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Abstract: Gravitational decoupling via the Minimal Geometric Deformation (MGD) approach has
been used extensively in General Relativity (GR), mainly as a simple method for generating exact
anisotropic solutions from perfect fluid seed solutions. Recently this method has also been used to
generate exact spherically symmetric solutions of the Einstein-scalar system from the Schwarzschild
vacuum metric. This was then used to investigate the effect of scalar fields on the Schwarzschild
black hole solution. We show that this method can be extended to higher order theories. In particular,
we consider fourth order Einstein–Weyl gravity, and in this case by using the Schwarzschild metric
as a seed solution to the associated vacuum field equations, we apply the MGD method to generate a
solution to the Einstein–Weyl scalar theory representing a hairy black hole solution. This solution is
expressed in terms of a series using the Homotopy Analysis Method (HAM).
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1. Introduction

Obtaining exact physically relevant solutions of Einstein’s field equations is by no
means a straightforward task. The spherically symmetric perfect fluid analytic solutions of
Einstein’s equations have been derived and analyzed in detail [1,2]. However, as soon as
one relaxes the assumption of a perfect fluid source and considers more realistic sources,
then the problem of finding analytic solutions becomes intractable. Fortunately there are
a number of solution generating techniques in General Relativity (GR) [3–5], where one
starts with a seed metric, which is often a vacuum or a perfect fluid solution, and use
these to generate other solutions with more complex forms of the energy momentum
tensor that are more applicable to realistic scenarios. Recently, the Minimal Geometric
Deformation (MGD) technique has been proposed as a novel and simple approach to
decoupling gravitational sources in General Relativity, which could lead to new static and
spherically symmetric solutions having sources that are more realistic than the ideal perfect
fluid. This method was originally introduced in the context of the Randall–Sundrum brane-
world [6,7] and has been used to generate brane-world configurations [8,9] from general
relativistic perfect fluid seed solutions. The method was later extended to investigate
new black hole solutions [10,11] and to generate physically meaningful interior stellar
solutions [12] (for some other more recent applications see Refs. [13–21]). Gravitational
decoupling has also been studied in modified theories of gravity such as f (R, T) [22,23],
Gauss–Bonnet gravity [24], f (G) gravity [25] and Rastall gravity [26].

The main feature of this method is that one can start with a known seed solution of
Einstein’s field equations having a relatively simple source T̂µν, such as, for example, a
perfect fluid solution, and add to this a second source θµν such that the total energy mo-
mentum tensor is Tµν = T̂µν + θµν, where θµν may be a generic anisotropic source. Through
the MGD the new Einstein field equations for Tµν can then be separated into two sets of
equations, that is, the original system of Einstein’s field equations for T̂µν leading to the
seed solution, and another system of equations for the additional source θµν. The solution
of the second system of equations leads to the complete solution corresponding to the total
source Tµν. This process can then be repeated by adding additional sources to Tµν to finally
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end up with an intricate source that describes a realistic scenario. The converse can also be
applied. In this case, one starts with a complicated energy momentum tensor which can be
split into simpler components. The corresponding Einstein field equations for the whole
system can be reduced to separate systems of equations that can be solved separately. In
both cases, the method works provided that there is no interaction between the individual
sources, that is, the energy momentum tensors of all the sources are conserved separately,
such that ∇νT̂µν = ∇νθµν = 0. Moreover, the gravitational decoupling is attained due to
the time independence and spherical symmetry of the system. The MGD method has also
been used to investigate solutions of Einstein-scalar gravity [27]. In this case, the additional
source θµν corresponds to the energy momentum tensor of a minimally coupled scalar field.
It has been shown [28] that, for some perfect fluid configurations, adding a scalar field will
make the complete system unstable.

The main objective of this study is to extend the MGD technique to higher derivative
theories of gravity and in particular to pure Einstein–Weyl gravity. It is a known fact that
Einstein’s general relativity is non-renormalisable. In higher derivative theories of gravity,
the Einstein–Hilbert action is changed by including quadratic curvature invariants [29] in
the action so as to get a renormalisable theory. The most general action in this case takes
the form:

I =
∫

d4x
√
−g(γR− βCµνρσCµνρσ + δR2), (1)

