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Abstract: Accurate global horizontal irradiance (GHI) forecasting is crucial for efficient management
and forecasting of the output power of photovoltaic power plants. However, developing a reliable
GHI forecasting model is challenging because GHI varies over time, and its variation is affected by
changes in weather patterns. Recently, the long short-term memory (LSTM) deep learning network
has become a powerful tool for modeling complex time series problems. This work aims to develop
and compare univariate and several multivariate LSTM models that can predict GHI in Guntur, India
on a very short-term basis. To build the multivariate time series models, we considered all possible
combinations of temperature, humidity, and wind direction variables along with GHI as inputs
and developed seven multivariate models, while in the univariate model, we considered only GHI
variability. We collected the meteorological data for Guntur from 1 January 2016 to 31 December 2016
and built 12 datasets, each containing variability of GHI, temperature, humidity, and wind direction
of a month. We then constructed the models, each of which measures up to 2 h ahead of forecasting
of GHI. Finally, to measure the symmetry among the models, we evaluated the performances of the
prediction models using root mean square error (RMSE) and mean absolute error (MAE). The results
indicate that, compared to the univariate method, each multivariate LSTM performs better in the very
short-term GHI prediction task. Moreover, among the multivariate LSTM models, the model that
incorporates the temperature variable with GHI as input has outweighed others, achieving average
RMSE values 0.74 W/m2–1.5 W/m2.

Keywords: deep learning; global horizontal irradiance (GHI); long short-term memory (LSTM);
multivariate; time series; univariate

1. Introduction

Solar energy has emerged as a promising renewable energy source because it is the
cleanest and most abundant in nature. This energy is radiant light and heat that is harnessed
to generate electric power, such as generating electricity using photovoltaic (PV) power
plants. It is observed that PV power output mainly relies on the amount of global horizontal
irradiance (GHI) that is incident on the PV plane [1,2]. Therefore, accurate prediction of GHI
is important for the efficient management of PV power plants. However, the forecasting
procedure of GHI is nontrivial due to its spatial, temporal, and meteorological variability.

Solar irradiance can be defined as the electromagnetic radiation from the sun striking
the earth in terms of power per unit area [3], and it is usually measured in W/m2. The solar
irradiance can be measured in the following four different ways: direct normal irradiance
(DNI), diffuse horizontal irradiance (DHI), reflected radiation, and GHI. DNI considers
direct sunlight that is perpendicular to the surface. DHI measures the radiation defused
from atmospheric elements (e.g., clouds, gas molecules, particulate matter), while reflected
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irradiance measures the radiation reflected from non atmospheric elements such as the
ground. Finally, GHI is the total solar irradiance incident on a horizontal surface [4]. In other
words, it is the aggregation of DNI, DHI, and reflected radiation. Since reflected irradiance
is insignificant compared to DNI and DHI, it is not considered in GHI measurement.
Therefore, GHI received by the surface can be represented in the following Equation (1):

GHI = DNI cos φ + DHI (1)

where GHI is global horizontal irradiance, DHI is diffuse horizontal irradiance, DNI is
direct normal irradiance, and φ is the zenith angle.

Until recently, numerous statistical and machine learning methods have been used
to address the GHI prediction. Autoregressive integrated moving average (ARIMA) [5],
seasonal ARIMA (SARIMA) [6], exponential smoothing (ETS) [7], and generalized autore-
gressive conditional heteroskedasticity (GARCH) [8] are some examples of the statistical
models used for forecasting GHI. Moreover, several potentialities have also been reported
in GHI prediction using popular machine learning models such as artificial neural net-
work (ANN) [9], Support vector machine (SVM) [10], K-nearest neighbour (KNN) [11],
and random forest (RF) [12]. Recently, deep learning has shown efficient to solve many
time series forecasting tasks, and therefore, deep neural network (DNN) [13], convolutional
neural network (CNN) [14], recurrent neural network (RNN) [15], long short-term memory
(LSTM) [16] have been reported in the literature. As LSTM can retain the information for
long periods, it shows better performance in short and long term GHI prediction. While
most of the LSTM models that have been used for GHI prediction are univariate [17,18],
multivariate LSTM models that take other variables as input, such as GHI, temperature,
humidity, and wind direction of a month, have not been properly addressed. Therefore,
it is imperative to conduct experiments on whether a multivariate LSTM model can pro-
vide better GHI perdition than its univariate counterpart. In addition, large geographical
areas of India are in the tropical zone, receiving plenty of sunlight, which is the potential
renewable energy source. Hence research related to solar energy is significant for the future
energy management of India.

In this study, we have conducted a comparative analysis between univariate and
multivariate LSTM approaches to forecast GHI on a very short-term basis. To build the
models and observe their performances, we have employed a one-year weather observation
from Guntur, India. We have forecasted GHI up to 2 h ahead and analyzed the effect of
different input variables in the forecasting task.

