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Abstract: The paper provides extended methods for control linear positive discrete-time systems
that are subject to parameter uncertainties, reflecting structural system parameter constraints and
positive system properties when solving the problem of system quadratic stability. By using an
extension of the Lyapunov approach, system quadratic stability is presented to become apparent in
pre-existing positivity constraints in the design of feedback control. The approach prefers constraints
representation in the form of linear matrix inequalities, reflects the diagonal stabilization principle in
order to apply to positive systems the idea of matrix parameter positivity, applies observer-based
linear state control to assert closed-loop system quadratic stability and projects design conditions,
allowing minimization of an undesirable impact on matching parameter uncertainties. The method
is utilised in numerical examples to illustrate the technique when applying the above strategy.

Keywords: positive linear systems; diagonal stabilization; linear matrix inequalities; uncertain systems;
matching conditions

1. Introduction

Positive systems cover a special family of systems possessing the property that their
states and outputs are inherently non-negative and, as a consequence, are subconsciously
connected with such real processes whose internal variables are positive [1,2]. Along this
line, since the main task when dealing with control and system state estimation is closely
linked to the positivity relations that must be maintained in the system dynamics [3],
the existence of positive structures has to accept also limitations in the non-negativity of
control law parameters or observer gains. In terms of analysis, stability and performance
characterizations, some constrained design approaches were established to solve design
problems for dynamical systems with positivity [4,5].

The need for new frameworks in positive system analysis, relying on the practical
concept of the linear matrix inequalities (LMIs) feasibility, is reflected in [6–8], whilst the
inherent time-delay system properties, exploitable in the control design of positive systems
are preferable exposed (see, e.g., [9] and the references therein). The implementability of
control structures related to discrete-time systems with time delays is presented in [10,11]
and with relation to positive discrete-time systems with time delays in [12]. Stabilization
principles for uncertain discrete-time-positive systems are proposed in [13–15], and specific
control structure realization is mentioned in [16,17].

Adaptation of the presented new points of view given on the control synthesis of
linear positive discrete-time systems in [18,19], as well as their dissemination to positive
systems with uncertain parameters, are the main issues of this paper. In considerable order
of precedence is LMI formulation in parametric constraint prescription, together with the
structural quadratic stability, to handle more general preference of arguments based on the
Lyapunov method.

New design conditions are derived related to uncertain discrete-time systems, which
ensure both quadratic stability and positiveness performances in controller and observer
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structures. Such conditions are explicitly represented by feasibility of the proposed LMIs
set. The multi-input, multi-output (MIMO) state-space representation is preferred, because
the performance specifications used in the design task have to view the controller-related
dimensions of matrix parameters when defining the uncertainties by LMIs. Because the
objective is intended for diagonal positive matrix variables, it guarantees the diagonal
stabilization principle.

For clarity of presentation, following the decisive reason for preference given in
Section 1, the paper continues in Section 2 with separate treatments of the design fun-
damentals related to constraint formulations for uncertain positive discrete-time linear
systems. Section 3, in the sense of the above ways in defining design limits, discusses
problem of quadratic stability and positiveness in control, preserves design adaptations
to state observer synthesis and presents the expression of the design completeness for the
observer-based state control of an uncertain system from this class of plants. To illustrate
various limits of design, a numerical solution is inserted in Section 4, whilst in Section 5 a
summary is presented, and conclusions are drawn.

Throughout this paper, the following notations are used: xT, XT denotes the transpose
of the vector x and the matrix X, respectively, diag [ · ] characterises the structure of a (block)
diagonal matrix, ρ(X) indicates the eigenvalue spectrum of X for a square symmetric
matrix, by definition X ≺ 0 means a negative definite matrix, the symbol In indicates the
n-th order unit matrix, R (R+) is the set of all (non-negative) real numbers, (Rn×r

+ ), Rn×r

refers to the set of n× r (non-negative) real matrices, and Rn×n
++ , (Rn×n

++◦) means the set of
strictly (purely) positive square matrices, respectively.

2. Problem Formulation and Starting Preliminaries

Consider the uncertain discrete-time systems of the form

q(i + 1) = (F + ∆F(i))q(i) + (G + ∆G(i))u(i) , (1)

y(i) = (C + ∆C(i))q(i) , (2)[
∆F(i) ∆G(i)

]
= MH(i)

[
N1 N2

]
, HT(i)H(i) � Ip , (3)[

∆F(i)
∆C(i)

]
=

[
V1
V2

]
W(i)U, WT(i)W(i) � Ip , (4)

where u(i) ∈ Rr, q(t) ∈ Rn and y(t) ∈ Rm. The matrix parameters are of the following
relations F, ∆F(i) ∈ Rn×n, G, ∆G(i) ∈ Rn×r, C, ∆C(i) ∈ Rm×n, M ∈ Rn×p, N1 ∈ Rp×n,
N2 ∈ Rp×r V1 ∈ Rn×p, V2 ∈ Rm×p and U ∈ Rp×n, and the elements of H(i), W(i) ∈ Rp×p

are Lebesgue measurable [20].
Notice how, in the used context, the above makes use of a square system with

p = m = r, whilst rank(M) = p, rank(V1) = p.
Related to the externally unforced uncertain discrete-time linear system (1) the dual

structure of the following theorem is substantial.

