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1. Introduction and Preliminaries

Over the last half a century, rapid developments in inequality theory and its appli-
cations have contributed greatly to many branches of mathematics such as linear and
nonlinear analysis, differential equations, finance, statistics, physics, fractional calculus,
and so on; for more details, one can refer to [1–4] and the references therein.

The original Dunkel integral inequality can be stated as follows.

Theorem 1 (original Dunkel integral inequality; see [1–3,5,6]). Let f (x) be a continuous
real-valued function on [a, b] which is not identically zero and satisfies 0 ≤ f (x) ≤ M for all
x ∈ [a, b]. Then

0 <

(∫ b

a
f (x)dx

)2

−
(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x) sin xdx

)2

≤ 1
12

M2(b− a)2. (1)

There are many ways to prove Dunkel integral inequality (see [1–3,5,6] and references
therein). Some interesting proofs of Dunkel integral inequality are the probabilistic method
(see, e.g., [1]), re-integral method (see [2,3]), and so on.

In fact, if f (x) is a nonnegative continuous real-valued function on [a, b] (here, f is
allowed to be a zero function), then from (1) one deduces the following fascinating concise
inequality: (∫ b

a
f (x) cos xdx

)2

+

(∫ b

a
f (x) sin xdx

)2

≤
(∫ b

a
f (x)dx

)2

. (2)

In 1923, Professor Issai Schur first systematically studied the functions preserving
the ordering of majorization. In Schur’s honor, such functions are named to have “Schur-
convexity”. During the previous more than four decades, majorization theory and Schur-
convexity have been applied widely in many areas of mathematics including integral
inequality, stochastic matrices, rearrangement theory, analytic inequalities, information
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theory, quantum correlations, quantum cryptography, combinatorial optimization, and
other related fields (see, e.g., [7–12]).

Let us recall some basic definitions and notation that will be needed in this paper.

Definition 1 (see [4,8]). Let Ω be a nonempty subset of Rn.

(i) Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn. x is said to be majorized by y (in symbols
x ≺ y) if ∑k

i=1 x[i] ≤ ∑k
i=1 y[i] for k = 1, 2, . . . , n − 1 and ∑n

i=1 xi = ∑n
i=1 yi, where

x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order;
(ii) Ω is called convex if αx + βy ∈ Ω for any x, y ∈ Ω and α, β ≥ 0 with α + β = 1;
(iii) Ω is called symmetric if x ∈ Ω implies Px ∈ Ω for every n× n permutation matrix P;
(iv) A function ϕ : Ω→ R is called symmetric if for every permutation matrix P, ϕ(Px) = ϕ(x)

for all x ∈ Ω;
(v) A function ϕ : Ω→ R is said to be Schur convex on Ω if x ≺ y on Ω implies ϕ(x) ≤ ϕ(y).

ϕ is said to be Schur concave on Ω if and only if −ϕ is Schur convex.

The paper is divided into five sections. In Sections 2 and 3, by applying majorization
theory, we present some new generalized Dunkel type integral inequalities and new Dunkel
(p)-type integral inequalities for p ≥ 2. As applications of our new results, some new
integral inequalities are established in Section 4. Finally, some summary and conclusions
are given in Section 5.

2. Some Generalizations of Dunkel Integral Inequality

The following two known results are important for proving our new theorem.

Lemma 1 (see [4]). Let a ≤ b. Let u(t) := ta + (1 − t)b and v(t) := tb + (1 − t)a for
1
2 ≤ t1 ≤ t2 ≤ 1 or 0 ≤ t1 ≤ t2 ≤ 1

2 . Then(
a + b

2
,

a + b
2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b).

Lemma 2 (see [4,7]). Let Ω ⊂ Rn be a nonempty convex set and has a nonempty interior set Ω◦.
Let ϕ : Ω → R be continuous on Ω and differentiable in Ω◦. Then, ϕ is a Schur convex (resp.
Schur concave) function, if and only if it is symmetric on Ω and

(x1 − x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0 (resp. ≤ 0)

holds for any x = (x1, · · · , xn) ∈ Ω◦.

