and B̂4+2 ≈ 0.210248. Such an approach could be coined as 4 + 2,
and it brings the error of only 0.39%.

5. Indeterminate Problem Calculation of Critical Exponents

Critical exponents can be found by using the very same techniques as employed above
for the critical amplitudes. Consider the following limit-case

φ(x) ' Bxβ (x → ∞) ,

representative to the critical phenomena. The critical exponent β can be expressed formally
as the following limit

β = lim
x→∞

x
d

dx
ln φ(x) ≡ lim

x→∞
xψ(x), (30)



Symmetry 2021, 13, 1525 10 of 17

where
ψ(x) ≡ d

dx
ln φ(x),

as shown in [4,37,38]. In terms of the small-variable truncation φk(x), we can express the
truncated DLog function ψk(x),

ψk(x) =
d

dx
ln φk(x) .

In turn, it can be expanded in powers of x,

ψk(x) =
k

∑
n=0

dnxn . (31)

But for large x → ∞
ψ(x) ' β xδ,

where the “amplitude” is the sought critical index β, and the “critical index” δ ≡ −1.
Thus a critical index could be expressed as an amplitude for some extrapolation

problem. The problem of finding the critical index β appears to be always indeterminate.
It is analogous to the indeterminate problem of finding critical amplitude with known
critical index ≡ −1. We are going to calculate the critical index routinely, by applying to
the obtained expansion (31) the methods developed above for the indeterminate problem
for the critical amplitudes.

To warm up let us consider first the toy model, described by the function

φ(x) =
√

1 + 2x + 1
2

, (32)

which can be interpreted as the generalized Flory equation of state in the theory of 2D
polymer coils [33]. For small x the following expansion can be easily established,

φ(x) ' 1 +
x
2
− x2

4
+

x3

4
− 5x4

16
+

7x5

16
,

while for large x we have a power law

φ(x) ∼
√

x.

Method of optimization based on the minimal derivative requirement gives the best results

β̂2(−0.28681) = 0.441731, β̂3(−0.15899) = 0.435746, β̂4(−0.32889) = 0.467625,
β̂5(−0.252525) = 0.465299,

with an error of 6.5%. The k + 1 optimization fails to bring the real solution, and the inverse
approximants give inferior results, with the best result β̂4(1) = 0.338866 being far off the
target value.

5.1. Polymer Coil

Consider the three-dimensional polymer coil, characterized by a nondimensional
interaction parameter g [39,40]. In the strong-interaction limit g→ 0 one expects the power
law behavior for the swelling factor

Υ(g) ' Bgβ (g→ ∞) , (33)
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with the reference value of critical exponent β = 0.3544, found numerically in [40]. Pertur-
bation theory developed for the swelling factor in [39], leads to the truncated expansion

Υ(g) ' 1 + 4
3 g− 2.075385396g2 + 6.296879676g3 − 25.05725072g4+

116.134785g5 − 594.71663g6 (g→ 0) .
(34)

Following the main scheme of indeterminate problem we obtain with the power-transformed
self-similar continued roots after optimization with the minimal derivative condition,

β̂3(−0.19071) = 0.3675, β̂4(−0.09925) = 0.3599, β̂5(−0.2134) = 0.36513.

The 4 + 1 optimization scheme gives close result β̂4+1(−0.14425) = 0.3647, while the
“inverse” approximants scheme converges rapidly to the inferior result β̂3(1) = 0.3074.
The higher-order results appear to be complex.

5.2. Quartic Oscillator

The quantum anharmonic oscillator with the Hamiltonian

Ĥ = − 1
2

d2

dx2 +
1
2

x2 + gx4 ,

where g is a positive parameter of anharmonicity, is widely studied in quantum mechanics
and approximation theory. The Hamiltonian is known to result in a strongly divergent
perturbation theory. For the ground-state energy it yields [41,42] the truncated series

ek(g) '
k

∑
n=0

angn , (35)

in rather high orders, with only the few starting coefficients shown below:

a0 =
1
2

, a1 =
3
4

, a2 = − 21
8

a3 =
333
16

, a4 = − 30885
128

,

a5 =
916731

256
, a6 = − 65518401

1024
, a7 =

2723294673
2048

.