Theorem 1. In the case of the unforced uncertain discrete-time linear system (1), (3) is quadratically
stable if and only if there exist a symmetric positive definite matrix P ∈ Rn×n and a positive scalar
δ ∈ R such that the following inequalities hold

P = PT � 0 , δ > 0 , (5) −P PFT PNT
1

FP −P + δMMT 0
N1P 0 −δIp

 ≺ 0 , (6)

P− δMMT � 0 . (7)
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In the case of the unforced dual uncertain discrete-time linear system (1), (4) is quadratically
stable if and only if there exist a symmetric positive definite matrix Q ∈ Rn×n and a positive scalar
γ ∈ R such that the following hold

Q = QT � 0 , γ > 0 , (8) −Q QF QV1
FTQ −Q + γUTU 0
VT

1 Q 0 −γIp

 ≺ 0 , (9)

Q− γUTU � 0 . (10)

The proof of the theorem is outlined in Appendix A.

Remark 1. Theorem 1 is closely related to the method for assigning poles in a specified disk by
state feedback for uncertain linear discrete-time systems with norm-bounded uncertainties [21]. The
presented formulation extends and specifies the concept mentioned in [12].

Remark 2. Both the presented properties are dual in the sense that F, G are replaced by FT, CT, and
M is replaced by UT with the formally used substitutions P← Q, N1 ← V1, N2 ← V2, δ← γ.
The dual view of the representations is useful when the control law parameter design is exploited by
the inequality structure (5)–(7) and in the state observer parameter design the inequality structure
(8)–(10).

Working with the uncertain positive discrete-time linear systems, it can be formu-
lated the formally identical representation (1)–(4), but considering a strictly positive
F ∈ Rn×n

+ (all its elements are greater than zero) and non-negative G ∈ Rn×r
+ , C ∈ Rm×n

+ ,
M ∈ Rn×p

+ , N1 ∈ R
p×n
+ , N2 ∈ R

p×r
+ , U ∈ Rp×n

+ , V1 ∈ R
n×p
+ and V2 ∈ R

m×p
+ , where, for

generalization, it is considered that p = r = m.

Definition 1 ([22]). The nominal autonomous system (1) is said to be a positive system if the
corresponding trajectory q(i) ∈ Rn

+ is always non-negative for all integers i and non-negative
initial conditions q(0) ∈ Rn

+.

Remark 3 (Adapted from [22]). The nominal autonomous system (1) is positive if and only if F
is a positive matrix such that element-vise F ≥ 0. If the nominal autonomous system (1) is positive,
then it is asymptotically stable for every initial condition q(0) ∈ Rn

+ (implying that F is a Schur
matrix).

Definition 2 ([23]). Matrix L ∈ Rn×n is a permutation matrix if exactly one item in each column
and row is equal to 1 and all other elements are equal to 0. Permutation matrix L ∈ Rn×n is of
circulant form if

L =

[
0T 1

In−1 0

]
, L−1 = LT. (11)

Definition 3. A square matrix F ∈ Rn×n
++ is strictly positive if all its elements are positive. A

square matrix F ∈ Rn×n
+ is purely positive if its diagonal elements are positive and its off-diagonal

elements are non-negative.



Symmetry 2021, 13, 1725 4 of 20

Remark 4. Visualizing the square matrix F ∈ Rn×n
++ as

F =


f11 f12 f13 · · · f1n
f21 f22 f23 · · · f2n
f31 f32 f33 · · · f3n
...

...
...

...
...

fn1 fn2 fn3 · · · fnn

, (12)

the strictly positive structure of F implies n2 structural constraints fij > 0 ∀ i, j = 1, . . . n.
To transform this set of structural constraints into a set of LMIs, the two rhombic forms [24]

related to (12) are constructed with characterization through circular shifts of columns (rows)
of (12) as

FΘ =


f11 f12 f13 · · · f1n

f22 f23 · · · f2n f21
f33 · · · f3n f31 f32

. . .
...

...
...

. . .
fnn fn1 fn2 · · · fn,n−1

, (13)

FΣ =



f11
f21 f22
f31 f32 f33
...