Remark 1. It is worth noticing that Lemma 2 is equivalent to the following:
ϕ is a Schur convex (resp. Schur concave) function, if and only if it is symmetric on Ω and

∂ϕ

∂xi
≥ ∂ϕ

∂xi+1
(resp. ≤ 0), i = 1, 2, . . . , n− 1.

for all x ∈ D ∩Ω, where D = {x : x1 ≥ · · · ≥ xn}.

With the help of Lemmas 1 and 2, we can establish the following crucial result.
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Theorem 2. Let I be an interval of R. Assume that f (x) and g(x) are two nonnegative continuous
real-valued functions on I, and κ(x) and λ(x) are two continuous real-valued functions on I.
Define L : I × I → R by

L(a, b) =
∫ b

a
f (x)dx

∫ b

a
g(x)dx

−
∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx−

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

for any (a, b) ∈ I × I. Then the following holds:

(i) If κ(x) · κ(b) + λ(x) · λ(b) ≤ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≤ 1 for x, a, b ∈ I, then L is
Schur convex on I × I;

(ii) If κ(x) · κ(b) + λ(x) · λ(b) ≥ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≥ 1 for x, a, b ∈ I, then L is
Schur concave on I × I.

Proof. Obviously, L(a, b) is a symmetric operator for a, b ∈ I. So, without loss of generality,
we may assume that b ≥ a. Since

∂L
∂b

= f (b)
∫ b

a
g(x)dx + g(b)

∫ b

a
f (x)dx

− f (b)κ(b)
∫ b

a
g(x)κ(x)dx− g(b)κ(b)

∫ b

a
f (x)κ(x)dx

− f (b)λ(b)
∫ b

a
g(x)λ(x)dx− g(b)λ(b)

∫ b

a
f (x)λ(x)dx

and

∂L
∂a

=− f (a)
∫ b

a
g(x)dx− g(a)

∫ b

a
f (x)dx

+ f (a)κ(a)
∫ b

a
g(x)κ(x)dx + g(a)κ(a)

∫ b

a
f (x)κ(x)dx

+ f (a)λ(a)
∫ b

a
g(x)λ(x)dx + g(a)λ(a)

∫ b

a
f (x)λ(x)dx,

we have

∆ :=(b− a)
(

∂L
∂b
− ∂L

∂a

)
=( f (a) + f (b))

∫ b

a
g(x)dx + (g(a) + g(b))

∫ b

a
f (x)dx

− ( f (b)κ(b) + f (a)κ(a))
∫ b

a
g(x)κ(x)dx− ( f (b)λ(b) + f (a)λ(a))

∫ b

a
g(x)λ(x)dx

− (g(b)κ(b) + g(a)κ(a))
∫ b

a
f (x)κ(x)dx− (g(b)λ(b) + g(a)λ(a))

∫ b

a
f (x)λ(x)dx

= f (b)
∫ b

a
g(x)(1− κ(b)κ(x)− λ(b)λ(x))dx + f (a)

∫ b

a
g(x)(1− κ(a)κ(x)

− λ(a)λ(x))dx + g(b)
∫ b

a
f (x)(1− κ(b)κ(x)− λ(b)λ(x))dx

+ g(a)
∫ b

a
f (x)(1− κ(a)κ(x)− λ(a)λ(x))dx.

(i) When κ(x) · κ(b) + λ(x) · λ(b) ≤ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≤ 1, we have ∆ ≥ 0.
By Lemma 2, L is Schur convex on I × I.
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(ii) When κ(x) · κ(b) + λ(x) · λ(b) ≥ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≥ 1, we have ∆ ≤ 0.
By Lemma 2, L is Schur concave on I × I.

The proof is completed.

We now present the following generalized Dunkel type integral inequality which is
one of the main results of this paper.