Our main contributions of the paper are summarized as follows:

• We have developed two categories of models that include univariate LSTM and
multivariate LSTM to predict GHI one to 24 steps ahead.

• We have proposed a univariate model that uses only GHI data for the prediction
task. We also have proposed seven multivariate LSTM models in which we examine
whether any combination of three other meteorological variables such as temper-
ature, wind direction, and humidity together with GHI variable can improve the
forecasting performance.

• We have compared the performance of all models in very short-term GHI forecasting.
Experimental results demonstrate the effectiveness of the multivariate LSTM models
over the univariate model, meaning that inclusion of additional meteorological vari-
ables can improve prediction models. In addition, among the multivariate models,
two models have far outperformed others.

The rest of the paper is organized as follows: Section 2 presents the related works on
GHI prediction task. Section 3 highlights the theory of LSTM network. Section 4 describes
the methodology of GHI prediction in which data collection, data preprocessing, supervised
model building using LSTM, and the experimental setup are discussed. The experimental
results are shown in Section 5, and finally, the overall conclusion and future direction are
presented in Section 6.
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2. Literature Review

To date, a considerable amount of research has been conducted for forecasting GHI
at various locations on earth, most of which employ statistical models, machine learning
algorithms, and deep learning approaches. Wang et al. proposed an ANN based strategy
to forecast solar irradiance in which they employed several statistical feature parameters of
irradiance and temperature as input vectors [19]. Several ANN models were also proposed
in [20] for predicting hourly DNI and GHI from one hour to six hours in a location in
Algiers. Furthermore, a multivariate regression model was proposed in [21] for predicting
solar irradiance. They developed three regression models comprising relative humidity
and temperature as inputs variables and GHI as an output variable. In another similar
work, three regression models were proposed for global solar radiation prediction [22],
in which three features, namely ambient temperature, relative humidity, and sunshine
hours, were taken as independent variables. It is observed that, compared to the linear
model, the quadratic model provides better prediction accuracy.

Jadidi et al. [23] proposed a multilayer perceptron (MLP) model to forecast the hourly
GHI in North Carolina, USA. In their study, non-dominated sorting genetic algorithm II
(NSGA II) was used for feature selection and particle swarm optimization (PSO) algorithm
and genetic algorithm (GA) for tuning the MLP. They observed that, in terms of tuning
the parameters of neural networks, GA outperformed PSO. To predict GHI, Dash et al.
conducted a comparative study among five different machine learning algorithms: Gaus-
sian process regression (GPR), RF, MLP, SVM, and DNN. Their empirical study revealed
that DNN exhibited the least prediction error compared to the other four approaches [24].
In [25], an ensemble of XGBoost and DNN was proposed for predicting hourly GHI in three
climatic zones in India. Results show that the ensemble approach provides good accuracy
compared to support vector regression (SVR), smart persistence, RF, XGBoost, and DNN.
However, this ensemble approach is highly complex and takes a longer running time.

In order to predict hourly, daily, and monthly solar irradiance, Yadav et al. developed
an RNN model. Results show that RNN with multi-layer adaptive learning exhibits
better performance than MLP [26]. Husein and Chung [27] employed LSTM based model
to predict GHI in different locations in Germany, U.S.A, Switzerland, and South Korea.
They found that the LSTM-based prediction model is superior to the feed-forward neural
networks (FFNN) model. A reliable solar irradiance forecasting model based on LSTM
was also proposed in [28], in which a Choquet integral is used to aggregate the prediction
results of LSTM models. In [29], LSTM was used to predict day-ahead GHI. The empirical
results demonstrated that LSTM with proper tuning is more robust than gradient boosting
regression (GBR) and FFNN in the prediction task. In another study, Yu et al. [30] reported
that ARIMA, SVR, and ANN models were not able to efficiently predict GHI on cloudy or
partly cloudy days, but LSTM was able to perform better than those models for predicting
GHI in all weather conditions.

In [31], various DNN models have been employed for GHI prediction task, and it is
found that LSTM and bidirectional-LSTM (BiLSTM) have the minimum prediction error.
In another study, both multivariate gated recurrent units (GRU) and LSTM were developed
for forecasting DNI [32]. It was observed that both models showed similar forecasting
performance, with GRU taking less computation time. Zang et al. [33] developed a hybrid
model combining CNN and LSTM (e.g., CNN-LSTM) to forecast short-term solar irradiance
prediction. They also compared this hybrid model with other six models, including
persistence model, SVM, ANN, LSTM, CNN-ANN, and ANN-LSTM in GHI prediction
task and observed superior forecasting performance of CNN-LSTM in both cloudy and
cloudless sky conditions.

From the above discussion, it is evident that deep learning approaches such as the
LSTM model perform better than commonly used traditional machine learning models
to predict GHI. LSTM can also perform well in multi-step GHI prediction and can better
predict GHI in all weather conditions. In this study, we compare multivariate and univariate
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LSTM approaches for multi-step GHI forecasting and find the effect of various input
combinations of meteorological variables in prediction performances.