...
...

. . .
fn1 fn2 fn3 · · · fnn

f12 f13 · · · f1n
f23 · · · a2n

. . .
...

fn−1,n


. (14)

It can be underlined that the diagonal matrices, related to these rhombic forms, are defined for
h = 0, . . . , n− 1 as

FΣ(l + h, l) = diag
[

f1+h,l · · · fn,n−h f1,n−h+1· · · fh,n
]
� 0 , (15)

FΘ(l, l + h) = diag
[

f1,1+h· · · fn−h,n fn−h+1,1· · · fn,h
]
� 0 , (16)

whilst

F =
n−1

∑
h=0

FΘ(l, l + h)LhT =
n−1

∑
h=0

LhFΣ(l + h, l) . (17)

Once the matrices FΣ, FΘ are constructed, FΣ(l + h, l), FΘ(l, l + h) are defined by the
h-th diagonal of FΣ, FΘ, respectively. Moreover, n2 parametric constraints are given implicitly by
positive definiteness of n diagonal matrices (15) or (16).

Note the duality of (14), (13) is also evident. When designing the state observer, (14) has to be
used, whilst in the control design, the form (13) has to be applied.

Lemma 1 (Adapted from [18]). If matrix F ∈ Rn×n
++ is strictly positive then it is Schur if and

only if there exist positive definite diagonal matrices P, Q ∈ Rn×n
+ such that the following sets of

linear matrix inequalities are feasible for h = 0, 1, . . . , n− 1,

i.
P � 0 , LhFΘ(l, l + h)LhTP � 0 , FTPF − P ≺ 0 , (18)

ii.
Q � 0 , QLhFΣ(l + h, l)LhT � 0 , FQFT −Q ≺ 0 , (19)
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when computing with the circulant L ∈ Rn×n
+ defined in (11). The LMIs from the above sets

guarantee positiveness of the diagonal matrix variables, positive matrix structural constraints and
stability of the system matrix.

Remark 5. Considering a diagonal matrix Λ ∈ Rn×n of the form

Λ = diag
[
λ1 λ2 · · · λn

]
, (20)

then, if L ∈ Rn×n takes the circulant form (11),

LTΛL = diag
[
λ2 · · · λn λ1

]
= Λc1 . (21)

In the sections to follow, these design approaches will be considered and the sup-
porting constructive methods developed to establish a direct consequence of control or
observer parameters and matrix parametric constraints on quadratic stability.

3. Main Results

It is assumed in this section that the state feedback with positive constant gain stabi-
lizes with positiveness in the closed-loop system if it is implemented (i.e., the closed-loop
system matrix is strictly positive and Schur), and the positive observer estimates a positive
system state trajectory if it is implemented (i.e., the observer system matrix is strictly
positive and Schur), meaning that Schur matrix eigenvalues are less than 1 in absolute
value. The proposed solutions substantially rely the conditions presented in Theorem 1.

3.1. Parametric Features in Control Design

If the state feedback control

u(i) = −Kq(i) , (22)

can be used to control the uncertainty-free positive system (1) the problem is, with respect
to diagonal stabilization principle, to formulate the set of LMIs, which guarantees, in a
feasible case, a K ∈ Rr×n

+ being positive if the matrix variable P ∈ Rn×n
+ is positive definite

diagonal. The main design criterion remains principally the quadratic stability of the
positive closed-loop structure.

Lemma 2. Let the uncertainty-free system (1), where F ∈ Rn×n
++ is strictly positive and G ∈ Rn×r

+
be non-negative, is under the state control (22), then Fc = F − BK ∈ Rn×n

++ is strictly positive if
there exists a positive definite diagonal matrix P ∈ Rn×n

+ and a positive K ∈ Rr×n
++ such that for

h = 0, 1, . . . , n,

P � 0 , LhFΘ(l, l + h)LhTP−
r

∑
j=1

LhGdjL
hTKdjP � 0 , (23)

where FΘ(l, l + h) is defined in (16), L in (11) and

K =

kT
1
...

kT
r

, Kdj = diag
[
kT

j

]
= diag

[
k j1 · · · k jn

]
, (24)

G =
[
g1 · · · gr

]
, Gdj = diag

[
g j

]
= diag

[
gj1 · · · gjn

]
. (25)
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Proof. Writing element wise the matrix product GK in the following rhombic form

GK =
r

∑
j=1

g jk
T
j

=
r

∑
j=1


g1jk j1 g1jk j2 g1jk j3 · · · g1jk jn

g2jk j2 g2jk j3 · · · g2jk jn g2jk j1
g3jk j3 · · · g3jk jn g3jk j1 g3jk j2

. . .
...