where g is the determinant of the metric tensor gµν, β, δ and γ are constants, R is the Ricci
scalar and Cµνρσ is the Weyl tensor. In general when including higher order terms in the
action, one has to consider the possibility of ghost-like modes in the theory. However
these do not always render the theory irrelevant, as shown in Ref. [30]. Therefore these
higher derivative extensions of general relativity can be considered as alternative and
effective theories of gravity. Besides the fact that these arise naturally in the string theory
approach to gravity, they are mainly used in cosmology to generate geometric dark energy
models without the need to use a cosmological constant, unlike the Λ Cold Dark Matter
(ΛCDM) model of General Relativity. Any vacuum solution of Einstein’s general relativity
is also a solution to the higher derivative theory in (1), but the converse is not necessarily
true. In fact, the higher derivative theory admits a richer set of vacuum solutions than
General Relativity. For example, by taking δ = 0 in the action (1), which is referred to
as pure Einstein–Weyl gravity, the authors in Refs. [31,32] obtained a static and spheri-
cally symmetric asymptotically flat vacuum black hole solution that is different than the
Schwarzschild solution. This solution was obtained numerically. The authors also looked
at its thermodynamical properties and showed that it satisfies the first law, and for a given
mass its entropy is always less than the entropy of the Schwarzschild black hole with the
same mass. It has been shown (see Ref. [33]) that any static black hole solution of (1) must
have vanishing Ricci scalar, and so in this case the term quadratic in R in the action (1)
makes no contribution to the field equations.In this paper we consider the case of pure
Einstein–Weyl gravity and include a source θµν corresponding to a minimally coupled
scalar field. Due to the lack of non-trivial analytical solutions in Einstein–Weyl gravity
we choose the Schwarzschild metric as our seed solution, since as mentioned earlier, all
vacuum solutions of GR are also solutions of Einstein–Weyl gravity. Using the MGD
method we obtain the field equations for θµν, and these are solved using the Homotopy
Analysis Method (HAM), which results in an approximate analytic solution representing
a hairy black hole. The Homotopy Analysis Method (HAM) [34] is a very useful method
for obtaining analytical approximate solutions to various nonlinear differential equations,
including also systems of nonlinear equations, arising in many different areas of science
and engineering. Finally, the effect of the scalar field on the local black hole geometry
is analyzed. The paper is organized as follows. In Section 2 we review the gravitational
decoupling by the MGD method in General Relativity. Then in Section 3 we extend this
method to pure Einstein–Weyl gravity and obtain the field equations for the Einstein–Weyl-
scalar system. The Homotopy Analysis Method (HAM) is briefly introduced in Section 4,
and then in Section 5 this is used to obtain an analytic approximate solution to the system
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of equations in Einstein–Weyl-scalar gravity. The results are summarized and discussed in
the Conclusion. In this paper we will use units such that 8πG = c = 1.

2. Minimal Geometric Deformation in General Relativity

Consider Einstein’s field equations

Rµν −
1
2

Rgµν = Tµν, (2)

for an interior stellar distribution with a source Tµν, which consists of a perfect fluid and
an additional source θµν, such that

Tµν = (ρ + p)uµuν + pgµν + αθµν, (3)

where ρ is the fluid density, p is the isotropic fluid pressure, uµ is the four-velocity of the
fluid and α is a coupling constant. The additional source θµν may contain new scalar, vector
or tensor fields, and will in general produce the anisotropies in the self-gravitating system.
The total energy momentum tensor Tµν is conserved and, since we assume that there is no
exchange of energy between the perfect fluid and the additional source represented by θµν,
we can write

∇νTµν = ∇νθµν = 0. (4)

Then, for the static spherically symmetric metric in Schwarzschild coordinates,

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2), (5)

the Einstein’s field equations are given by

−ρ + αθt
t =

f ′r− 1 + f
r2

p + αθr
r =

f rh′ − h + f h
hr2 (6)

p + αθθ
θ =

2 f h′h + 2 f ′h2 + f ′h′hr + 2 f h′′hr− f (h′)2r
4rh2 ,

where ′ indicates a derivative with respect to the areal coordinate radius r. The conservation
equation ∇νTµν = 0 takes the form:

h′ρr + h′rp + 2hrp′ − αh′rθt
t + αh′rθr

r + 2αhr(θr
r)
′ + 4αhθr

r − 4αhθθ
θ = 0. (7)

As can be seen from the field equations in (7), the additional source θµν introduces
an anisotropy inside the stellar distribution such that the effective energy density is
ρ̃ = ρ− αθt

t , while the effective radial and tangential pressures are given by p̃r = p + αθr
r

and p̃t = p + αθθ
θ , respectively. So the field equations in (7) contain five unknown param-

eters, namely ρ̃, p̃r, p̃t and the metric functions h(r), f (r), and therefore the system is
under determined.

The geometric deformation of the radial component of the metric f (r), given by [28,35]

f (r)→ f (r) + αµ(r), (8)
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where µ(r) is the deformation function, leads to a gravitational decoupling of the Einstein’s
field Equation (7) into two separate systems of equations, namely:

−ρ =
f ′r− 1 + f

r2

p =
f rh′ − h + f h

hr2 (9)

p =
2 f h′h + 2 f ′h2 + f ′h′hr + 2 f h′′hr− f (h′)2r

4rh2 ,

and

θt
t =

µ + rµ′

r2

θr
r =

µ(rh′ + h)
hr2 (10)

θθ
θ =

2µhh′ + 2µ′h2 − µr(h′)2 + µ′rhh′ + 2µrhh′′

4rh2 .