3. Long Short-Term Memory (LSTM)

LSTM is a type of RNN that is developed to eradicate the shortcoming of RNN to
learn long-term dependencies [34,35]. Due to remembering information for a long time and
removing the vanishing gradient problem of RNN, LSTM has appeared to be an effective
model in solving problems with sequential data containing long-term dependencies. Some
of the examples of LSTM applications are speech recognition [36], machine translation [37],
time series forecasting [38,39], and sentiment analysis [40]. Hochreiter and Schmidhu-
ber [41] in 1997 first proposed the LSTM model in which each LSTM unit contains only
input and output gates. This model was later refined by Gers et al. [42], who introduced a
forget gate in LSTM unit. The components of LSTM unit containing cell state, hidden state,
and different gates are illustrated in Figure 1. Cell state carries the relevant information
from one LSTM unit to another LSTM unit, while gates are used to regulate the addition
and deduction of information to the cell state. First, the forget gate removes unnecessary
information from the cell state. Information from the previous hidden state and current
input state is passed through sigmoid function, resulting in values between 0 and 1. Next,
the input gate determines what new information will be added to the cell state. The old cell
state is then updated to a new cell state by combining input and forget gate information.
Finally, the output gate returns the new hidden state. The mathematical equation of the
input gate it, the forget gate ft, the output gate ot, the cell state ct, and the hidden state ht
at time step t are as follows [43]:

ft = σ(W f .[ht−1, xt] + b f ) (2)

it = σ(Wi.[ht−1, xt] + bi) (3)

c̃t = tanh(Wc.[ht−1, xt] + bc) (4)

ct = ft ∗ ct−1 + it ∗ c̃t (5)

ot = σ(Wo.[ht−1, xt] + bo) (6)

ht = ot ∗ tanh(ct) (7)

where xt is the input at time step t, ht−1 is the output at time step t− 1, σ(.) denotes the
sigmoid function, and tanh(.) denotes hyperbolic tangent activation function. The weight
matrices are W f , Wi, Wc, and Wo; corresponding bias vectors are b f , bi, bc, and bo. Temporary
memory cell state at t is c̃t, and final cell output is ht.

×

σ σ σ

+

×
×

Tanh

Tanh

ht

ct−1

ht−1

xt

ct

ht

ft

it

c̃t ot

Figure 1. Architecture of LSTM.

4. Methodology

This section describes the methodology of the proposed LSTM framework for very
short-term GHI prediction. The overall process flow is shown in Figure 2. At the beginning,
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the raw data are cleaned, and the observations per second are taken containing GHI and
three additional meteorological variables (temperature, wind direction, and humidity) in a
year. We then analyze the variation of meteorological variables in each month and create
12 datasets. Following this, we remove the useless data such as nighttime data from the
datasets, impute missing data values using interpolation, reduce the number of samples
from one-minute intervals to five-minute intervals, and normalize the data. The next step
is partitioning the data using cross-validation for model validation techniques, followed
by transforming the time series problem into a supervised learning problem. We then
construct multivariate and univariate LSTM models. In multivariate case, we consider
possible combinations of meteorological variables. Finally, after building the models, we
evaluate them and analyze the obtained results. The details are presented below.

Clean the raw data and choose
meteorological variables

Analyze the data and extract
all observation of each month

Remove non-useful data
such as night time data

Impute missing values in data,
downsample data, and normalize it

Define data partition
for model validation

Re-frame time series forecasting
problem into LSTM learning problem

Build both univariate and
multivariate LSTM models

Evaluate the forecasting models

Analyze the results

Figure 2. Process flow of the proposed approach.

4.1. Data Collection

Our selected data contain weather observation from 1 January 2016 to 31 December
2016 at Guntur in the Indian state of Andhra Pradesh (latitude [N] 16.37 and longitude [E]
80.53). We have collected the data from the solar radiation resource assessment (SRRA)
stations in India (http://niwe.res.in accessed on 1 May 2021) [44]. This time series data
has several time-dependent variables observed per minute, from which we collect the
observations with GHI, temperature, wind direction, and humidity variables.

Figure 3 shows the average hourly meteorological values for each month in Guntur in
2016. It is clear from Figure 3a that for all months, the GHI value is near zero before sunrise
and after sunset. The GHI values increase gradually from morning to reach their peak at

http://niwe.res.in
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noon, followed by a gradual decrease until evening. The highest GHI variation is observed
in April, whereas the lowest GHI is detected in September. The amount of GHI changes in
one month can be different from in another month, and these changes may be due to the
variation in weather patterns.

Figure 3b shows that the temperature is the highest around noon every day because
the sun rays fall directly on earth in the middle of the day. It is clear that the temperature is
relatively high from April to May due to summer season in Guntur. On the other hand,
the temperature in this region is relatively low during the winter season from November
to January.