...
...

. . .
gnjk jn gnjk j1 gnjk j2 · · · gnjk j,n−1


∼

r

∑
j=1

[
GdjKdj GdjKdjc1 GdjKdjc2 · · · GdjKdjc,n−1

]
,

(26)

then separating G by the columns g j, j = 1, . . . , r and representing the column g j by the

diagonal matrix Gdj as in (25) and, additionally, separating K by the rows kT
j , j = 1, . . . , r

and representing the row kT
j by the diagonal matrix Kdj as in (24), then, in analogy with

(17), it can be written

Fc = F −
r

∑
j=1

g jk
T
j =

n−1

∑
h=0

(
FΘ(l, l + h)−

r

∑
j=1

GdjKdjch

)
LhT , (27)

where Gdj, Kdjch are derived from the rhombic diagonals of (26). Analogously using

Kdjch = LhTKdjL
h (28)

and substituting (28) into (27), then

Fc =
n−1

∑
h=0

(
FΘ(l, l + h)LhT −

r

∑
j=1

GdjL
hTKdj

)
, (29)

which implies

FΘ(l, l + h)LhT −
r

∑
j=1

GdjL
hTKdj � 0 ∀ h . (30)

Pre-multiplying the left side by Lh and post-multiplying the right side by a positive
definite diagonal matrix P then (30) implies (23). This concludes the proof.

Remark 6. The condition (23) guarantees that the matrix Fc is strictly positive if F, K are strictly
positive, G is non-negative and a positive definite diagonal matrix P exists.

If the case of the positive uncertain system (1), (3) under the control (22), where
K ∈ Rr×n

++ is strictly positive, the discrete state can be interpreted as follows

q(i + 1) = (F −GK)q(i) + (∆F(i))− ∆G(i))K)q(i)

= (F −GK)q(i) + MH(i)(N1 − N2K)q(i)

= Fcq(i) + ∆Fc(i)q(i)

(31)

where
Fc = F −GK , Nc1 = N1 − N2K , (32)

∆Fc(i) = MH(i)(N1 − N2K) = MH(i)Nc1 , (33)
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whilst the last relation makes sense if p = r. Defining a raw vector ln =
[
1 1 · · · 1

]
∈ Rn

+, it
can be written

Fc = F −GK = F −
r

∑
j=1

g jk
T
j = F −

r

∑
j=1

GdjlnlT
nKdj (34)

and, analogously, defining lp =
[
1 1 · · · 1

]
∈ Rp

+, it can be obtained

Nc1 = N1 − N2K = N1 −
p

∑
j=1

n2jk
T
j = N1 −

p

∑
j=1

N2djlplT
nKdj , (35)

N2 =
[
n21 · · · n2p

]
, N2dj = diag

[
n2j1 · · · n2jn

]
. (36)

The design conditions can be formulated as an LMI-based task by the following
theorem.

Theorem 2. The uncertain positive discrete-time system (1), (3) under control (22) is quadratically
stable if for given strictly positive F ∈ Rn×n

++ , non-negative G ∈ Rn×r
+ , M ∈ Rn×p

+ , N1 ∈ R
p×N
+ ,

N2 ∈ R
p×r
+ and circulant L ∈ Rn×n

+ there exist positive definite diagonal matrices P, Rj ∈ Rn×n
+

and a positive scalar δ ∈ R+ such that for h = 0, . . . , n− 1, j = 1, . . . r, p = r

P � 0 , Rj � 0 , δ > 0 , (37)

LhFΘ(l, l + h)LTP−
r

∑
j=1

LhGdjL
hTRj � 0 , (38)


−P ∗ ∗

FP−
r
∑

j=1
GdjlnlT

n Rj −P + δMMT ∗

N1P−
p
∑

j=1
N2djlplT

n Rj 0 −δIp

 ≺ 0 , (39)

P− δMMT � 0 , (40)

with the parameters defined as (16), (26), (32), (36).
If the set of LMIs is feasible, the strictly positive K ∈ Rr×n

++ is computable by the following
procedure

Kdj = RjP−1, kT
j = lTKdj, K =

kT
1
...

kT
r

, (41)

whilst the realization is Fc = F −GK such that Fc is strictly positive and Schur.
Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof. Considering the relation (23) for the nominal matrix Fc and using the substitution

Rj = KdjP , (42)

then (23) implies (38). Multiplying the right side by a positive definite diagonal matrix P
and considering (42), then (34), (35) imply

FcP = FP−
r

∑
j=1

GdjlnlT
nKdjP = FP−

r

∑
j=1

GdjlnlT
n Rj , (43)

Nc1P = N1P−
p

∑
j=1

N2djlplT
nKdjP = N1P−

p

∑
j=1

N2djlplT
n Rj . (44)
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Since the inequality (6) observed above yields also with Fc and Nc1 and for a positive
definite diagonal matrix P, then (6) is easily shown to satisfy −P ∗ ∗

FcP −P + δMMT ∗
Nc1P 0 −δIp

 ≺ 0 (45)

and with (43), (44), then (45) implies (39). This ends the proof of the theorem.

