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Abstract: In this paper, by virtue of the symmetry principle, we construct proper weight coefficients
and use them to establish a more accurate half-discrete Hilbert-type inequality involving one upper
limit function and one partial sum. Then, we prove the new inequality with the help of the Euler—
Maclaurin summation formula and Abel’s partial summation formula. Finally, we illustrate how the
obtained results can generate some new half-discrete Hilbert-type inequalities.
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1. Introduction

The celebrated Hardy—Hilbert’s inequality reads as:

bi) M

where p > 1, 1—1—1 =1, am,by >0,0< Y% _jah <coand0 < Y, bj) < oo, the constant
(n 77) 1s the best possible (see [1], Theorem 315).
A more accurate form of (1) was provided in ([1], Theorem 323), as follows:

factor

0 Amby T o0 ) o .
nglrl;lm+”—1<sin(n/r7)(zam) (an) . @)

In 2006, by introducing parameters A; € (0,2](i = 1,2),A1 + A, = A € (0,4], an

extension of (1) was provided by [2] as follows:

l

anl A7) lbq] (3)

n=1

1
< B(M,A)[ ) mP A Al

m=1

where the constant factor B(A1, A,) is the best possible, and the beta function is defined as:

B(u,v) :/0

Obviously, when A = 1,11 = )\2 =

A=Ay = %, inequality (2) reduces to the 1nequa11ty presented by Yang in [3].
Recently, applying inequality (3) and Abel’s summation by parts formula, Adiyasuren et al. [4]
gave a new inequality with the kernel (min) 1 involving two partial sums. Inequality (1),

oo t”_l

Wdt(u,v > O)

mequahty (2) reduces to (1); when p = g = 2,
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with its integral analogues, is playing an important role in analysis and its applications
(see [5-8]).

In 1934, a half-discrete Hilbert-type inequality was given as follows ([1], Theorem 351):
assuming that K(t) (t > 0) is a decreasing function, 0 < ¢(s fo t)t~ldt < c0,a, >0,
such that 0 < Y%, a} < oo, we have:

[e9)

/Ooo x”*2(z K(nx)ay)Pdx < ¢F(

n=1

): (4)

In 2016, Hong et al. [9] considered some equivalent statements of the extensions of (1)
with the best possible constant factor related to several parameters. Some extensions of
inequality (4) were given by [10-15]. Recently, Yang et al. [16,17] gave reverse half-discrete
Hardy-Hilbert’s inequalities and dealt with their equivalent statements of the best possible
constant factor related to several parameters.

In this article, following the method of [2,4,9], in the light of the symmetry princi-
ple, we construct proper weight coefficients and use them to establish a more accurate
half-discrete Hilbert-type inequality involving one upper limit function and one partial
sum. Subsequently, we prove this new inequality by means of the Hermite-Hadamard
inequality, Euler-Maclaurin summation formula and Abel’s partial summation formula. As
an extension of the obtained results, the equivalent statements of the best possible constant
factor related to several parameters are discussed. It is shown that some new half-discrete
Hilbert-type inequalities can be derived from the special cases of our main results.

&\H

2. Some Lemmas
In what follows, we suppose that p > 1, 1 —|—% =1,7€[0,1,A€ (0,2, A1 € (0,A+1),
A€ (0,3]N(0,A+1), A := 2= Az + Al g =224 +);]2 We also assume that f(x) (> 0)

isa Lebesgue 1ntegrable functlon in any interval (0,b] (b > 0), and define the upper limit
function F(x fo t)dt(x > 0) with the partial sums as follows:

n
Api=)Y a(an>0,meN:=(1,2,---}),
k=1

which satisfies F(x) = o(ef¥), A, = o(e!"=M) (t > 0;x,n — o0):

0< /0 xPMTIEP (x) < oo and 0 < Y (n— q)_qj‘z_lAZ < . 5)