The strong-coupling limit is a power law

e(g) ∼ gβ (g→ ∞) , (36)

while the critical exponent β = 1/3.
Following the main scheme of indeterminate problem we obtain with the power-transformed

self-similar continued roots after optimization with the minimal derivative condition,

β̂3(−0.22740) = 0.274960, β̂4(−0.16085) = 0.282615, β̂5(−0.28985) = 0.311653,
β̂6(−0.23515) = 0.312131,

with the error of 6.36%. Two other schemes fail to produce a convergent sequence (“inverse”
scheme), or generate complex numbers (5 + 1 scheme). Even better accuracy can be
achieved when much more terms from the expansion (35) are accounted for, as discussed
in the Section 6. Higher-order potentials can be of interest as well [43,44].

5.3. Nonlinear Schrödinger Model

We can also calculate the critical exponent for the one-dimensional nonlinear Schrödinger
model with the following nonlinear Hamiltonian

ĤNLS = − 1
2

d2

dx2 +
1
2

x2 + g|ψ|2 , (37)
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for the wave function ψ(x) of the Bose-condensed atoms in a harmonic trap, where g is the
effective coupling.

The expansion of the ground state energy e(g) for small g

e5(g) = 1 + g− 1
8

g2 +
1

32
g3 − 1

128
g4 +

3
2048

g5, (38)

was obtained first in [43]. The critical point is located at infinity, with the ground state
energy behaving as

e(g) ∼ gβ,

with the exponent β = 2/3. Let us again add one more trial coefficient, a6 = 0, to the
expansion at small g.

After standard calculations with 3 + 1 optimization scheme we find rather good
estimate β̂3+1(0.271135) = 0.67592, bringing the error of 1.39%,

Following the scheme of indeterminate problem and the “inverse” scheme we obtain
with the power-transformed self-similar continued roots

β̂1(1) = 0.632456, β̂2(1) = 0.581431, β̂3(1) = 0.589432,

β̂4(1) = 0.607582, β̂5(1) = 0.625906,

with the best estimate giving an error of 6%. The method of optimization based on the
minimal derivative condition gives “only” β̂ ≈ 0.55.

Along the same lines one can also consider the Bose-condensate within spherically-
symmetrical traps. It is modeled by the effective Hamiltonian

Ĥr =
1
2

(
− d2

dr2 + r2
)
+

g
4πr2 χ2 , (39)

for the radial part of the condensate wave function χ(r) [45].
The energy of the ground state can be approximated by the truncated expansions

e(c) ' 3
2
+

1
2

c− 3
16

c2 +
9

64
c3 − 35

256
c4 (c→ 0), (40)

and
e(c) ∼ cβ (c→ ∞), (41)

with the index β = 2
5 , and c = g

(2π)3/2 .
Following the main scheme of indeterminate problem we obtain with the power-

transformed continued roots after optimization with the minimal derivative condition,

β̂2(−0.261315) = 0.40692, β̂3(−0.127056) = 0.386405.

with the error of 3.34% in the latter case. The standard inverse scheme brings the results by
far inferior.

5.4. Scalar Field Theory

Consider free energy f (x) of the mϕ2 quantum field theory. It is defined on a d-
dimensional cubic lattice with lattice spacing a [3] . In terms convenient for the further
analysis, it could be expressed through the modified Bessel function of zero order

f (x)
x
≡ φ(x) = exp

{
2
∫ ∞

0
e−t ln

[
e−xt I0(xt)

]
dt
}

. (42)
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The variable x is expressed through the lattice spacing, and x = 1/ma2. The integral
can be expanded in powers of the variable x, i.e.,

φ(x) ' 1− 2x + 3x2 − 10x3

3
+

29x4

12
. (43)

In order to pass to the continuous limit, we have to take explicitly the limit a → 0 (
x → ∞). In the continuous limit the selected part of the free energy is characterized by the
following power law:

φ(x) ∼ xβ ,

with β = −1.
The “inverse” approximants with b = 1, give good results, so that we have a numeri-

cally convergent sequence of critical indices,

β̂1(1) = −1.41421, β̂2(1) = −1.07457, β̂3(1) = −0.975575.

The higher-order calculations lead to complex results for the index. The error incurred
by the last term in the sequence equals 2.2%.

From the standard calculations with 3 + 1 optimization scheme we find rather good
estimate β̂3+1(0.5502) = −1.02113, bringing the error of 2%, while the optimization scheme
based on minimal derivative condition fails to produce the solutions to the optimiza-
tion problem.