Theorem 3. Let I be an interval of R. Assume that f (x) and g(x) are two nonnegative continuous
real-valued functions on I, and κ(x) and λ(x) are two continuous real-valued functions on I.
Let u(t) := ta + (1− t)b and v(t) := tb + (1− t)a, for 1

2 ≤ t ≤ 1. Then the following holds:

(i) If κ(x) · κ(b) + λ(x) · λ(b) ≤ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≤ 1 for x, a, b ∈ I, then

∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx +

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx−

∫ v(t)

u(t)
f (x)dx

∫ v(t)

u(t)
g(x)dx

+
∫ v(t)

u(t)
f (x)κ(x)dx

∫ v(t)

u(t)
g(x)κ(x)dx +

∫ v(t)

u(t)
f (x)λ(x)dx

∫ v(t)

u(t)
g(x)λ(x)dx

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx;

(ii) If κ(x) · κ(b) + λ(x) · λ(b) ≥ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≥ 1 for x, a, b ∈ I, then

∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx +

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

≥
∫ b

a
f (x)dx

∫ b

a
g(x)dx−

∫ v(t)

u(t)
f (x)dx

∫ v(t)

u(t)
g(x)dx

+
∫ v(t)

u(t)
f (x)κ(x)dx

∫ v(t)

u(t)
g(x)κ(x)dx +

∫ v(t)

u(t)
f (x)λ(x)dx

∫ v(t)

u(t)
g(x)λ(x)dx

≥
∫ b

a
f (x)dx

∫ b

a
g(x)dx.

Proof. We only show case (i) and a similar argument could be made for the case (ii). Define
L : I × I → R by

L(a, b) =
∫ b

a
f (x)dx

∫ b

a
g(x)dx

−
∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx−

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

for any (a, b) ∈ I × I. If κ(x) · κ(b) + λ(x) · λ(b) ≤ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≤ 1 for
x, a, b ∈ I, by applying Theorem 2 (i), we show that L is Schur convex on I × I. On the
other hand, by using Lemma 1, we get

L(a, b) ≥ L(u(t), v(t)) ≥ L
(

a + b
2

,
a + b

2

)
= 0.
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Hence, we obtain∫ b

a
f (x)dx

∫ b

a
g(x)dx−

∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx

−
∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

≥
∫ v(t)

u(t)
f (x)dx

∫ v(t)

u(t)
g(x)dx−

∫ v(t)

u(t)
f (x)κ(x)dx

∫ v(t)

u(t)
g(x)κ(x)dx

−
∫ v(t)

u(t)
f (x)λ(x)dx

∫ v(t)

u(t)
g(x)λ(x)dx

≥ 0,

which implies

∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx +

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx−

∫ v(t)

u(t)
f (x)dx

∫ v(t)

u(t)
g(x)dx

+
∫ v(t)

u(t)
f (x)κ(x)dx

∫ v(t)

u(t)
g(x)κ(x)dx +

∫ v(t)

u(t)
f (x)λ(x)dx

∫ v(t)

u(t)
g(x)λ(x)dx

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx.

The proof is completed.

As a direct consequence of Theorem 3, we can obtain the following generalized Dunkel
integral inequality.

Theorem 4 (Generalized Dunkel integral inequality). Let f (x) and g(x) be two nonnegative
continuous real-valued functions on [a, b] and m be any real number. Then

(∫ b

a
f (x) cos mxdx

)(∫ b

a
g(x) cos mxdx

)
+

(∫ b

a
f (x) sin mxdx

)(∫ b

a
g(x) sin mxdx

)
(3)

≤
(∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)
.

Proof. In theorem 3, we take I = [a, b], κ(x) = cos mx, and λ(x) = sin mx for x ∈ I. Thus,
κ(x) and λ(x) are two continuous real-valued functions on I. Clearly, we have

κ(x) · κ(b) + λ(x) · λ(b) = cos mx · cos mb + sin mx · sin mb

= cos m(b− x) ≤ 1

and

κ(x) · κ(a) + λ(x) · λ(a) = cos mx · cos ma + sin mx · sin ma

= cos m(a− x) ≤ 1.

Thus, all the assumptions of Theorem 3 (i) are satisfied. Therefore the desired conclu-
sion follows immediately from Theorem 3.