Lemma 1. (i) Let (—1)i%g(t) > 0t € [m,00)(m € N) with g (c0) =0 (i = 0,1,2,3), and
let P;(t), Bi(i € N) be the Bernoulli functions and the Bernoulli numbers of i-order. Then, we
have ([5]):

o0 B
/m Py 1 (t)g(t)dt = —sqz—zqqg(m)(o <eg; <1;9 €N). (6)

In particular, forg = 1,in view of By = %, we have:

- ég(m) < (/m°° Py(t)g(t)dt < 0; @)

Forq = 2, in view of By = —31—0, it follows that:

0< [ Pt < 1yg0m). ®
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(i) If h(t)(> 0) € C3[m,0),h)(c0) = 0 (i =0,1,2,3), then we have the following
Euler—-Maclaurin summation formula:

o () 1 ] ,

k_zmh(k):/m h(t)dt+§h(m)+/m PO (1)dt, )
where: -

/m Py (DK (£)dE = ——h +- / Py (B (t (10)

Lemma 2. Let s € (0,4],5 € (0,3]N(0,8),ks(s;) := B(s;,5 —s;) (i = 1,2), and let @(sy, x)
denote the following weight coefficient:

[ee] )52 1

@lea, ) =x Y (I (e R = (009) ay

Then, we have the following inequalities:

0 < ke(sp)(1 — O(%)) < @(s0,%) < ks(s2), (12)

where we indicate O(-;) := T (52 fo ” 2 ; du > 0.

Proof. For fixed x € R, we define a function g(x, t) by:

_\s—1
e e,

g(x,t) ==
which implies that g(x,t) > 0 (t € I;) and g € C*(I;), where I, := (17,00). In the
following, we consider two cases of s; € (0,1) N (0,s) and s, € [1, 31N (0,s) to prove
inequalities (12).

(i) For s, € (0,1) N (0,s), since:

i

(- 1)'§tlg(x £ > 0(t> ;i = 0,1,2),

. . . . _ t—g .
by the Hermite-Hadamard inequality, setting u = —*, we have:

@(s2,x) = x°7%2 Z:lg(x,n) < xsfsz/l g(x, t)dt
n—=

2

x5 szf (t=m)2" ~dt = fcl’° 1152‘1Sdu
2

(x+t—1) 271 (1+u)
< [P gy — B 2) =k
< Jo Ty du = (82,8 —s2) = ks(s2).
On the other hand, in view of the decreasingness property of series, setting u = FT”,

we obtain:

@(sp,x) =x""2)  g(x,n) > xs_52/100 g(x, t)dt
n=1

1—1
1 usz—l

sp—1 1
fl 7 (1421[ du = B(SZ,S — 52) fO * (1+u)5d1/l
= ks(52)(1- O()) >
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where O() = fo

us2— 1
(14u)

A= —du > 0, which satisfies:
1= sp—1 1=y 1 1 o S
X u x — 17
0</ 7du</ w2 gy = —(—1) (x eRL).
A A Sz( ) +)

In this case, we obtain (12).
(i) For s € [1,3] N (0,s), by (9), we have:

Zlg(xrn) —fl t)dt 28 x,1) f1 Py(t atg(x,t)dt
n=
= fr] g(x,t)dt —h(x),

where h(x) is defined by:

We obtain —5g(x, )_

-1
2 —-—-—=, and then integrating by parts, it follows that:

1 2(x+1 17)

! L—p2 ' 1 1 (=) s (1 (t—py)™dt
Hdt = = (x+t—ny)FTt

/17g(x,) /n (x+t—7 2/ x+t— oGt 52/’7 ( T

xX+t—n
1 (-9 s /1 1
s2(x+1—7)°  sas2+1)Jy (x+1-n)H

d(t _ ’7)32+1

1 (1-n)? L (t—m)=*t 1+ s(s+1)
Sy (x+1—;7)5 sa(s2+1) (x+t_;7)s+1 7 sp(sp+1)(x+1—

1
e | =yt

R ) S (-m= s(s+1)(1—p)=*
s2(x+1—=1)°  sa(s2+1) (x+1—7)  sy(sp+1)(s24+2)(x+1—7)""2