Similarly, the conservation equation ∇µTµν = 0 leads to

h′ρr + h′rp + 2hrp′ = 0 (11)

and
2rh(θr

r)
′ + 4h(θr

r − θθ
θ )− rh′(θt

t − θr
r) = 0. (12)

One can realize that the systems in (10) are the field equations for a perfect fluid
solution (ρ, p, h(r), f (r)) (referred to as the seed solution), and (11) is the corresponding
conservation equation. So given a seed solution, one can generate an anisotropic solution
by solving the system of Equation (11) together with the conservation Equation (12). Since
(12) follows from (11), the system of Equation (11) is still under determined, and therefore
to obtain a solution one would need to impose a constraint, such as θr

r(r) = p(r). This
would lead to the anisotropic solution (ρ̃(r), p̃r(r), p̃t(r)) with metric functions (h(r), f (r) +
αµ(r)).

If the additional source is chosen to be a minimally coupled scalar field with scalar
potential V(φ), whose action is given by

Sφ =
∫ [
−1

2
∇µφ∇µφ−V(φ)

]√
−gd4x, (13)

then the corresponding energy momentum tensor is given by

θµν = ∇µφ∇νφ− 1
2

gµν∇γφ∇γφ−Vgµν. (14)

The conservation Equation (12) becomes the Klein–Gordon equation

�φ− dV
dφ

= 0, (15)

where � ≡ ∇µ∇µ. In this case the system of Equation (11) are given by

−1
2
(φ′)2( f + αµ)−V =

µ + rµ′

r2

1
2
(φ′)2( f + αµ)−V =

µ(rh′ + h)
hr2 (16)

−1
2
(φ′)2( f + αµ)−V =

2µhh′ + 2µ′h2 − µr(h′)2 + µ′rhh′ + 2µrhh′′

4rh2 ,
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which can be solved directly for the unknown functions (µ, φ, V). In other words, when
using the MGD method to generate Einstein-scalar solutions, one does not need to impose
an additional constraint such as θr

r(r) = p(r), which is required for anisotropic fluid
solutions. This method has been used to investigate the effect of a scalar field on the
Schwarzschild vacuum solution [27].

3. Einstein–Weyl Gravity

As remarked earlier, the action of pure Einstein–Weyl gravity in a vacuum is given by
(1) with δ = 0. Using units in which γ = 1, the equations of motion obtained by varying
the action with respect to the metric gµν, are given by

Rµν −
1
2

Rgµν − 4βBµν = 0, (17)

where the Bach tensor Bµν is expressed in terms of the Weyl tensor by Bµν = (∇ρ∇σ +
1
2 Rρσ)Cµρνσ. The Bach tensor is traceless, symmetric and conserved (gµνBµν = 0, Bµν =

Bνµ, Bµν
;ν = 0), and so taking the trace of (17) gives R = 0. The Schwarzschild metric is

also a solution of Einstein–Weyl gravity. However, as shown in Ref. [31], this is not the
only static and spherically symmetric vacuum solution of Einstein’s Weyl gravity.

For the static and spherically symmetric metric (5) the vacuum field equations are
given by:

h′′(r) = − 1
2r2 f (r)h(r)

(
4r f ′(r)h(r)2 − r2 f (r)h′(r)2 + 4r f (r)h(r)h′(r)

+r2h(r) f ′(r)h′(r) + 4 f (r)h(r)2 − 4h(r)2), (18)

and

f ′′(r) = − 1
6βr2h(r)2 f (r)(rh′(r)−2h(r))

(
6βr2 f (r)h(r)2h′(r) f ′(r)− 6r2h(r)3 f (r)

−24β f (r)h(r)3 + 9βr2h(r) f (r)2h′(r)2 + 3βr3h(r) f (r)h′(r)2 f ′(r) + 6r2h(r)3

−3βr3 f (r)2h′(r)3 − 6r3 f (r)h(r)2h′(r) + 9βr2 f ′(r)2h(r)3 − 12βrh(r)3 f ′(r)
+12βr f (r)h(r)3 f ′(r) + 24β f (r)2h(r)3).

(19)

Due to the inclusion of the Weyl squared term in the action, one would expect that the
corresponding field Equation (17) for the spherically symmetric metric (5) contains third
and fourth order derivatives of the metric functions f (r) and h(r). However, as was done
in this case, such higher order derivatives can be eliminated by taking a combination of the
field equations such that the resulting Equations (18) and (19) now contain only second
order derivatives. Yet they are still too complicated to be solved analytically unlike the
corresponding field equations in general relativity. Therefore, in such cases, one normally
reverts to numerical methods. This was was done in Ref. [31] (see also [36]), where the
authors obtained a Schwarzschild-like asymptotically flat numerical black hole solution.
Fixing the event horizon at r = r0, the metric functions h(r) and f (r) can be represented by
the following Taylor expansions close to the horizon:

h(r) = c
[
(r− r0) + h2(r− r0)

2 + h3(r− r0)
3 + · · ·

]
,

f (r) = f1(r− r0) + f2(r− r0)
2 + f3(r− r0)