The following generalized Dunkel integral inequality is an immediate consequence of
Theorem 4.



Symmetry 2021, 13, 1576 6 of 12

Corollary 1 (Generalized Dunkel integral inequality). Let f (x) be a continuous nonnegative
real-valued function on [a, b] and m be any real number. Then(∫ b

a
f (x) cos mxdx

)2

+

(∫ b

a
f (x) sin mxdx

)2

≤
(∫ b

a
f (x)dx

)2

. (4)

Remark 2. It is worth noticing that inequality (3) in Theorem 4 and inequality (4) in Corollary 1
are real generalizations of inequality (2).

3. A New Dunkel (p)-Type Integral Inequality for p ≥ 2

In this section, we will present a new Dunkel (p)-type integral inequality for p ≥ 2.
In order to prove our results, we need the following important auxiliary lemma.

Lemma 3. Let k ∈ N∪ {0}. Denote Ik :=
[
2kπ, 2kπ + π

2
]
. Assume that f (x) is a nonnegative

continuous real-valued function on Ik. Define M : Ik × Ik → R by

M(a, b) =
[
(b− a)

∫ b

a
f (x) sin xdx

]p

+

[
(b− a)

∫ b

a
f (x) cos xdx

]p

−
[
(b− a)

∫ b

a
f (x)dx

]p

for (a, b) ∈ Ik × Ik. If p ≥ 2, then M is Schur concave on Ik × Ik.

Proof. It is obvious that M(a, b) is symmetric for a, b. Hence, without loss of generality,
we may assume that b ≥ a. By Corollary 1, we have

∂M
∂b

= p
[
(b− a)

∫ b

a
f (x) sin xdx

]p−1[∫ b

a
f (x) sin xdx + (b− a) f (b) sin b

]
+ p

[
(b− a)

∫ b

a
f (x) cos xdx

]p−1[∫ b

a
f (x) cos xdx + (b− a) f (b) cos b

]
− p

[
(b− a)

∫ b

a
f (x)dx

]p−1[∫ b

a
f (x)dx + (b− a) f (b)

]
= p(b− a)p−1

[∫ b

a
f (x) sin xdx

]p−2

×
[(∫ b

a
f (x) sin xdx

)2

+ (b− a) f (b) sin b
∫ b

a
f (x) sin xdx

]

+ p(b− a)p−1
[∫ b

a
f (x) cos xdx

]p−2

×
[(∫ b

a
f (x) cos xdx

)2

+ (b− a) f (b) cos b
∫ b

a
f (x) cos xdx

]

− p(b− a)p−1
[∫ b

a
f (x)dx

]p−2
[(∫ b

a
f (x)dx

)2

+ (b− a) f (b)
∫ b

a
f (x)dx

]
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≤ p(b− a)p−1
(∫ b

a
f (x)dx

)p−2

×
[(∫ b

a
f (x) sin xdx

)2

+

(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x)dx

)2

+(b− a) f (b)
∫ b

a
f (x)(sin b · sin x + cos b · cos x− 1)dx

]
= p(b− a)p−1

(∫ b

a
f (x)dx

)p−2

×
[(∫ b

a
f (x) sin xdx

)2

+

(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x)dx

)2

+(b− a) f (b)
∫ b

a
f (x)(cos(b− x))− 1)dx

]
≤ 0

and

∂M
∂a

= p
[
(b− a)

∫ b

a
f (x) sin xdx

]p−1[
−
∫ b

a
f (x) sin xdx− (b− a) f (a) sin a

]
+ p

[
(b− a)

∫ b

a
f (x) cos xdx

]p−1[
−
∫ b

a
f (x) cos xdx− (b− a) f (a) cos a

]
− p

[
(b− a)

∫ b

a
f (x)dx

]p−1[
−
∫ b

a
f (x)dx− (b− a) f (a)

]
= −p(b− a)p−1

[∫ b

a
f (x) sin xdx

]p−2

×
[(∫ b

a
f (x) sin xdx

)2

+ (b− a) f (a) sin a
∫ b

a
f (x) sin xdx

]