We find:

so—1)(t—y)272 s(t—n)%27!
—2e(x,t) =12 (xzr(tiz))s (x(thz)r])SH
_ (=s)(t=p2? st sx(t-p)®27?
T (x+teq) (x+t=1)"  (xtt—y)*
_ (s+H1=sp)(t=)2 % sx(t—mp)*2 "2
a (x+t=1)° (x+t—y)° 17

additionally, for s, € [1,3] N (0,s), it follows that:

(71)1'871‘[ (t _ '7)5272 ] > 0/( 1) al (t — 77)5272

. —— | > 0(¢ ;1=0,1,2,3).
atl (x+t777)5 atl (x-|—t_;7)s+1]> ( >171 )

By (8), (9) and (10), setting a := 1 — 5 (€ [%, 1]), we obtain:

_ ( )52_2 __s+l-s) -2
(s+1-s5 fl P(t (x+t )’ dt > 21 ? .
_ (t— ’7)2 xs s5—2  xs [ (t=1)27°

xsfl ( g t> 2(t1—g) T a 720[(x+t—;7)5“ ]t:l
(x+1— I’])S as -2 _ (x+1—17)s [(s+1)(s+2)a52’2 2(s+1)(2—sp)a%23 (2—32)(3—52)1152*4]
12(x+1-7)"" 720 (x+1-n)** (x+1-y)"" (x+1-p)*
Y o sa®2~! s [(s+l)(s+2) 2(s+1)(2—s;)a%23 (2—52)(3—52)1152’4}
R+1-17)°  12(x+1-y) T 7200 (i1 g)5F2 (x+1—7)° T (x+1-y)"

7
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and then we have:

a4 sa%2~3 s(s+1)a%272

h(x) >

where h; (i = 1,2,3) are indicated as:

3 (1=sp)a® _ s(2—s;)(3—s2)

a
2 12 - 720 4
hy = a* a> _ (s+1)(2—sp)

- Sz(Sz+1) 12 360 4

_ at 542
Cosa(so+1)(sp+2) 720

Fors € (0,4],s2 € [1, %] N(0,s),a € [4,1},we find:

a2

> 1252[ — (6a +1)sy + 12a%] —

90’

In view of:

da
7155 — (6a+ 1)sy + 124%] = 255 — (6a + 1)
<2:3-(6-3+1)=3-Y <o,
we obtain: ) ) 5
(3/4) .3 3 3 3 1
By > 2 12y —(6-2 1) +12(2) ] — —
12 15 l5) O T 1207 -5
402 1 1 324 32 1 1 3 1
2
Y > (Y (D) - ) =
> -5 72 QP EE -7 »>0
81t 6 8 3% 1 27 1
3> e s 2 (1) o = — >0,
105 720 ~ 105 ‘4 120 1120 120
and then we obtain #(x) > 0.
On the other hand, similar to the above, we have:
21g(x,n) = fl Hdt + 3 78(x,1) +f1 Py(t atg(x,t)dt
n=

—ﬁ w+HU

W heI‘e H(x) iS indicated as:
) 2 at ’

Thus, we obtain that 1g(x,1) =

I+
Ctl- " i) (e 1

G- =P sty

U

)S+2 3s

12— (6a+1)sr +1242] = 6(4a —s5) > 6(4- > 2)>04and

)5272

d
5800 1) =

For s, € (0, %] N(0,s),0 < s <4, by (7), we obtain:

8272

—(s+1 —sz)/looPl(t)(tL)sdt >0,

(x+t—1n)

(x+t—n)° (x+t—

)S-‘rl '
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—n)27? —xs 52 _ —(xtl-m)stas g2

xs dt > a2t = TP g%

fl x+t ystHt 12(x+1—7)* 1 12(x+1—7)" !
775”52 #aszfl > ;Sﬂa527
12(x+1-7)° 12(x+1717)5“ 12(x+1-7)° ’

Hence, we have:

a27! s @ s y_a27?
H(x) > 2(x+17’7)s 12(x+171])5 - (2 12) (x+1717)s
1.3 _ 4y_a2%2 (3 1\ a2
> (2 4 12)(x+1_,7)5 - (8 3)(x+1_,7)s > 0.