Note, the set of LMIs (38) reflects parametric constraints for Fc ∈ Rn×n
++ , and (39)

guaranties quadratic stability of the system under control.

3.2. Parametric Features in Observer Design

This section considers the design problem of the state estimators for uncertain discrete-
time linear systems, where an uncertainty-free input matrix G is considered. Within the
Lunberger observer scheme, such a structure is applicable for example in the system fault
residual generations.

The aim of this observer is to construct the system state estimation qe(i) ∈ Rn
+ in such

a way that the error of state estimation (residual signal)

e(i) = q(i)− qe(i) (46)

is quadratically stable, since the system matrix stays time varying. To such a defined task,
the structure considered for the observer is standard

qe(i + 1) = Fqe(i) + Gu(i) + J(y(i)− ye(i)) , (47)

ye(i) = Cqe(i) , (48)

associated with the system models (1), (2), (4) with uncertainty-free G. With respect to the
diagonal stabilization principle and given system parametric constraints, a strictly positive
observer gain J ∈ Rn×m

++ and the pair (Q, J) parametric bound have to be considered, whilst
Q ∈ Rn×n

+ be a positive definite diagonal matrix.
Considering the Luenberger-type state observer (46), (47) associated with the uncerta-

inty-free system (1), (2), (4), then

e(i + 1) = q(i + 1)− qe(i + 1)

= (F + Gu(i)− Fqe(i)−Gu(i)− J(Cq(i)− Cqe(i))

= (F − JC)e(i)

= Fee(i) ,

(49)

where qe(t) ∈ Rn
+, J ∈ Rn×m

+ and
Fe = F − JC . (50)

Upon examining (49), it can be seen that the autonomous observer problem being
considered is a dual generalization of the time-invariant state control problem, where all of
the system matrices are state independent.

Lemma 3. In the case of the uncertainty-free observer error dynamics given in (49), where F ∈
Rn×n

++ is strictly positive, C ∈ Rm×n
+ is non-negative and J ∈ Rn×m

+ is a strictly positive observer
gain matrix, then Fe = F− JC ∈ Rn×n

++ is strictly positive if there exists a positive definite diagonal
matrix Q ∈ Rn×n

+ such that for h = 0, 1, . . . , n,

Q � 0 , QLhFΣ(l + h, l)LhT −
r

∑
j=1

QJdjL
hCdjL

hT � 0 , (51)
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where FΣ(l, l + h) is defined in (15), L in (11) and

J =
[
j1 · · · jm

]
, Jdj = diag

[
jj

]
= diag

[
j1j · · · jnj

]
, (52)

C =

cT
1
...

cT
r

, Cdj = diag
[
cT

j

]
= diag

[
c1j · · · cnj

]
. (53)

Proof. Writing element wise the matrix product JC in the following rhombic form

JC =
m

∑
j=1

jjc
T
j

=
r

∑
j=1



j1jcj1
j2jcj1 j2jcj2

...
...

. . .
jnjcj1 jnjcj2 · · · jnjcjn

j1jcj2 · · · j1jcjn
. . .

...
jn−1,jcjn


∼

r

∑
j=1


JdjCdj
Jdjc1Cdj
...

Jdjc,n−1Cdj

,

(54)

then separating the matrix J by the columns jj, j = 1, . . . , m and representing the column jj
by the diagonal matrix Jdj as defined in (52) and, additionally, separating the matrix C by
the rows cT

j , j = 1, . . . , r and representing the row cT
j by the diagonal matrix Cdj as defined

in (53), in analogy with (17), it can be written

Fe = F −
r

∑
j=1

jjc
T
j =

n−1

∑
h=0

Lh

(
FΣ(l + h, l)−

r

∑
j=1

JdjchCdj

)
, (55)

where Jdjch, Cdj, are derived from the rhombic diagonals of (54).
Analogously using (21) in the following relation

Jdjch = LhT JdjL
h (56)

and substituting (56) into (55), then

Fe =
n−1

∑
h=0

(
LhFΣ(l + h, l)−

r

∑
j=1

JdjL
hCdj

)
, (57)

which implies for all h

LhFΣ(l + h, l)−
r

∑
j=1

JdjL
hCdj � 0 . (58)