3 + · · · , (20)

where c is an arbitrary scaling factor for the time coordinate, chosen such that it matches
with the proper time for a remote observer, that is, limr→∞ h(r) = 1. Then, substituting (20)
in the field Equations (18) and (19), one can express the coefficients hi, fi i ≥ 2 in terms of
the free parameters r0 and f1, so that

h2 =
1− 2 f1r0

f1r2
0

+
1− f1r0

8β f 2
1 r0

(21)
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and

f2 =
1− 2 f1r0

r2
0

− 3(1− f1r0)

8β f1r0
, (22)

and similarly for the remaining coefficients. Fixing the horizon radius r0 and using the
above expansions (20) to obtain the initial data at ri (where ri is taken to be very close
to the horizon radius r0), the field Equations (18) and (19) can be numerically integrated
by starting the integration at the distance ri. The shooting method is used in order to
find the appropriate values of the parameters c and f1 in (20) such that the solution is
asymptotically flat up to a large distance of r = r f ∼ 40ri. The authors of Ref. [31] showed
that there is a certain value of the horizon radius rmin

0 which depends on the parameter β,
such that for r0 > rmin

0 , the theory admits precisely one static black hole solution besides
the Schwarzschild solution. So, for example, letting β = 1/2 they found that rmin

0 ≈ 0.876.
Figure 1 shows such a non-Schwarzschild black hole for β = 1/2 and r0 = 1.

5 10 15 20 25 30 35
r

0.2

0.4

0.6

0.8

1.0

f HrL, 0.75 hHrL

Figure 1. The metric functions h(r) (red curve) and f (r) (blue curve) for r0 = 1, f1 = 1.3633 and
c = 48/30. A rescaling of h(r) is used to avoid the asymptotic overlap of both curves. The dotted
curves represents the exact Schwarzschild solution for comparison (see also Ref. [31]).

4. Gravitational Decoupling in Einstein–Weyl Gravity

To obtain gravitational decoupling of the field equations in Einstein–Weyl gravity we
use the same approach as in GR. We take a minimally coupled scalar field φ as the source,
such that the action for Einstein–Weyl-scalar gravity is given by

I =
∫

d4x
√
−g(R− βCµνρσCµνρσ − 1

2
∇µφ∇µφ−V(φ)). (23)

The corresponding field equations are

Rµν −
1
2

Rgµν − 4βBµν = ∇µφ∇νφ− 1
2

gµν∇αφ∇αφ−V(φ)gµν, (24)

and the conservation equation for the field φ is identical to that used in GR, namely

�φ− dV
dφ

= 0, (25)

where �φ = gµνφ;µν. Starting with the general static and spherically symmetric metric (5)
we apply the minimal geometric deformation

f (r)→ f (r) + αµ(r), (26)

and substitute the deformed metric in the above field Equation (24). As in the GR case, we
find that this would lead to a decoupling of the field equations into two systems. The first
set contains the vacuum field equations of Einstein–Weyl gravity for the metric functions
f (r) and h(r) given above by (18) and (19), which were solved numerically in Ref. [31] to
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obtain the non-Schwarzschild black hole solution shown in Figure 1. The other set is a
system of differential equations for the deformation function µ(r), the scalar field φ(r) and
its potential V(φ). These equations are also second order and are given by

φ′′(r) =
1

2rhφ′( f + αµ)

(
2rhV′ − 4 f hφ′2 − rh f ′φ′2

−r f h′φ′2 − αrµh′φ′2 − 4αhµφ′2 − αrhµ′φ′2
)

, (27)

µ′′(r) = 1
6r2αβh2( f+αµ)(−2h+rh′) (6r4h3V + 16r2βh3V − 16r2β f h3V − 16r4βh3V2

+6r2αh3µ + 24αβh3µ− 48αβ f h3µ− 16r2αβh3Vµ− 24α2βh3µ2

−24r3βh3V f ′ − 12rαβh3µ f ′ − 16r3β f h2Vh′ + 6r3αh2µh′ − 16r3αβh2Vµh′

−6r2αβh2µ f ′h′ − 18r2αβ f hµh′2 − 9r2α2βhµ2h′2 − 3r3αβhµ f ′h′2 + 6r3αβ f µh′3

+3r3α2βµ2h′3 + 24r3β f h3V′ + 24r3αβh3µV′ − 12r4β f h2h′V′ − 12r4αβh2µh′V′

+12rαβh3µ′ − 12rαβ f h3µ′ − 24r3αβh3Vµ′ − 12rα2βh3µµ′ − 18r2αβh3 f ′µ′

−6r2αβ f h2h′µ′ − 6r2α2βh2µh′µ′ − 3r3αβ f hh′2µ′ − 3r3α2βhµh′2µ′ − 9r2α2βh3µ′2

+12r2αβh3µ f ′′ − 6r3αβh2µh′ f ′′ − 3r4 f h3φ′2 + 4r2β f h3φ′2 − 20r2β f 2h3φ′2

−8r4β f h3Vφ′2 − 3r4αh3µφ′2 + 4r2αβh3µφ′2 − 40r2αβ f h3µφ′2 − 8r4αβh3Vµφ′2

−20r2α2βh3µ2φ′2 − 6r3β f h3 f ′φ′2 − 6r3αβh3µ f ′φ′2 + 2r4β f 2hh′2φ′2

+4r4αβ f hµh′2φ′2 + 2r4α2βhµ2φ′2h′2 − 6r3αβ f h3µ′φ′2 − 6r3α2βh3µµ′φ′2

−r4β f 2h3φ′4 − 2r4αβ f h3µφ′4 − r4α2βh3µ2φ′4),

(28)

and
V(r) = 1

8r2h2

(
−4αh2µ− 4rαhµh′ − r2αhµ′h′ + r2αµh′2

−4rαh2µ′ − 2r2αhµh′′ − 2r2 f h2φ′2 − 2r2αh2µφ′2
)
.