Therefore, we obtain:

/w g(x, t)dt < i g(x,n) </Oog(x,t)dt(x > 0)
1 n=1 1

In view of the results obtained in the case (i), we obtain (12). This completes the proof
of lemma 2. [J

Lemma 3. Let s € (0,4],51 € (0,5),52 € (0, 3]

N (0, s).Then, we have the following more accurate
half-discrete Hardy—Hilbert inequality:

1—/ ) g < (ky(52)) (K (s1))

P (x+n—1)
» {/wxp[l(s_p +
0

Proof. For s; € (0,s), setting u =
coefficient:

n=1

1 1
7 o0 s—s s q
”1f"<x)dx}} {2 (n— )T ”1”2”1“1} SNCE)

= 5 we have the following expression of the weight

sy 0 xs1—1 P o 511 P ' N "

, = — _— = —_— — c .
wlorm)i= (=) [t = [T sdu = k() (e N). (19
By using Holder’s inequality [18], we obtain:

»(1-9)1/q (1=

- f() (x+n 17) [(n 77)1 ) /pf(x)”%an]dx

%) oo 1 x(1=s1)(p-1) 1
< [fo ngl F— (n77)1—52 f (x)dx]?

1
X o (n— )(1*52>('7*1) g7

X [Zl fo x+n R ;/lxl—sl dxay]
n—=

[ee] _ 5751 572 _
{ g wls ) n = )T g
Then, by (12) and (14), we derive inequality (13). The Lemma 3 is proved. [J

Remark 1. In (13), fors = A +2 € (2,4],A € (0,2],s1 = A1 +1 € (1,5),A1 € (0,A + 1),

3 1
Sz—/\2+1€( ])\26( 2] (0,/\+1)



Symmetry 2021, 13, 1548

7of 11

Replacing f (x) (resp.a,)byF(x)(resp.Ay), in view of Lemma 3 and (5), we have:

<=

/000 éWP(x)dx < (ky oAz + 1))%(kA+2(A1 +1))

1
q

(n—n)~1A0) (15)

==
[7e

X [/(;0o x‘p}‘l_lF”(x)dx] [

n=1

Lemma 4. For t > 0, we have:

/0oo e " f(x)dx = t/ooo e F(x)dx, (16)
Z eft(n*’Y)an < tz eft("*U)An‘ (17)
n=1 n=1

Proof. Integration by parts, in view of F(0) = 0, F(x) = o(e!*) (t > 0;x — o), it follows that:

o A, . :
————aF(0)d ky oMo + 107 (kyn(A + 1
/O = (=)t (x)dx < (kyi2(A2 +1))7 (ky 4o (A1 +1))7

X—00

= lime "™F(x) + t/ e F(x)dx = t/ e F(x)dx,
0 0

and then (16) follows.
In view of Ane "= = 0(1)(n — o0), by Abel’s summation by parts formula, we obtain:

¥ et g, = Tim Age t0 ) 4 ¥ Aot mtnmyt1))

n—00 =1

= ozo: An[gft(nfri) — eft(n777+1)] = (1 — eft) OZO: eft(nfﬂ)An_
n=1

n=1

n=1

Since 1 —e~! < t(t > 0), we have (17). The Lemma 4 is proved. [J

3. Main Results

Theorem 1. Letp > 1, 5+ =1y € [0,3],A € (0,241 €(0,A+1), A2 € (0,3]N (0,4 + 1),
Apoi=2AM2 %, Ap =AMy % Then, we have the following half-discrete Hilbert-type inequality:

P q
B 7L e 0 < S iz + 10 a4 1)
[ (5 ) a9
0 n=1

In particular, forAy + Ay = A(€ (0,2]) (A1 € (0,A), A2 € (0,11 N (0, 1)), we have:

oo & a
/ ). ——— f(x)dx <A1A2B(Aq, A7)
0 x3 (x+n—1n)