In terms of hourwise average humidity of each of the months, Figure 3c does not show
any clear trend, but in general, humidity is relatively low during daytime compared to
nighttime. The lowest humidity is found in April, whereas July and November have the
highest humidity value.

Similarly, hourwise wind direction does not show any clear pattern (Figure 3d). Some
months, such as August and September, have less fluctuation of wind direction. On the
other hand, in November, December, March, and April, wind direction varied throughout
the day.

Moreover, the correlation among the variables is shown in Figure 4. It shows that
there is a positive correlation exists between GHI and temperature. Moreover, GHI has a
weak negative correlation with humidity and almost no correlation with wind direction.
Similarly, there is little correlation can be found between wind direction and humidity.
The temperature, on the other hand, is positively correlated with wind direction but
negatively correlated with humidity.
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Figure 3. Average hourly meteorological values for each month in Guntur in 2016.
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Figure 4. Correlation matrix among the variables.

4.2. Data Prepossessing

The raw data that we obtained contain observations with four variables. The first
step was to clean up the data by deleting ambiguous or irrelevant records. The data also
include some missing values, which were processed by the linear interpolation method.
Then we create 12 datasets from the processed data so that each data set contains all the
observations for a specific month. In the original dataset, observations were recorded at
one-minute intervals. Therefore, the total number of observations for a month with 31 days
is 44,640, for a month with 30 days is 43,200, and for a month with 29 days is 41,760. As the
variations of consecutive GHI values are relatively close, we use the mean of 5 min intervals
as a new single observation. We have deleted all observations with zero GHI values at the
beginning and end of the day since the GHI values after sunset are zero. However, we have
not omitted any observations with a zero GHI value after obtaining at least one non-zero
GHI value. Table 1 shows the description of all 12 datasets, which includes the name of the
months, duration of data, the total number of samples (after downsampling and removing
nighttime data), and the number of input variables.

We also normalized the data set using Min–Max normalization, which scales the data
between 0 and 1 so that all variables are processed similarly for machine learning model
building. The formula of Min–Max normalization is as follows:

v =
(vmax − vmin)(x− xmin)

(xmax − xmin)
+ vmin (8)

where v indicates normalized value of a variable , vmax and vmin are one and zero, respec-
tively. The current, minimum and maximum value of the variable before normalization are
x , xmin and xmax, respectively.
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Table 1. Description of the data.

Month Period of Data No. of Samples No. of Variables

January 01 January 2016 to 31 January 2016 4083 4
February 01 February 2016 to 29 February 2016 4064 4

March 01 March 2016 to 31 March 2016 4331 4
April 01 April 2016 to 30 April 2016 4497 4
May 01 May 2016 to 31 May 2016 5019 4
June 01 June 2016 to 30 June 2016 4669 4
July 01 July 2016 to 31 July 2016 4949 4

August 01 August 2016 to 31 August 2016 4827 4
September 01 September 2016 to 30 September 2016 4378 4

October 01 October 2016 to 31 October 2016 4370 4
November 01 November 2016 to 30 November 2016 4086 4
December 01 December 2016 to 31 December 2016 4379 4

4.3. Data Partitioning

To evaluate the performance of the models, we have used ten-fold cross-validation.
First, we divided each dataset into ten equal subsets, each of which contains 10% of data.
Next, we selected nine subsets to train the models and another subset to test the models.
We then repeated the process ten times to ensure that all folds were included as a test set.
Finally, we find the performance metric for the model by averaging the results obtained in
these ten iterations.

4.4. Proposed Univariate vs. Multivariate LSTM Models

In this subsection, we propose predictive frameworks to forecast GHI using the
univariate and multivariate LSTM models. After the completion of preprocessing and data
partitioning, the time series data contained observations of GHI, temperature, humidity,
and wind direction features at each time step. To perform GHI prediction, we had to re-
frame the time series data into supervised learning datasets. This process was performed
by a sliding window method in which future time steps are predicted using prior time steps.
As we consider very short-term GHI prediction, we have used a multi-step forecast, which
means predicting a few future times-steps. To predict GHI, we have built one univariate
and seven multivariate LSTM models. In the univariate model, the input vector considers
only the GHI variable. On the other hand, each multivariate LSTM input vector contains
GHI variable along with a possible combination of temperature, humidity, and wind
direction variable. Except for these differences, the structure of all the models is the same.
Table 2 shows the name of each model, its type, and input and output vectors. In this table,
t indicates the current time step, where n is the lag values or window size, and m indicates
the future steps. Furthermore, GHI, Temp, Hum, and WD represent global horizontal
irradiance, temperature, humidity, and wind direction, respectively.

To build the LSTM models, we needed to restructure data into a three-dimensional
array. These three dimensions are the number of input variables, the number of time-steps
(window size), and the number of samples (batch size). For example, a 3D array that has
shape (72, 2, 25) means that input data has a batch size of 72 (72 observations for each batch),
two variables, and 25 time-steps. Figure 5 shows the 3D input structure with shape (5, 6, 4).
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Table 2. Input and output vector of univariate and different multivariate LSTM models.