(29)

The above system of equations can be solved numerically for φ, µ, V using the non-
Schwarzschild vacuum solution ( f (r), h(r)) obtained in Ref. [31] and displayed in Figure 1.
This will generate a numerical hairy black hole solution to the Einstein–Weyl-scalar the-
ory. In our case we decide to use the simple Schwarzschild metric as our seed solu-
tion instead. As explained earlier, this metric is also a solution of the vacuum field
Equations (18) and (19) in Einstein–Weyl gravity. Then, by solving the above system of
equations we can obtain a hairy black hole solution, which can be represented analyti-
cally using the Homotopy Analysis Method. This method is explained in detail in the
next section.

5. Homotopy Analysis Method

In this section, we give a brief overview of the basics of the Homotopy Analysis
Method (HAM). Finding exact solutions of non-linear differential equations is not always
possible. There are various techniques [37] that have been developed to obtain analytical
approximate solutions to non-linear differential equations or systems of non-linear differ-
ential equations. Among these, one can mention the power series method, perturbation
techniques, variational iteration method and sinc-collocation method, just to name a few.
Another method that has been utilized extensively during the last two decades for various
mathematical and physical problems is the Homotopy Analysis Method (HAM), which was
first introduced by Liao in 1992 [34,38–42] (for various applications of the HAM see [43–55]).
Most of these approximation techniques will generate a series solution to a non-linear
differential equation or a system of non-linear differential equations. In this regard, HAM
has the unique property that the region and the rate of convergence of the series solution
is not just dependent on the choice of the initial approximation, auxiliary linear operator
and an auxiliary function, but it can be effectively controlled using a convergence control
parameter. This added freedom comes with its own problems, due to the fact that currently
there are no mathematical theorems which give the values of these parameters for a given
problem. Despite this, there are a number of guidelines (see for example [38,56,57]) that
are useful when choosing the right parameters in fairly general situations.
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Despite its popularity in many areas of science and engineering, the application of
the HAM in General Relativity and gravitation in general has been very limited (see [58]
for a recent application). In General Relativity and particularly in higher order theories
of gravity such as Einstein–Weyl gravity, the field equations are highly nonlinear and in
most cases do not lead to an exact solution for the metric tensor gµν, which means that,
in such cases, the only option is to revert to numerical methods. However, a numerical
solution can be achieved given a set of initial conditions (or boundary conditions in the
case of a boundary value problem) and for fixed values of the parameters that exist in the
field equations. So although this can be used for further numerical analysis of the given
problem, one would not be able to obtain a clear picture of the dependence of the metric on
the parameters used in the system. Therefore, in the absence of an exact solution, it would
be desirable to get at least an analytic approximate solution.

To explain the basics of the HAM consider a system of n nonlinear differential equa-
tions which we will write in the compact form,

Ni[yi(t)] = 0, i = 1, 2, . . . , n, (30)

where Ni are nonlinear operators, yi(t) are the unknown functions and t is the independent
variable. For this system we consider the homotopy [38],

(1− q)L[φi(t; q)− yi0(t)] = qhi Hi(t)Ni[φi(t; q)], (31)

where L is an auxiliary linear operator, q ∈ [0, 1] is an embedding parameter, Hi are
auxiliary functions, hi 6= 0 are the convergence control parameters, yi0(t) are the initial
guesses of yi(t) and φi(t; q) are unknown functions. Without loss of generality (see for
example [56]) one may set the auxiliary functions Hi(t) = 1. As mentioned earlier, one
has the freedom to assign the auxiliary linear operator, initial approximations and the
convergence control parameters. These choices affect the convergence of the solutions and
therefore the computational efficiency of the method. As mentioned already, the ways in
which these can be chosen are discussed in Refs. [38,56,57]. It is evident from (31) that
as q increases from 0 to 1, the solution φi(t; q) varies from the initial guess yi0(t) to the
actual solution yi(t). For this reason Equation (31) serves as the zeroth order deformation
equation. Expanding φi(t; q) as a Taylor series with respect to q, gives

φi(t; q) = yi0(t) +
∞

∑
m=1

yim(t)qm, (32)

where

yim(t) =
1

m!
∂mφi(t; q)

∂qm

∣∣
q=0. (33)

The choice of the initial approximation, linear operator, and convergence control
parameter should lead to convergence of the above Taylor expansion at q = 1 such that

yi(t) = φi(t; 1) = yi0(t) +
∞

∑
m=1

yim(t). (34)