1
q

(n—y) 7271 40] . (19)

==
e

X [/Ooo xTPMELEP (n)dx] |

n=1
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Proof. Since for A > 0, we have:

1 1 oo/\717x n—
(x+n—11))‘zr()\)/() A (et gy

it follows that:
fO Z anf fO A== (xtn—i)t 141y

%f A= 1f0 e f(x)dx Z e~ (n=mtg, dt
n=1

#)f AL [ e F(x)dx % e~ (=MEA, dt

n=1
— L (A42)—1,—(x+n—n)t
r(A)/o ZAF / {421, dtdx
Fr(A42) o & Ay
=——— ———F(x)dx
r'(A) /0 = (x -yt )

By applying (15), we obtain (18).
In particular, for A1 + A, = A(€ (0,2]) (A1 € (0,4),A2 € (0,4] N (0,7)), one has:

k)\+2(}\2 +1) = k)\+2(/\1 +1)=BM+1L,A+1)

T(A+D)T(Ag4+1) _ AAT(A)T(A
_ I 11“()3+(2)2 ) A ZF(()\Jlr)Z)( 2) _ (/\(+)2)/\1/\23(/\1,/\2)

Hence, it follows from (18) that:

/Ooo Z mf( x)dx <A1A2B(A1,A2)

1

(n—p) 74l (20)

<=
agh

x [/Om ¥ PMIER ()] |

n=1

which is the desired inequality (19). [

Remark 3. Putting 1 = 0 in (20), we have:

/Ooo 2 1(x+ n))‘f( Jdx <MAzB(M,Az)

1

Zn A2 1A’7 . (21)

‘Gha

~00
X [/ xPMTLEP(x
Jo

Namely, (18) given by Theorem 1 is a more accurate extension of (21) above. It should
be noted that here the statement of “more accurate inequality” borrows from the statement
mentioned at the beginning of the paper on the comparison between inequalities (1) and
(2) described in the previous literature.

Theorem 2. IfA — A < %, then the following statements (i), (ii) and (iii), associated with
Theorem 1, are equivalent:

(i) (k)\—i-Z(AZ + 1))%(k/\+2(/\1 +1))1 < +2( + Al +1);

k
(i) A+ Ay = A(€ (0,2]),whered; € (0,A), A ¢ 0, ] (0,A);
(iii)  The constant factor:

A=Ay

S

I'(A+2)

“rry Kra(de + 1) (o (a + 1)1
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in (19) is the best possible.

Proof. “ (i)=(ii)”. By using Holder inequality with weight, we obtain:

A=Ay

ka2 (552 + Al +1)
L Al o 4 A M
= fO WH P q du = fo W(H P )(H q )du

1

© ]. A q
—F U ldu
[/O (1 + u))\JrZ ]

o 1
()\1+1)71
[/o (1+u)*? ! ]

==

o 1
< / E— T
[ 0 (1 +u)/\+2 ]

oo 1
— ()\2+1)71d
[/0 (1 + v)/\+20 U]

==
=

= (kppa (A2 +1))7 (kyyp (A + 1)1, (22)

In view of inequality (i), we conclude that (22) keeps the form of equality.

We observe that (22) keeps the form of equality if and only if there exist constants A
and B, such that they are not both zero and Au*~"2 = BuMa.e. in R, (see [18]). Assuming
that A # 0, we have ut 2N = %a e.inRy, and then A — Ay — Ay = 0, namely, A; + A, =
A(€ (0,2]), where, A1 € (0,4),42 € (0,3]N(0,7).