Model Name Model Type Input Vector Output Vector

uLSTM Univariate
[
(GHI(t−n), · · ·GHIt−1)

] [
GHI(t), · · ·GHIt+m

]
mLSTM1 Multivariate

[
(GHI(t−n), · · ·GHI(t−1)),

(Temp(t−n), · · · Temp(t−1))

(Hum(t−n), · · ·Hum(t−1))

(WD(t−n), · · ·WD(t−1))
]

[
GHI(t), · · ·GHI(t+m)

]

mLSTM2 Multivariate
[
(GHI(t−n), · · ·GHI(t−1)),

(Temp(t−n), · · · Temp(t−1))

(WD(t−n), · · ·WD(t−1))
]

[
GHI(t), · · ·GHI(t+m)

]

mLSTM3 Multivariate
[
(GHI(t−n), · · ·GHI(t−1)),

(WD(t−n), · · ·WD(t−1))

(Hum(t−n), · · ·Hum(t−1))
]

[
GHI(t), · · ·GHI(t+m)

]

mLSTM4 Multivariate
[
(GHI(t−n), · · ·GHI(t−1)),

(Temp(t−n), · · · Temp(t−1))

(Hum(t−n), · · ·Hum(t−1))
]

[
GHI(t), · · ·GHI(t+m)

]

mLSTM5 Multivariate
[
(GHI(t−n), · · ·GHI(t−1)),

(WD(t−n), · · ·WD(t−1))
]

[
GHI(t), · · ·GHI(t+m)

]

mLSTM6
Multivariate

[
(GHI(t−n), · · ·GHI(t−1)),

(Temp(t−n), · · · Temp(t−1))
]

[
GHI(t), · · ·GHI(t+m)

]

mLSTM7
Multivariate

[
(GHI(t−n), · · ·GHI(t−1)),

(Hum(t−n), · · ·Hum(t−1))
]

[
GHI(t), · · ·GHI(t+m)

]

F-1 F-2 F-3 F-4 F-5 F-6

T-1

T-2

T-3

T-4

Ti
m

e
st

ep
s

Variables

Batch size

Figure 5. 3D input in a LSTM model.

Figure 6 shows the architecture of each of the models in which we employ a stacked
LSTM. First, 3D input vectors are fed into the input layer. Following this, the input
layer passes the data into a stacked LSTM layer that consists of two hidden layers, each
containing 50 LSTM neurons. After taking the output of the first LSTM layer as its input,
the second LSTM layer is then connected to the dense layer, a fully connected neural



Symmetry 2021, 13, 1544 10 of 19

network. Finally, the output of the dense layer produces the forecast values. Our output
node varies from 1 to 24 based on desired future time-steps, which means that we can
predict GHI up to 2 h ahead. It is noted that one step ahead prediction means five minute
ahead prediction. In these models, Tanh is used as an activation function for each hidden
layer, Adam is used as a gradient optimization algorithm, and mean square error (MSE) is
used as a loss function.

Input Layer

LSTM 1

Stacked LSTM layer

LSTM 2

Dense Layer

Output

Figure 6. Proposed LSTM architecture.

In the LSTM models, we used the training dataset to build each model and testing
dataset to predict, with the number of epochs being set to 100. We also initialized the
batch size as 32 and fixed the window size at 35 to perform the short-term GHI prediction.
Table 3 shows the hyper-parameters we set for both univariate and multivariate LSTM
models. Hyper-parameters such as batch size, number of epoch, window size, and number
of hidden layer were defined based on some preliminary experiments. To tune these
hyper-parameters, we tried ten probable candidate values and finally choose the value that
produces the best result. For other hyper-parameters, we adopted the values from [45].

Table 3. Hyper-parameters used for univariate and multivariate LSTM models.

Hyper-Parameter Values

Optimizer Adam
Activation function Tanh

Number of hidden layer 50
Batch size 32

Epoch 100
Loss function mean squared error (MSE)
Learning rate 0.01
Window size 35
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We used the Root Mean Squared Error (RMSE) and MAE to evaluate the prediction
performances of the models.

RMSE =

√
∑N

i=1(ŷi − yi)2

N
(9)

MAE =
1
N

N

∑
1
|(ŷi − yi)| (10)

where ŷi and y represent the ith forecasted and measured values, respectively, and N is the
total number of observations.

To identify any correlation between variables of the dataset, we used Pearson correla-
tion coefficient. If the number of samples is n, then the correlation coefficient r between
two variables x and y is measured with the following equation:

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2

where x̄ and ȳ represent mean values of feature x and y, respectively.
We did the simulation with AMD Ryzen 9 processor, 128 GB RAM, Unbuntu 20.4

64-bit OS, using Python 3.7.1. In addition, we employed SKlearn library for several data
preprocessing tasks and Keras library for implementing LSTM network. To obtain reliable
results, we ran the simulation twenty times with twenty random seeds and recorded
the average, minimum, and maximum RMSE along with MAE for each LSTM model in
forecasting GHI.