One way to choose the parameters hi is to plot the so-called h-curves which represent
the graphs of the dependent variables yi(t) or their derivatives calculated at specific values
of the independent variable t (normally taken to be t = 0), against hi. If (34) is convergent,
a horizontal line segment will be obtained in the corresponding h-curve. Moreover, if a
value of hi is chosen from this region, it can be shown that (34) converges (see Ref. [38] for
details). The initial approximations yi0(t) are usually taken to be the simplest functions
satisfying the boundary conditions of the system of differential equations [57] and the
linear operators are normally taken to be the highest order derivatives of the dependent
variables in the differential equations [56].
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The functions yim(t) in (34) are obtained by solving the so called mth-order deforma-
tion equation. This is obtained by differentiating (31) m times with respect to the parameter
q and then letting q = 0 and finally dividing by m!. This is given by

L[yim(t)− χmyi m−1(t)] = hi Hi(t)Rim(yi m−1), (35)

where

Rim(yi m−1) =
1

(m− 1)!
∂m−1Ni[φi(t; q)]

∂qm−1

∣∣
q=0 =

1
(m− 1)!

∂m−1Ni[∑∞
m=0 yim(t)qm]

∂qm−1

∣∣
q=0, (36)

and

χm =

{
0 : m ≤ 1
1 : m > 1.

(37)

The boundary conditions for the above differential equation are obtained from the
original problem and since it is linear it can easily be solved for yim(t). If we define the
partial sum yM

i (t) by

yM
i (t) = yi0(t) +

M

∑
m=1

yim(t), (38)

then yM
i (t) will serve as the M-th order approximation to the solution (34).

6. Hairy Black Hole in Einstein–Weyl Gravity

Substituting the expression for the potential in (29) into (27) and (28) and changing to
the variable x = 1− r0/r gives the following second order nonlinear differential equations,

−(x− 1)2(2αµ(x)(−1 + x + x2 + 3x3 + 2(x− 1)2x2(3x− 1)φ′(x)2

+6(x− 1)3x3φ′(x)φ′′(x)) + (x− 1)x(2αµ′(x)(−1− 3x2 + 3(x− 1)2x2φ′(x)2)
+(x− 1)x(2x(−5 + 9x)φ′(x)2 − (1 + 3x)αµ′′(x) + 12(x− 1)x2φ′(x)φ′′(x)))) = 0,

(39)

and

(x− 1)2α2βµ(x)2(11− 40x− 30x2 + 120x3 − 45x4 + 8x2(1− 4x + 3x2)2φ′(x)2

+24(x− 1)3x3(3x− 1)φ′(x)φ′′(x)) + xαµ(x)(2(x− 1)2x2(−9r2
0x

+2(x− 1)2(7− 36x + 45x2)β)φ′(x)2 + 2(x− 1)3(−1 + 3x)αβµ′(x)(−5− 4x
−15x2 + 6(x− 1)2x2φ′(x)2)− 3(r2

0x(−1− 6x + 3x2) + 4(x− 1)3(1− 3x− 5x2 + 3x3)β

+2(x− 1)4x(−1 + 9x2)αβµ′′(x)) + 48(x− 1)5x3(−1 + 3x)βφ′(x)φ′′(x))
+(x− 1)x2(−(1− 3x)2(x− 1)3α2βµ′(x)2 + 3αµ′(x)(r2

0x(1 + 3x)
−4(x− 1)2(−1 + 3x− 3x2 + 9x3)β + 4(x− 1)4x2(−1 + 3x)βφ′(x)2)
+2(x− 1)x(x(−9r2

0x + 2(x− 1)2(5− 24x + 27x2)β)φ′(x)2 − 3(x− 1)2(−1
+9x2)αβµ′′(x) + 12(x− 1)3x2(−1 + 3x)βφ′(x)φ′′(x))) = 0,

(40)

where ′ now indicates a derivative with respect to x. The initial approximations are taken as

y10 = µ0(x) = x(1− x),
y20 = φ0(x) = Q(1− x),

(41)

where Q is a constant representing the scalar charge on the event horizon x = 0 (r = r0).
The chosen approximations satisfy the boundary conditions for the above system of differ-
ential equations, in the sense that µ0 vanishes on the horizon and at spatial infinity where
x = 1, and φ0 also vanishes asymptotically. Since both differential equations are second
order, the auxiliary linear operators (with the variable t now replaced by x) are given by
L(φi(x; q)) = ∂2φi(x; q)/∂x2, i = 1, 2. The non-linear operators Ni(φi(x; q)) are obtained
from the nonlinear operators used in (39) and (40) after expressing these in a form such
that each differential equation contains second derivatives of either µ or φ, but not both.
As already mentioned in the previous section, without loss of generality we may set the
auxiliary functions Hi(x) = 1. The convergence control parameters hi are obtained from the
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h-curves as explained in the previous section. Substituting the initial approximations (41)
in the deformation Equation (35) and solving recursively using the boundary conditions
yim(0) = yim(1) = 0, we get the series solution (38) for the functions µ(x) and φ(x). In our
case we considered third order approximations (M = 3 in (38)) for both functions. So,
letting α = 1, β = 1/2 and r0 = 1, Q = 1 the h-curves µ′(0) vs h and φ′(0) vs h are shown
in Figure 2a,b.
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Μ'@0D

(a)

-4 -2 2 4 6 8 10
h

-15
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5

10

Φ'@0D

(b)

Figure 2. The h-curves of (a) µ′(0) and (b) φ′(0) indicating regions of convergence (represented by
the flat sections) for the third order series approximations (M = 3) of µ(x) and φ(x).