− p(b− a)p−1
[∫ b

a
f (x) cos xdx

]p−2

×
[(∫ b

a
f (x) cos xdx

)2

+ (b− a) f (a) cos a
∫ b

a
f (x) cos xdx

]

+ p(b− a)p−1
[∫ b

a
f (x)dx

]p−2
[(∫ b

a
f (x)dx

)2

+ (b− a) f (a)
∫ b

a
f (x)dx

]

≥ −p(b− a)p−1
(∫ b

a
f (x)dx

)p−2

×
[(∫ b

a
f (x) sin xdx

)2

+

(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x)dx

)2

+(b− a) f (a)
∫ b

a
f (x)(sin a · sin x + cos a · cos x− 1)dx

]
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= −p(b− a)p−1
(∫ b

a
f (x)dx

)p−2

×
[(∫ b

a
f (x) sin xdx

)2

+

(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x)dx

)2

+(b− a) f (a)
∫ b

a
f (x)(cos(a− x))− 1)dx

]
≥ 0,

which deduce

∆
′

:= (b− a)
(

∂M
∂b
− ∂M

∂a

)
≤ 0.

By Lemma 2, M is Schur concave on Ik × Ik. The proof is completed.

The following result is a new Dunkel (p)-type integral inequality for p ≥ 2.

Theorem 5. Let k ∈ N∪ {0}. Denote Ik :=
[
2kπ, 2kπ + π

2
]
. Assume that f (x) is a nonnegative

continuous real-valued function on Ik. If p ≥ 2 and [a, b] ⊆ Ik, then(∫ b

a
f (x) cos xdx

)p

+

(∫ b

a
f (x) sin xdx

)p

≤
(∫ b

a
f (x)dx

)p

.

Proof. Define M : Ik × Ik → R by

M(a, b) =
[
(b− a)

∫ b

a
f (x) sin xdx

]p

+

[
(b− a)

∫ b

a
f (x) cos xdx

]p

−
[
(b− a)

∫ b

a
f (x)dx

]p

for (a, b) ∈ Ik × Ik. By Lemmas 1 and 3, we obtain

M(a, b) ≤ M
(

a + b
2

,
a + b

2

)
= 0,

which means that(∫ b

a
f (x) cos xdx

)p

+

(∫ b

a
f (x) sin xdx

)p

≤
(∫ b

a
f (x)dx

)p

.

The following result is immediate from Theorem 5.

Corollary 2. Let n ∈ N. Let k1, k2, · · · , kn ∈ N ∪ {0}. Assume that fi(x) is a nonnegative
continuous real-valued function on

[
2kiπ, 2kiπ + π

2
]

and [ai, bi] ⊆
[
2kiπ, 2kiπ + π

2
]

for any
1 ≤ i ≤ n. If p ≥ 2, then

n

∑
i=1

(∫ bi

ai

fi(x) cos xdx
)p

+
n

∑
i=1

(∫ bi

ai

fi(x) sin xdx
)p

≤
n

∑
i=1

(∫ bi

ai

fi(x)dx
)p

.

4. Some New Integral Inequalities

In this section, we will provide some new integral inequalities by applying our main
results.



Symmetry 2021, 13, 1576 9 of 12

Lemma 4 (Bessel inequality; see [1]). Let f (x) be a continuous or a piecewise continuous
nonnegative function on [0, 2π]. The Fourier series of f (x) is

a0

2
+

∞

∑
m=1

(am cos mx + bm sin mx),

where a0 = 1
π

∫ 2π
0 f (x)dx, am = 1

π

∫ 2π
0 f (x) cos mxdx, and bm = 1

π

∫ 2π
0 f (x) sin mxdx,

for m ∈ N. Then
a2

0
2
+

n

∑
m=1

(a2
m + b2

m) ≤
1
π

∫ 2π

0
f 2(x)dx.

Lemma 5 (see [1]). Let f (x) be a nonnegative integrable concave function on [a, b]. If p ≥ 1, then

∫ b

a
f p(x)dx ≤ 2p

(b− a)p−1(p + 1)

(∫ b

a
f (x)dx

)p

.