5. Result Analysis and Discussion

Figure 7 shows the changes of average RMSE values of the univariate and multivariate
models where the future step size is increased from 2 to 24. Considering the multi-step
ahead forecasting for all models, we found that errors increased as the number of steps
increased. The univariate model performed worse than others with the increase of step
size for all of the months. Moreover, among the multivariate approaches, mLSTM2 and
mLSTM6 exhibited lower average RMSE values compared to other multivariate models.
In these two models, average RMSE did not increase significantly with the increase of step
size. In addition, mLSTM5 did not perform as good as other multivariate models for all
the months.

Figure 8 illustrates the effect of average MAE values when step size was increased
from 2 to 24. It is clearly shown that average MAE of the univariate model for any step size
is far higher than average MAE of any of the multivariate models. Moreover, mLSTM5 has
a higher average MAE than other multivariate models. We also see that regarding average
MAE, mLSTM2 and mLSTM6 have reported relatively small errors.
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Figure 7. Average RMSE (W/m2) for different steps-ahead prediction of GHI using the selected
models.
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Figure 8. Average MAE (W/m2) for different steps-ahead prediction of GHI using the selected
models.

Table 4 shows the average, minimum, and maximum RMSE for the proposed models
in predicting short-term GHI (24 future steps). It is obvious that for the long term GHI,
the uLSTM model outperforms mLSTM models. This is because in all months, average
RMSE values for uLSTM are 67.91 W/m2 to 38.69 W/m2, which are much higher than the
average RMSE values of any other multivariate model. The best performing model is mL-
STM6, producing average RMSE ranging 0.74 W/m2–1.150 W/m2 followed by mLSTM2,
which shows competitive average RMSE values with mLSTM6 (0.87 W/m2–1.53 W/m2).
The average RMSE values of mLSTM5, which is from 11.96 W/m2 to 25.56 W/m2, is the
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highest among the multivariate models, whereas the other four models mLSTM1, mLSTM3,
mLSTM4, and mLSTM7 show moderate performances.

Table 4. Average, minimum, and maximum RMSE (W/m2) for LSTM models during very short-term
GHI prediction (24 future steps or 2 h ahead).

Month Metrics

Model Name

uL
ST

M

m
LS

T
M

1

m
LS

T
M

2

m
LS

T
M

3

m
LS

T
M

4

m
LS

T
M

5

m
LS

T
M

6

m
LS

T
M

7

January Average 56.28 10.61 1.24 8.63 8.95 24.59 1.19 8.32
Minimum 54.65 9.64 1.21 7.44 8.01 24.11 1.14 7.82
Maximum 59.8 11.67 1.37 9.21 9.56 25.87 1.32 8.79

February Average 53.60 6.46 1.07 6.67 5.85 19.06 1.01 6.11
Minimum 51.63 6.18 1.03 6.54 5.51 18.14 0.96 6.02
Maximum 54.12 7.18 1.21 6.85 6.66 19.65 1.09 6.21

March Average 56.19 14.65 1.39 7.17 8.39 17.83 1.50 6.64
Minimum 52.12 14.07 1.16 6.51 7.96 17.37 1.48 5.84
Maximum 58.53 15.13 1.65 7.48 9.21 18.57 1.97 6.82

April Average 38.69 5.67 0.91 4.53 4.66 11.96 0.74 4.21
Minimum 36.75 4.55 0.80 4.29 4.60 11.53 0.53 4.10
Maximum 42.18 5.98 0.97 5.06 5.25 13.52 0.83 4.89

May Average 67.09 9.23 1.53 8.57 8.82 19.26 1.48 6.94
Minimum 63.72 8.52 1.14 7.20 7.51 18.98 1.13 5.38
Maximum 68.71 9.38 1.90 8.89 9.66 21.84 2.10 9.37

June Average 63.41 9.18 1.46 6.69 7.14 19.73 1.24 7.17
Minimum 56.66 7.71 1.33 5.89 6.45 19.19 1.10 6.33
Maximum 67.57 10.07 1.76 8.30 8.99 21.12 1.40 7.92

July Average 51.69 7.46 1.14 7.66 6.48 19.09 0.86 6.01
Minimum 50.48 6.75 1.04 6.66 5.96 17.49 0.85 5.59
Maximum 55.89 8.32 1.34 8.70 7.70 20.94 0.95 7.27

August Average 67.91 8.22 1.08 8.73 8.30 23.04 0.96 7.77
Minimum 64.60 8.06 1.01 7.74 7.50 21.82 0.86 7.13
Maximum 69.46 8.57 1.22 10.10 8.49 24.92 1.04 8.20