From the two h-curves, it is clear that both flat sections are centred at around h =
5/8. Hence, using this value for the convergence control parameter for both differential
equations, we can write down the series approximations for the scalar field and deformation
function. Due to the complexity of these expressions, these are included in Appendix A,
where both functions are expressed again in terms of the radial coordinate r. Letting r0 = 1
for simplicity, these can be plotted as shown in Figure 3a,b.
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Figure 3. (a) The deformation function µ(r) expressed in terms of the radial coordinate r, and (b) the
scalar field φ(r). In both cases we let α = 1, β = 1/2 and r0 = 1, Q = 1.

Since we take Q = 1, we see that φ(r0) = 1. Both functions vanish for large r so
that the generated solution remains asymptotically flat like the seed Schwarzschild metric.
The metric function grr = f (r) + αµ(r) for the generated metric is shown in Figure 4,
along with the corresponding Schwarzschild metric function f (r) = 1− r0/r, represented
by the dotted curve. Note that the metric function h(r) = 1− r0/r will be unchanged
by the MGD method, and so this is common for the seed Schwarzschild metric and the
generated solution.
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r
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0.4

0.6

0.8

1.0

f HrL

Figure 4. The metric function (grr)−1 for the generated solution (solid curve) and the Schwarzschild
metric (dotted curve). The values of the parameters α, β, r0 and Q are the same ones used in
previous figures.

The potential function V(r) can be obtained by substituting the expressions for
µ(r) and φ(r) in (29) along with the metric functions f (r) = h(r) = 1 − r0/r for the
Schwarzschild seed metric. This is shown in Figure 5.

2 4 6 8 10
r

-0.15

-0.10

-0.05

VHrL

Figure 5. The potential function V(r). The values of the parameters α, β, r0 and Q are the same ones
used in previous figures.

As expected, the potential vanishes at infinity. Finally, in Figure 6 we show the
Kretschmann scalar κ = Rαβµγ

αβµγ, which quantifies the spacetime curvature outside the
black hole, for the generated solution compared with the Schwarzschild case shown by the
dotted curve.
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Figure 6. The Kretschmann scalar κ for the generated solution (solid curve) and the Schwarzschild
metric (dotted curve). The values of the parameters α, β, r0 and Q are the same ones used in
previous figures.

7. Discussion and Conclusions

Gravitational decoupling by the minimal geometric deformation method is a simple
yet powerful technique for generating anisotropic solutions from simple perfect fluid
seed metrics. This has been applied extensively in GR to obtain physically acceptable
solutions describing the interior geometry of stellar distributions. It has some limitations
though. It can only be applied to spherically symmetric systems, and if there are multiple
sources, then these have to be decoupled such that no energy exchange takes place between
them. Moreover to be able to solve the field equations to obtain the deformation function
µ(r), one needs to adopt an additional constraint such as θr

r(r) = p(r). This constraint is
not required when the additional source θµν represents a scalar field, and therefore the
method is particularly suited for obtaining scalar field extensions of known seed metrics.
This would be particularly interesting for studying hairy black holes, that is, black holes
surrounded by scalar hair, as has been done recently in Ref. [59] in GR.

The MGD method is not restricted to General Relativity and in fact it has already been
extended to a few modified theories of gravity. In this paper we extend the method to
Einstein–Weyl gravity and we show that, although here the field equations are much more
complex and in general contain fourth order derivatives of the metric functions, one can
still achieve gravitational decoupling by following the same steps as in GR. Obviously the
same restrictions apply, that is, the spacetime should be static and spherically symmetric
and no energy exchange between multiple sources is allowed. Due to the complexity of the
field equations, it is very difficult to find non-trivial exact perfect fluid or even vacuum
solutions of Einstein–Weyl gravity [60]. So to demonstrate the application of this method
we use the Schwarzschild metric as our seed solution of Einstein–Weyl gravity and add
a minimally coupled scalar field source. The HAM is then applied to the resulting field
equations to obtain analytic approximations for the deformation function µ(r) and scalar
field φ(r). The boundary conditions are chosen such that the generated scalar black hole
solution is asymptotically flat as shown in Figures 3 and 4. The third order approximations
for µ(r) and φ(r) are listed in Appendix A.