Theorem 6. Let f (x) be a nonnegative continuous concave function on [0, 2π]. Then(∫ 2π

0
f (x) sin xdx

)2

+

(∫ 2π

0
f (x) cos xdx

)2

≤ 4
9π2

(∫ 2π

0
f (x)dx

)2

.

Proof. Using the notations in Lemma 4 and applying Theorem 4, we get

n

∑
m=1

(a2
m + b2

m) ≤ na2
0. (5)

By combining (5) with Bessel inequality (see Lemma 4), we obtain

n

∑
m=1

(a2
m + b2

m) ≤ 2n

(
1
π

∫ 2π

0
f 2(x)dx−

n

∑
m=1

(a2
m + b2

m)

)

which implies
n

∑
m=1

(a2
m + b2

m) ≤
2n

(2n + 1)π

∫ 2π

0
f 2(x)dx.

Let n = 1. By applying Lemma 5, we obtain(∫ 2π

0
f (x) sin xdx

)2

+

(∫ 2π

0
f (x) cos xdx

)2

≤ 2
3π

∫ 2π

0
f 2(x)dx

≤ 4
9π2

(∫ 2π

0
f (x)dx

)2

.

The proof is completed.

Theorem 7. Let f (x) be a nonnegative continuous function on [a, b]. If 0 < a ≤ x ≤ b < π
2 ,

then(∫ b

a
f (x) tan xdx

)2

+

(∫ b

a
f (x) cot xdx

)2

≥ 2
(∫ b

a
f (x)dx

)2

+

(∫ v(t)

u(t)
f (x) tan xdx

)2

+

(∫ v(t)

u(t)
f (x) cot xdx

)2

− 2
(∫ v(t)

u(t)
f (x)dx

)2

≥ 2
(∫ b

a
f (x)dx

)2

,
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where u(t) = ta + (1− t)b and v(t) = tb + (1− t)a, for 1
2 ≤ t ≤ 1.

Proof. Let κ(x) =
√

2
2 tan x and λ(x) =

√
2

2 cot x for x ∈ [a, b]. By the arithmetic mean-
geometric mean (AM-GM) inequality, we have

κ(x) · κ(b) + λ(x) · λ(b) =1
2

tan x · tan b +
1
2

cot x · cot b

≥(tan x · tan b · cot x · cot b)
1
2 = 1.

In the same way, we also have κ(x) · κ(a) + λ(x) · λ(a) ≥ 1. By Theorem 2 (ii),
we obtain (∫ b

a
f (x)
√

2 tan x
2

dx

)2

+

(∫ b

a
f (x)
√

2 cot x
2

dx

)2

≥
(∫ b

a
f (x)dx

)2

+

(∫ v(t)

u(t)
f (x)
√

2 tan x
2

dx

)2

+

(∫ v(t)

u(t)
f (x)
√

2 cot x
2

dx

)2

−
(∫ v(t)

u(t)
f (x)dx

)2

≥
(∫ b

a
f (x)dx

)2

,

which deduces (∫ b

a
f (x) tan xdx

)2

+

(∫ b

a
f (x) cot xdx

)2

≥2
(∫ b

a
f (x)dx

)2

+

(∫ v(t)

u(t)
f (x) tan xdx

)2

+

(∫ v(t)

u(t)
f (x) cot xdx

)2

− 2
(∫ v(t)

u(t)
f (x)dx

)2

≥2
(∫ b

a
f (x)dx

)2

.

The proof is completed.

Theorem 8. Let 0 ≤ a < b ≤ 1 and f (x) be a nonnegative continuous function on [a, b]. If β ≥ 1
2 ,

then (∫ b

a
xβ f (x)dx

)2

+

(∫ b

a
(1− x)β f (x)dx

)2

≤
(∫ b

a
f (x)dx

)2

. (6)

Proof. Let κ(x) = xβ and λ(x) = (1− x)β for x ∈ [a, b]. For any x ∈ [a, b], since β ≥ 1
2 ,

we have

κ(x) · κ(b) + λ(x) · λ(b) = xβ · bβ + (1− x)β · (1− b)β

≤ x
1
2 · b

1
2 + (1− x)

1
2 · (1− b)

1
2

≤ x + b + 1− x + 1− b
2

= 1.