September Average 62.39 7.74 0.97 7.32 7.57 21.33 0.80 6.81
Minimum 59.34 6.89 0.83 6.63 7.45 19.20 0.74 6.49
Maximum 65.19 8.26 1.02 8.28 7.78 23.60 0.86 7.30

October Average 65.78 9.73 1.01 8.67 7.84 25.56 0.96 7.14
Minimum 61.32 9.04 0.89 8.14 7.15 22.19 0.88 6.12
Maximum 68.24 10.02 1.20 8.92 8.53 26.31 1.01 7.84

November Average 41.38 6.05 0.93 6.98 7.31 15.40 0.78 7.89
Minimum 35.98 5.08 0.88 5.61 6.67 14.85 0.70 6.27
Maximum 42.89 7.39 1.08 7.25 8.01 16.05 0.86 8.54

December Average 43.16 5.64 0.87 5.34 5.43 15.68 0.83 5.00
Minimum 41.81 4.69 0.77 5.04 5.10 14.33 0.78 4.94
Maximum 45.77 6.30 0.91 5.72 5.97 16.42 0.88 5.20

Table 5 summarizes the average, minimum and maximum MAE of the approaches
regarding very short-term prediction. The average MAE values also indicate that uLSTM
becomes the worst among the models, obtaining average MAE scores of 22.78 W/m2–
47.31 W/m2, much higher compared to its multivariate counterparts. Among the multivari-
ate LSTM models, mLSTM5 is not as effective as other models, producing higher average
MAE values (7.09 W/m2–17.71 W/m2) compared to other multivariate methods. In terms
of MAE, the two best performing models are mLSTM6 and MLSTM2, having the MAE
scores of 0.45 W/m2–1.01 W/m2 and 0.56 W/m2–1.11 W/m2, respectively. Reset of the
multivariate models shows slightly worse performance.
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Table 5. Average, minimum, and maximum MAE (W/m2) for LSTM models during very short-term
prediction (24 future steps or 2 h ahead).

Month Metrics

Model Name

uL
ST

M

m
LS

T
M

1

m
LS
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M
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m
LS

T
M

3

m
LS

T
M

4

m
LS
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M
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m
LS
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M

6

m
LS
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7

January Average 39.01 8.15 0.94 6.20 6.83 17.71 0.83 6.04
Minimum 37.52 7.13 0.88 6.01 6.27 17.44 0.79 5.29
Maximum 43.25 8.95 1.04 6.45 7.01 18.10 0.91 6.65

February Average 36.77 4.63 0.72 4.84 3.93 14.17 0.67 4.33
Minimum 35.16 4.04 0.69 4.56 3.46 13.42 0.62 3.98
Maximum 37.34 5.16 0.85 5.05 4.61 14.47 0.70 4.53

March Average 36.67 8.87 0.99 5.11 5.88 11.72 1.01 4.70
Minimum 32.99 8.14 0.94 4.69 5.52 11.46 0.95 3.82
Maximum 40.16 9.17 1.06 5.54 6.06 12.28 1.20 5.23

April Average 22.78 3.88 0.64 2.97 3.12 7.09 0.45 2.64
Minimum 20.74 3.55 0.52 2.15 2.99 6.48 0.41 2.49
Maximum 24.92 4.01 0.78 3.40 3.64 7.84 0.53 2.92

May Average 43.99 6.61 1.11 5.53 5.83 12.91 0.96 4.60
Minimum 39.7 6.43 1.01 4.81 5.13 11.62 0.91 4.11
Maximum 45.11 6.70 1.29 6.10 6.31 13.40 0.98 5.13

June Average 41.13 7.15 1.03 4.81 5.15 13.88 0.87 4.78
Minimum 39.78 6.39 0.94 4.1 4.87 11.96 0.77 4.39
Maximum 43.56 7.58 1.18 5.64 5.81 14.55 0.94 5.21

July Average 33.04 4.88 0.68 5.09 4.36 12.21 0.57 4.13
Minimum 31.12 3.98 0.64 4.41 4.04 11.33 0.52 3.59
Maximum 36.36 5.75 0.73 5.98 4.85 14.41 0.60 4.54

August Average 47.31 5.99 0.77 6.31 5.86 16.01 0.65 5.50
Minimum 43.78 5.72 0.69 5.91 5.25 15.44 0.59 5.16
Maximum 49.58 7.00 0.87 7.32 6.01 16.49 0.73 5.78

September Average 40.54 5.74 0.70 5.18 5.12 14.40 0.53 4.85
Minimum 38.70 5.49 0.67 4.62 4.80 11.89 0.43 4.09
Maximum 42.29 6.09 0.76 6.11 5.46 17.17 0.60 5.07

October Average 46.89 6.89 0.72 6.43 5.61 17.48 0.70 5.02
Minimum 43.87 6.54 0.68 5.98 5.14 17.01 0.59 4.75
Maximum 47.79 6.97 0.76 6.82 6.24 17.92 0.75 5.21