“(il)=>(iii)". For A; + Ay = A(€ (0,2]), A1 € (0,A),A2 € (0, 1] N (0,A), (19) reduces to
(20). For any 0 < & < min{pAq,gAz}, we set:

=~ 0,0<x<1, ~ /\7£71
f(x)::{ Mgl g A= (nEN)
Then, it follows that:
0,0<x< 1,
fO dt < %x)\] I X > 1 7
17?

n n €
Ay = kz Ge= 3y K2t < (e g = ohen2 71 (n €N).
= q

If there exists a positive constant M < A1A»B(A1, A2) such that (20) is valid when replacing
MA2B(A1,A2) by M, then, in particular for 7 = 0, by substitution of f(x) = f(x),an = dn,
F(x) = F(x) and A, = A, in (21), we have:

I:= /Oooi (“”f( ) dx< M(/ xPMLEP (x)d % (Y n9te- 1A‘7) : (23)

x+n)t n=1

In the following, we show that A1A;B(A1,A2) < M, and then M = A1A;B(Aq, Ap) is
the best possible constant factor in (20).
By (23) and the decreasingness property of series, we obtain:

1

o 1 00 7
T<M—t AR Y L (Y e
)\1—5 1 Az_ﬁ n=1
1 ot 7
= ()L7£ ) (7 e dx ?(1+Zn_8_1)q
17 p q
1 1
<M<A££> L b+ eyl
1 p q
M, 1 1
- = 1)9.
=)o)
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By (11) (for n = 0), setting Ay =AM — £ € (0,3

; HnoAr) 0 < A =M+5 <A,
we obtain:

()\1+ ) 1
fl e 1 (x4n)* o
= f1 (Ag, x)x~"1dx > B( /\1,A2 ff" [1-0(
= B()\1,)\2 fl x e ldx — fl

= %B(/\l + ;,)Lz — %)(1 —e0(1 ))

n(/\zfﬁ)*l}xfefldx

L]yl
5 )x—e tdx
A + €11 dx}

Then, in virtue of the above results, we have:

BM4+2J2—2X1—dXDkwT<AM

)

&
17y M

1
#)(e+1)7.
q
Putting ¢ — 0, in view of the continuity of the beta function, we obtain A1 A, B(A1, A7)

M. Hence, M = A A2B(Aq, A7) is the best possible constant factor in (20)
“(iii))=(1)". Since A — A1 < for A=

A- /\2 + /\1 ;\2 AN + %, we find:

s A=A A A-A . A A

AMAA, =2 A 2 2 A 0< A A< S+ 2 =,
p q q p p

ngm_._u 1

/2 4 122 = 1 and A A,B(A
If the constant factor /\+2 (
then by (21) (for A; = A; (i

1,A2) € Ry

1 1
kyio(A2+1))7 (ky (A1 +1))7 in (19) is the best possible,
,2)) we have:

(1~(,\)>(kA+2()\2 + 1))%(k/\+2(/\1 + 1))%

< A1AyB(AgAp) = r(rﬁ)z) krs2(Ar+1)
_ I'(A+2)

T(A) k/\+2()\;/\2 + % + 1)(6 R+)/

namely, statement (i) is valid.

Hence, the statements (i), (ii) and (iii) are equivalent. This completes the proof of
Theorem 2. [J

Remark 4. Putting n = % in (20), we acquire:

co a
/ Y " F(x)dx <AAB(M, Ao)
O n=1(x4+n-73)

" 00 % o 1 —q}\z—] %

<[P e [ - Al eh)
* n=1

In particular, forA =1,A1 =

Ay = %, we have the following Hilbert-type inequality with the
best possible constant factor

1

1
q
T o, p o —7—1 q
/ n — f(x )dx<Z[/0 x T FP(x Z )
n=1 1

n=1
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4. Conclusions

In this paper, based on the weight coefficients and the idea of introducing parameters,
by applying Hermite-Hadamard inequality, the Euler-Maclaurin summation formula and
Abel’s summation by parts formula, a more accurate half-discrete Hilbert-type inequality
involving one upper limit function as well as one partial sum is given in Theorem 1. The
equivalent statements of the best possible constant factor related to several parameters are
considered in Theorem 2. As applications of the main results, some new inequalities are
proposed in Remarks 3 and 4. Our results would provide a significant supplement to the
study of half-discrete Hilbert-type inequality.
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