Pre-multiplying the inequality left side by a positive definite diagonal matrix
Q ∈ Rn×n

+ and post-multiplying the right side by LhT then (58) implies (51). This ends the
proof of the lemma.
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If the state observer (47), (48) is constructed for the positive uncertain system (1), (2),
(4) with the uncertainty-free matrix G ∈ Rn×r

+ , whilst J ∈ Rn×m
++ is strictly positive, then

the error of state variable estimations is expressible as

e(i + 1) = q(i + 1)− qe(i + 1)

= (F + ∆F(i))q(i) + Gu(i)− Fqe(i)−Gu(i)−
− J((C + ∆C(i))q(i)− Cqe(i))

= (F − JC)e(i) + (∆F(i)− J∆C(i))q(i)

= Fee(i) + (∆F(i)− J∆C(i))q(i) ,

(59)

where Fe is given in (50). Defining the matrix

T� =
[
In −J

]
(60)

and multiplying the left side of (4) by T�, then the following relation is obtained

∆F(i)− J∆C(i) = (V1 − JV2)W(i)U = V e1W(i)U , (61)

where the last realization makes use only if p = m, whilst

V e1 = V1 − JV2 . (62)

Thus, (59) has the structure

e(i + 1) = (Fe + V1eW(i)U)e(i) + V1eW(i)Uqe(i) . (63)

Using the defined column vectors ln ∈ Rn, lp ∈ Rp it can be written

Fe = F − JC = F −
m

∑
j=1

jjc
T
j = F −

m

∑
j=1

JdjlnlT
nCdj , (64)

V c1 = V1 − JV2 = V1 −
p

∑
j=1

jjv
T
2j = V1 −

p

∑
j=1

JdjlnlT
pV2dj , (65)

where the diagonally related expression is

V2 =

vT
21
...

vT
2m

, V2dj = diag
[
v2j1 · · · v2jn

]
. (66)

The use of these relationships eliminates the introductions of additional structured
matrix variables into the solution.

Theorem 3. The state observer (47), (48) related to uncertain positive discrete-time system (1),
(2), (4) with the uncertainty-free input matrix G ∈ Rn×r

+ is quadratically stable if for strictly
positive F ∈ Rn×n

++ , non-negative C ∈ Rm×n
+ , U ∈ Rp×n

+ , V1 ∈ R
n×p
+ , V2 ∈ R

m×p
+ and circulant

L ∈ Rn×n
+ there exist positive definite diagonal matrices Q, Sj ∈ Rn×n

+ and a positive scalar
γ ∈ R+ such that for h = 0, . . . , n− 1, j = 1, . . . m, p = m

Q � 0 , Sj � 0 , γ > 0 , (67)

QLhFΣ(l + h, l)LhT −
m

∑
j=1

SjLhCdjL
hT � 0 , (68)
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−Q QF −
m
∑

j=1
SjlnlT

nCdj QV1 −
m
∑

j=1
SjlnlT

mV2dj

∗ −Q + γUTU 0
∗ ∗ −γIp

 ≺ 0 , (69)

Q− γUTU � 0 , (70)

with the parameters from (52), (53), (66).
If the above LMIs are feasible, the strictly positive J ∈ Rn×m

++ can be expressed as

Jdj = Q−1Sj, jj = Jdjln, J =
[
j1 · · · jm

]
(71)

and, in dependence on J, the matrix Fe = F − JC is strictly positive and Schur.

Proof. Considering the inequalities (51) for the system nominal matrix Fe and using the
substitution

Sj = QJdj , (72)

then (51) implies (38).
Since the inequality (9) yields also for Fe and V e1 with relation to a positive definite

diagonal matrix of Q, LMI (9) takes the following expression −Q QFe QV e1
FT

e Q −Q + γUTU 0
VT

e1Q 0 −γIp

 ≺ 0 . (73)

Considering (72) it can be seen from comparing (64), (65) that

QFe = QF −
m

∑
k=1

SklnlT
nCdk , (74)

QV e1 = QV1 −
m

∑
k=1

SklnlT
mV2dk , (75)

respectively, and (73) under the prescribed elements (74), (75) implies (69). This concludes
the proof.

The observer structure analogy means that (68) reflects parametric constraints of a
positive Fe ∈ Rn×n

++ , and the LMI (69) guarantees the observer quadratic stability, whilst
the diagonal stability principle forces a positive definite diagonal matrix P ∈ Rn×n

+ .