November Average 23.64 4.43 0.68 4.97 4.92 11.14 0.54 5.58
Minimum 21.99 4.05 0.51 4.30 4.51 10.47 0.51 4.63
Maximum 24.43 4.78 0.75 5.18 5.57 12.11 0.59 6.03

December Average 29.31 3.87 0.56 3.67 3.77 10.81 0.54 3.31
Minimum 27.78 3.56 0.43 3.07 3.48 9.16 0.49 3.11
Maximum 31.31 4.15 0.64 4.99 3.92 11.61 0.60 3.55

The boxplot in Figure 9 shows the overall RMSE obtained by uLSTM and seven
mLSTM (mLSTM1-mLSTM7) models for the very short-term prediction task, with only
average RMSE considered. We can observe from the median value that model mLSTM6
and mLSTM2 yield the best forecasting results compared to other multivariate models. In
addition, the variation of RMSE for these two is much lower than that of other approaches.
The univariate model uLSTM has the largest median values of RMSE, and the variation
in RMSE is also the highest. The relatively lower inter-quartile range regarding RMSE
for mLSTM2 and mLSTM6 suggest that both are stable in predicting GHI in all weather
condition (i.g., over the year).

Based on the experimental results, it is evident that multivariate models are better
than the univariate model. However, not all multivariate LSTM models perform equally
better when we compared among them. The best-performing model mLSTM6 contains
temperature with GHI as an input variable. Its best performance ability might be attributed
to the relatively better positive correlation between these two variables. The second-best-
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performing model mLSTM2 has GHI and temperature along with wind direction as input.
Here, temperate is positively correlated with both GHI and wind direction. Among the
multivariate models, mLSTM5 is the worst-performing model, and it has GHI and wind
direction as input variables. One possible explanation for the performance degradation of
this model is that there is little correlation between the two variables.

0 10 20 30 40 50 60 70
RMSE (W/m2)

uLSTM

mLSTM1

mLSTM2

mLSTM3

mLSTM4

mLSTM5

mLSTM6

mLSTM7

Figure 9. RMSE (W/m2) boxplot for both univariate and multivariate models for very short-term
prediction.

6. Conclusions and Future Work

This paper has presented a comparative analysis between univariate and multivariate
LSTM models for predicting very short-term GHI. To validate our proposed approaches,
we collected time-variant data of GHI and other weather variables from Guntur in India
from 1 January 2016 to 31 December 2016. We split the data and built 12 datasets, with each
dataset containing minutewise observations of a month. The univariate LSTM considered
only GHI variable for input data. On the other hand, multivariate LSTM models used
GHI variable and all possible combinations of other meteorological variables (temperature,
wind direction and humidity), thus producing seven multivariate models. Before building
the models, we pre-processed the datasets and transformed them to supervise learning
problem datasets. As a result, each LSTM model can adequately use the datasets to build a
prediction model. Furthermore, to achieve very short-term GHI prediction, we considered
multi-step forecasting to predict up to 24 steps in the future.

Our experimental result shows that each multivariate model outperforms the univari-
ate model in predicting very short-term GHI. Among the multivariate models, mLSTM6
shows the lowest forecasting error, followed by mLSM2. These two multivariate models
perform much better than the other five models because the integration of temperature
data with GHI as input and both wind direction and temperature data with GHI as input
tends to be effective for multi-step ahead GHI prediction. Although multivariate models
exhibit better performance than the univariate model, they take more time for training due
to added input variables.

In the experiments, we set the hyper-parameters of the models based on some prelimi-
nary experiments. However, considering grid search or other optimization algorithms to
find the appropriate parameters might improve the performance of the models. Further-
more, we employed data from one station for evaluating the model due to the availability
of the data, but we will use data from other stations for different months in future study.
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We will also investigate the viability of other deep learning models such as CNN and GRU
for the very short-term GHI prediction.
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The following abbreviations are used in this manuscript:

ANN Artificial neural network
ARIMA Autoregressive integrated moving average
CNN Convolutional neural network
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
DNN Deep neural network
ETS Exponential smoothing
GA Genetic algorithm
GARCH Generalized autoregressive conditional heteroskedasticity
GBR Gradient boosting regression
GHI Global horizontal irradiance
GPR Gaussian process regression
GRU Gated recurrent units
KNN K-nearest neighbour
LSTM Long short-term memory
MAE Mean absolute error
MSE Mean squared error
MLP Multilayer perceptron
NSGA II Non-dominated sorting genetic algorithm II
PV Photovoltaic
PSO Particle swarm optimization
ReLU Rectified linear unit
RF Random forest
RMSE Root mean square error
RNN Recurrent neural network
SRRA Solar radiation resource assessment
SVM Support vector machine
SVR Support vector regression
XGBoost Extreme gradient boosting
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