6. Discussion

In most general form the continued roots can be expressed

R∗k (x) =
(

1 + A1 x
(
1 + A2 x . . . (1 + Ak x)s1

)s2 . . .
)sk

, (44)

with all different “amplitudes” Ak and sub-“indices” sk [2]. When interested in the critical
amplitudes B it is natural to concentrate only on “amplitudes” Ak and set all sub-“indices”
to equal value of s. Such an idea amounts to the well-defined convergence of continued
roots, while not necessarily ensuring existence of real solutions in arbitrary orders.

On other hand, when interested in direct calculations of critical indices β one can try
to impose simplifying conditions on “amplitudes” Ak, setting them all to the same value
of A. Such complementary approach ensures existence of real solutions and leads to the
following approximants

r∗k (x) =
(

1 + A x
(
1 + A x . . . (1 + A x)s1

)s2 . . .
)sk

, k = 1, 2 . . . , (45)

with
r∗1(x) = (1 + A x)s1 , r∗2(x) =

(
1 + A x(1 + A x)s1

)s2 ,

r∗3(x) =
(

1 + A x
(
1 + A x(1 + A x)s1

)s2
)s3

.

Elementary power-counting leads to explicit expressions for the critical indices βi.
In low-orders we have simple expressions

β2 = (1 + s1)s2, β3 = (1 + (1 + s1)s2)s3, β4 = (1 + (1 + (1 + s1)s2)s3)s4,

and so on. One can see that

β4 = s4 + s4s3 + s4s3s2 + s4s3s2s1,

meaning that the critical index by itself is being represented as an expansion in the sub-“indices’’.
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The latter formula can be easily generalized to an arbitrary order,

βk = sk + sksk−1 + sksk−1sk−2 + . . . + sksk−1sk−2 . . . s1, (46)

(with s0 ≡ 0). Note that the case of β = 0 can be treated as well.
Remarkably, the critical index can be expressed from the continued roots in two

different ways. In addition to the Formula (30) we have the expansion in sub-“indices”
(46). As a consequence, there are two complementary ways, expressed in the Formulas (6)
and (45), to approximate the complete expression (44). One can even think that the two
approaches are applicable to different physical situations. Detailed study of the ansatz (45)
and its comparison with the ansatz (6), will be presented elsewhere.

In the second order, at the level of β2, the idea of expansion in sub-indices was realized
in [46]. The approximants (45) should be combined with minimal-sensitivity conditions
with the outer index sk considered as an optimization parameter. Positive A is guaranteed,
and the Formula (47) simply propagates A to arbitrary orders. Minimal-sensitivity condi-
tions could be imposed directly on the expression for the critical index [46]. Mind that all
previous approaches considered critical amplitude as the subject of optimization [6,47–49].
One can hope that a direct optimization of the critical indices is going to improve accuracy
of the indices estimations.

We only note here that in the case of susceptibility χ of a three-dimensional Ising
model on the simple cubic lattice [6,50–52], the technique based on the approximants (45)
appears rather successful. Its application leads to the following expression for the χ(g)

χ(g) =

1 + 1.07347g

(0.221655−g)


1.07347g

(0.221655−g)


1.07347g

(
0.23794

0.221655−g−0.073471
)0.213426

0.221655−g +1


1.14257 +1



0.0185894



1.2389

,
(47)

where g = 1
kBT , and critical point gc ≈ 0.221655. Formula (47) is written for the variable

z(g) = g
gc−g .

The critical index −β ≡ γ = 1.2478, can be deduced from (47). It appears to be in
a reasonable agreement with various numerical estimates, γ ≈ 1.24, compiled in [53].
The Formula (47), is based only four starting terms from the expansion for the suscepti-
bility [50], but it is able to predict the remaining 21 coefficients with very good average
accuracy of 0.596%.

The second comment is on the subject of long series. When dealing with long series
one is confronted with very cumbersome expressions for the amplitude to be optimized.
Instead, one can adopt the following strategy motivated by the Tukey approach to the
definition of powers of the Tukey’s ladder of powers [24].

Let us fix the value of b = b∗ plausibly, considering it as equal to some “vulgar”
fraction, chosen based on the experience gained from optimization of shorter series. In all
orders let us evaluate corresponding amplitudes, or critical indices for such selected b∗.
Mind that computations with fixed b∗ are easy to perform because of the iterated structure
of the continued roots. In fact, let us select a few trial values for b∗.

Let us analyze the convergence of the sequences of such calculated values. If there are
a few possible choices of b∗ leading to a numerically convergent series in some order to
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some values, let us analyze the quality of the approximants corresponding to such found
values by attempting to predict the coefficients from the series not involved in construction
of the approximant.