3.3. Conjunction with State Observer-Based Control

The most natural way to extend the used basis is to define the control law as the state
observer-based

u(i) = −Kqe(i) , (76)

where K ∈ Rr×n
++ is a strictly positive matrix. The associate description of the defined

control task is[
q(i + 1)
qe(i + 1)

]
=

[
F + ∆F(i) −(G + ∆G(i))K

J(C + ∆C(i)) F − JC−GK

][
q(i)
qe(i)

]
= F•c

[
q(i)
qe(i)

]
, (77)

which directly implies from (2), (31), (47), (48) and (76) and where

F•ce =

[
F + ∆F(i) −(G + ∆G(i))K

J(C + ∆C(i)) F − JC−GK

]
. (78)
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Since the transform matrix can certainly be chosen

Te =

[
In 0
In −In

]
, T−1

e = Te , (79)

then

Te

[
q(i)
qe(i)

]
=

[
q(i)

q(i)− qe(i)

]
=

[
q(i)
e(i)

]
, (80)

Fce = TeF•ceT−1
e

=

[
In 0
In −In

][
F + ∆F(i) −(G + ∆G(i))K

J(C + ∆C(i)) F − JC−GK

][
In 0
In −In

]
=

[
F + ∆F(i)− (G + ∆G(i))K (G + ∆G(i))K
∆F(i)− J∆C(i)− ∆G(i)K F − JC + ∆G(i)K

] (81)

and the equivalent formulation is obtained in the form[
q(i + 1)
e(i + 1)

]
= F◦ce

[
q(i)
e(i)

]
, (82)

where

F◦ce =

[
F + ∆F(i)− (G + ∆G(i))K (G + ∆G(i))K
∆F(i)− J∆C(i)− ∆G(i)K F − JC + ∆G(i)K

]
. (83)

Since the element in the lower right corner of (83) can be extended as

F − JC + ∆G(i)K = F + ∆F(i)− J(C + ∆C(i)) + (−∆F(i) + J∆C(i) + ∆G(i)K) , (84)

it follows directly from (83)

Fce =

[
F + ∆F(i)− (G + ∆G(i))K 0

0 F + ∆F(i)− J(C + ∆C(i))

]
+

+

[
0 (G + ∆G(i))K

∆F(i)− J∆C(i)− ∆G(i)K −(∆F(i)− J∆C(i)− ∆G(i)K)

]
.

(85)

This can be used to define an equivalent formulation[
q(i + 1)
e(i + 1)

]
=

[
F + ∆F(i)− (G + ∆G(i))K 0

0 F + ∆F(i)− J(C + ∆C(i))

][
q(i)
e(i)

]
+

+

[
(G + ∆G(i)) 0

0 ∆E(i)

][
Ke(i)
qe(i)

]
,

(86)

where
∆E(i) = ∆F(i)− J∆C(i)− ∆G(i)K . (87)

If states of the observer (47), (48) are intended for the state control (22), stabilizing the
uncertain system (1), (2), (4), then the state estimation error equation (compare (59)) is

e(i + 1) = Fee(i) + (∆F(i)− J∆C(i)− ∆G(i)K)q(i)

= Fee(i) + ∆E(i)q(i) ,
(88)

where
Fe = F − JC . (89)

If the system (1), (2), (4) is stabilized by the control (76), then (82) implies

e(i + 1) = Feue(i) + ∆E(i)qe(i) , (90)
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where
Feu = F + ∆F(i)− J(C + ∆C(i)) . (91)

It is obvious that (88), (89) implies the asymptotically stable estimation error dynamics
and, in contrary, the relations (90), (91) mean the quadratically stable estimation error
dynamics, related to the same disturbance when qe(i)→ q(i).

Since (31), (86) implies
q(i + 1) = Fcuq(i) , (92)

q(i + 1) = Fcuq(i) + (G + ∆G(i))Ke(i) , (93)

respectively, where
Fcu = F −GK + ∆F(i)− ∆G(i)K . (94)

As a consequence of the error properties for e(i)→ 0, the system state trajectories are
equivalent, and both system dynamics under control are quadratically stable, taking the
same set of eigenvalues, whether the control law (22) or (76) is used.

4. Illustrative Numerical Example

The standard scheme of control structure is considered (see, e.g., [25]), whilst an
execution of the task supposed the system model (1)–(4), constructed by these parameters

F =

1.0032 0.1047 0.1331
0.0089 0.6920 0.0224
0.0354 0.0529 0.7667

, M =

0 0
1 0
0 1

, N1 =

[
0.01 0 0

0 0.01 0

]
, N2 =

[
0 0
0 0.002

]
,

G =

0.4805 0.8574
0.6746 0.0145
0.5195 0.7832

, V1 =

 0 0
0.01 0

0 0.01

, V2 =

[
0 0
0 0.02

]
, U =

[
1 0 0
0 1 0

]

C =

[
1 0 0
0 1 0

]
, L =

[
0T 1
I2 0

]
, lT

n =
[
1 1 1

]
, lT

p =
[
1 1

]
where F is strictly positive.