There are other modified theories of gravity where the MGD method may be applied to
generate scalar field solutions as described in this paper. Another case that has not yet been
considered in the literature is massive gravity, which attributes a mass to the graviton field.
An example of such a theory is that developed by de Rham, Gabadadze, and Tolley [61,62],
commonly referred as dRGT massive gravity. This is particularly interesting because the
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field equations in dRGT gravity do not include higher derivative terms and so the theory is
ghost-free. Its action is given by

S =
1

2κ2

∫
d4x
√
−g[R + m2

gU (gαβ, φα)] + Sm, (42)

where κ2 = 8πG, R is the Ricci scalar, U is the self-interacting potential for gravitons
having mass mg, φα are the Stückelberg scalar fields and as usual Sm is the part of the action
corresponding to the matter content. It has been shown [63] that this theory has an exact
static and spherically solution of the form in (5) with

h(r) = f (r) = 1− 2m
r
− 1

3
Λr2 + γr + η, (43)

where the constants Λ, γ and η are expressed in terms of the graviton mass mg, such that
when mg = 0 the theory reduces to GR and the above solution becomes the Schwarzschild
black hole metric. When γ = η = 0, the metric becomes the Schwarzschild-de Sitter black
hole solution, which has been shown to be stable [64] in this theory. The cosmological-like
term is useful for explaining the current accelerated expansion of the universe [65]. Unlike
other theories, like GR for example, this term arises from the graviton mass itself and is
not included by hand in the action of the theory. Moreover in this case, apart from the
fact that the massive graviton behaves like a kind of dark energy on the large scale, it can
also mimic the dark matter halo on the galactic scale through the linear term γr in the
above metric, which can be used to fit the rotational curves of most galaxies [66]. One
should mention [67] that this metric is also a solution in other theories, such as conformal
Weyl gravity [68], f (R) gravity [69] and general relativity [70], and although in each case
the metric represents the same manifold at a geometric level, the physical meaning of the
individual parameters m, Λ, γ and η is different.

One can try to apply the MGD method to massive gravity in the same way that it
has been applied before to GR and to Einstein–Weyl gravity as shown in this paper. So,
starting with the general static and spherically symmetric metric in (5), one can apply
the minimal geometric deformation f (r) → f (r) + αµ(r) and check whether the field
equations corresponding to (42) with Sm = 0 decouple. If gravitational decoupling of the
field equations can be achieved in dRGT theory, one can use the MGD method to generate
new scalar solutions in this theory by using (43) as the seed solution and letting Sm = Sφ in
the action (42), where Sφ is the action for a minimally coupled scalar field given by (13),
and φ is assumed to be conserved independently, that is, it satisfies Equation (25). This will
be explored in a future publication.
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Appendix A

Here we provide the analytical form of the hairy black hole metric generated by the
MGD method using the Schwarzschild metric as the seed solution. For simplicity we let
α = 1, β = 1/2 and r0 = 1, Q = 1. These are the same values of the parameters used in
the figures. The black hole metric is expressed in the form

ds2 = −h(r)dt2 +
dr2

f (r) + αµ(r)
+ r2(dθ2 + sin2 θdφ2), (A1)

where f (r) = h(r) = 1− 1/r are the Schwarzschild metric functions, while the deformation
function µ(r) and scalar field φ(r) are given by the following expressions:

µ(r) = 1
r36 (545.65− 6640.84r + 34601.7r2 − 95966r3 + 129204r4 + 23647.5r5

−409069r6 + 703156r7 − 457234r8 − 300601r9 + 1.07341× 106r10 − 1.4449× 106r11

+1.10992× 106r12 + 170895r13 − 1.76958× 106r14 + 2.14831× 106r15 − 770198r16

−890482r17 + 1.28709× 106r18 − 640352r19 + 23759.3r20 + 198646r21 − 276831r22

+323148r23 − 271639r24 + 147913r25 − 47470.9r26 + 5745.66r27 + 1303.64r28

+40.4621r29 − 652.634r30 + 354.972r31 − 86.5235r32 + 10.4519r33 − r34 + 0.258269r35)

(A2)

and

φ(r) = 1
r40 (26443− 303093r + 1.45119× 106r2 − 3.47023× 106r3 + 2.89884× 106r4

+6.04219× 106r5 − 1.98349× 107r6 + 1.89195× 107r7 + 8.82541× 106r8

−3.93613× 107r9 + 3.68863× 107r10 − 5.42133× 106r11 − 2.19068× 107r12

+3.47292× 107r13 − 3.9542× 107r14 + 2.42475× 107r15 + 1.69311× 107r16

−4.96482× 107r17 + 4.02223× 107r18 − 4.17513× 106r19 − 2.03948× 107r20

+2.12643× 107r21 − 1.13014× 107r22 + 2.39791× 106r23 + 2.55394× 106r24

−4.03622× 106r25 + 3.17486× 106r26 − 1.61634× 106r27 + 538909r28

−103527r29 + 106.461r30 + 8018.65r31 − 2896.3r32 − 115.567r33 + 681.604r34

−354.972r35 + 86.5235r36 − 10.4519r37 + 1.83594r39)

(A3)
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