Finally, let us find the approximant (and corresponding b∗) with the best predictive
abilities. To this end find the maximal error incurred in predicting the coefficients and
select the approximant with the smallest maximal error. One can also use another selection
criteria, e.g., the average error in prediction of some plausible number of coefficients.

For the toy model (18) we found the value of b∗ = − 3
7 , which brings good, clear

numerical convergence and predictability. The following sequence of value was found,

β̂1 = 0.654827, β̂2 = 0.372624, β̂3 = 0.600457, β̂4 = 0.420037,

β̂5 = 0.553834, β̂6 = 0.451467, β̂7 = 0.528073, β̂8 = 0.470503,

β̂9 = 0.51406, β̂10 = 0.481738, β̂11 = 0.506438, β̂12 = 0.488313,

β̂13 = 0.502313, β̂14 = 0.492167, β̂15 = 0.500111.

Convergence to the value of 0.5 is fast enough and evident. The last value brings a
small error of just 0.022%. Corresponding to the last point approximant, is able to predict at
least eight more coefficients with average error of 0.00025% and maximal error of 0.0011%.
It appears to be quite good and better in prediction than others considered for some other
trial values of b∗.

Rate of convergence is controlled by the proximity to the boundary point b = −1/2,
and decreases as we approach it. Further away from this point rate increases, but the error
can increase as well. Some balancing acts, though, help to combine reasonable convergence
rate with good accuracy.

In the important case of the quartic oscillator discussed above, both good convergence
and good predictive abilities are achieved for b∗ = −1/3. We find the following sequence
of critical indices,

β̂1 = 0.111199, β̂2 = 0.609154, β̂3 = 0.239164, β̂4 = 0.396971,

β̂5 = 0.303855, β̂6 = 0.349685, β̂7 = 0.325101, β̂8 = 0.337622,

β̂9 = 0.331129, β̂10 = 0.334455, β̂11 = 0.332753, β̂12 = 0.333624,

β̂13 = 0.333182, β̂14 = 0.333408, β̂15 = 0.333293, β̂16 = 0.333341.

Convergence to the value of 0.33 is fast and evident. The last value brings a minuscule
error of just 0.00027%. Corresponding to the last point approximant, is able to predict
six more coefficients with average error of 0.2% and maximal error of 0.77%. It appears
to be quite good and better in prediction than others considered for some other trial
values of b∗. The convergence of the method is much faster than for the method of
corrected approximants [14,33], or for the fractional-calculus applied together with Padé
approximants [37,38].

The techniques for calculation of critical amplitude can be useful for solving ODE‘s,
such as celebrated Gross-Pitaevskii equation for the wave function of vortex in Bose
condensate (see, e.g., [43,54,55] and references therein), where in the course of computations
appears the unknown parameter c with the linear term for small distances from the vortex
origin. On the other hand, the expansion of the wave function at large distances from
the origin is well defined, albeit it appears to be strongly divergent [43]. The problem of
calculating c from the known three starting terms at large distances, can be reduced to
the indeterminate problem and the 3 + 1 method gives c ≈ 0.578, while purely numerical
methods give c ≈ 0.583 [56,57]. Mind that for ODE accuracy of various approximations
could be checked by direct substitution and quantified by their defect [55].



Symmetry 2021, 13, 1525 16 of 17

7. Concluding Remark

We conclude that the most challenging, indeterminate for the continued roots problem
of calculating critical amplitudes and indices, can be successfully attacked by performing
proper power transformation. The region of applicability of the continued root approxi-
mants can be successfully extended from the determinate (convergent) problem studied
in [2] with well-defined conditions to the indeterminate (divergent) problem my means of
a two-ways power transformation [1].

Notwithstanding the somewhat tedious technical details, our approach to the solu-
tion of the indeterminate problem consists in replacing it with the determinate problem,
with some unknown control parameter b in place of the known critical index β. From opti-
mization conditions b is found in the way making the problem determinate and convergent.
By means of the power transform the index β is hidden under the carpet and replaced by b.
But there is a cost incurred by the transformation, since we are dealing now with the whole
spectrum of b, while for the determinate problem all parameters are defined uniquely by
simple formulas. Instead, we should solve the optimization problem.

The problem of finding the critical indices by means of the continued roots given by
the expression (6) is always indeterminate and is solved by analogy to the indeterminate
problem of finding critical amplitudes. One can think that various potentials leave an
undeniable weak imprint at the energy level of a quantum harmonic oscillator which can
be read with good accuracy by means of special techniques.
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