In the same way, we can also show that κ(x) · κ(a) + λ(x) · λ(a) ≤ 1 for x ∈ [a, b].
Therefore, the desired inequality (6) follows immediately from Theorem 2 (i).
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Theorem 9. Let p ≥ 1 and 0 ≤ a < b ≤ 1. Assume that f (x) is a nonnegative continuous func-
tion on [a, b]. If f (x) is decreasing and x f (x) is increasing, or f (x) is increasing and (1− x) f (x)
is decreasing, then

2mp
(∫ b

a
f (x)dx

)2

≤
(∫ b

a
xp f (x)dx

)2

+

(∫ b

a
(1− x)p f (x)dx

)2

≤
(∫ b

a
f (x)dx

)2

, (7)

where m := min{a(1− a), b(1− b)}.

Proof. From Theorem 8, we know that the right side of the desired inequality (7) holds.
Next, we verify that the left side of desired inequality (7) also holds. By the AM-GM
inequality, we have(∫ b

a
xp f (x)dx

)2

+

(∫ b

a
(1− x)p f (x)dx

)2

≥ 2
∫ b

a
xp f (x)dx

∫ b

a
(1− x)p f (x)dx.

Let ϕ(x) = xp f (x) and µ(x) = (1− x)p f (x) for x ∈ [a, b]. Thus, we get

ϕ′(x) = xp−1(p f (x) + x f ′(x))

and
µ′(x) = (1− x)p−1[−p f (x) + (1− x) f ′(x)].

Since p ≥ 1, if f (x) is decreasing and x f (x) is increasing, we obtain ϕ′(x) ≥ 0 and
µ′(x) ≤ 0. Similarly, if f (x) is increasing and (1− x) f (x) is decreasing, we also have
ϕ′(x) ≥ 0 and µ′(x) ≤ 0. By the Chebyshev inequality, we have(∫ b

a
xp f (x)dx

)2

+

(∫ b

a
(1− x)p f (x)dx

)2

≥ 2
∫ b

a
xp f (x)dx

∫ b

a
(1− x)p f (x)dx

≥ 2(b− a)
∫ b

a
[x(1− x)]p f (x)dx.

Since h(x) = x(1− x) is concave, h attains its minimum value h(a) or h(b). Due to
m = min{a(1− a), b(1− b)}, we obtain(∫ b

a
xp f (x)dx

)2

+

(∫ b

a
(1− x)p f (x)dx

)2

≥2(b− a)
∫ b

a
[x(1− x)]p f (x)dx

≥2(b− a)mp
∫ b

a
f 2(x)dx

≥2mp
(∫ b

a
f (x)dx

)2

.

The proof is completed.

5. Conclusions

In this paper, we establish the following two important main results for the generalized
Dunkel type integral inequality:
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• (Generalized Dunkel integral inequality; see Theorem 4.)

Let f (x) and g(x) be two nonnegative continuous real-valued functions on [a, b] and
m be any real number. Then(∫ b

a
f (x) cos mxdx

)(∫ b

a
g(x) cos mxdx

)
+

(∫ b

a
f (x) sin mxdx

)(∫ b

a
g(x) sin mxdx

)
≤
(∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)
.

• (Dunkel (p)-type integral inequality for p ≥ 2; see Theorem 5.)

Let k ∈ N ∪ {0}. Denote Ik :=
[
2kπ, 2kπ + π

2
]
. Assume that f (x) is a nonnegative

continuous real-valued function on Ik. If p ≥ 2 and [a, b] ⊆ Ik, then(∫ b

a
f (x) cos xdx

)p

+

(∫ b

a
f (x) sin xdx

)p

≤
(∫ b

a
f (x)dx

)p

.

As applications of our new results, some new integral inequalities are presented in
Section 4.
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