Constructing the rhombic forms of F as

FΘ =

1.0032 0.1047 0.1331
0.6920 0.0224 0.0089

0.7667 0.0354 0.0529

, FΣ =


1.0032
0.0089 0.6920
0.0354 0.0529 0.7667

0.1047 0.1331
0.0224

,

the matrices FΘ, FΣ can be cast into the following diagonal structures

FΘ(l, l) = diag
[
1.0032 0.6920 0.7667

]
, FΣ(l, l) = diag

[
1.0032 0.6920 0.7667

]
,

FΘ(l, l + 1) = diag
[
0.1047 0.0244 0.0354

]
, FΣ(l + 1, 1) = diag

[
0.0089 0.0529 0.1331

]
,

FΘ(l, l + 2) = diag
[
0.1331 0.0089 0.0529

]
, FΣ(l + 2, l) = diag

[
0.0354 0.1047 0.0244

]
,

while of immediate consequences are the rest system diagonal matrix parameters, when
separating G, N2 by columns to use (25), (36) and C, V2 by rows to use (53), (66),

Gd1 = diag
[
0.4805 0.6746 0.5195

]
, Cd1 = diag

[
1 0 0

]
,

Gd2 = diag
[
0.8574 0.0145 0.7832

]
, Cd2 = diag

[
0 1 0

]
,

N2d1 = diag
[
0 0
]
, V2d1 = diag

[
0 0
]
,

N2d2 = diag
[
0 0.02

]
, V2d2 = diag

[
0 0.02

]
.
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Putting (67)–(70) in the program file for the SeDuMi package [26] in the Matlab
environment to design the control law parameter, their feasibility admits LMI variables

P = diag
[
1.8136 1.9446 1.9682

]
,

R1 = diag
[
0.0108 0.0811 0.0309

]
, R2 = diag

[
0.0566 0.0346 0.2037

]
and, conditioned by δ = 0.5223, it is satisfied

P− δMMT =

1.8136 0 0
0 1.4223 0
0 0 1.4459

 � 0 .

Since the design conditions are feasible, the prescribed positive gain structure implies

K =

[
0.0060 0.0417 0.0157
0.0312 0.0178 0.1035

]
and a direct consequence is the stable positive closed-loop system matrix construction

Fc =

0.9736 0.0694 0.0368
0.0044 0.6635 0.0103
0.0078 0.0173 0.6775

, ρ(Fc) =


0.9756
0.6836
0.6554

.

Programming (37)–(40) into the SeDuMi package in the Matlab environment to design
the observer gain, the LMI set admits

Q = diag
[
1.7244 1.8336 1.7892

]
,

S1 = diag
[
1.1011 0.0081 0.0319

]
, S2 = diag

[
0.0912 0.8867 0.0477

]
and for γ = 0.7669 > 0 it is satisfied

Q− δUUT =

0.9574 0 0
0 1.0667 0
0 0 1.7892

 � 0 .

Taking into account the relation between LMI variables the positive observer gain,
guaranteeing observer quadratic stability and positivity, is computed as

J =

0.6385 0.0529
0.0044 0.4836
0.0178 0.0267


and the derived observer system matrix is Schur, having the strictly positive form

Fe =

0.3647 0.0518 0.1331
0.0045 0.2084 0.0224
0.0175 0.0263 0.7667

, ρ(Fe) =


0.7736
0.3599
0.2062

.

The presented example documents that the idea of the proposed method consists
in using a non-iterative design approach, when applied to the given class of uncertain
systems. The method seems to be effective for positive linear discrete-time systems with
uncertain parameters if ∆F(i) is not too complicated.

The potentially comparable method is presented in [13], where the considered system
matrix F is non-negative, but the mentioned approach produces a negative gain matrix and
signum indefinite closed-loop system matrix. As a result, the authors know no compari-
son base to the proposed design method, although the conversion of a continuous-time-
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positive Metzler system usually leads to a strictly positive discrete-time state space descrip-
tion. Using SeDuMi, the computational complexity of this type of algorithm is analyzed
in [19]. The interested reader is referred to this reference and references given therein for
more details.

5. Summary and Conclusions

The problem of quadratic stability in controller and observer design for uncertain
positive discrete-time systems is scrutinized in this paper. The main idea is to maintain the
LMI definitions of the incident constraints and quadratic stability. The design condition
are derived from the corresponding algorithms for representations of feasible sets of LMIs,
a representative of such an equivalence LMI corresponds to a certain choice of positive
definite diagonal LMI variables, as a basis for diagonal stabilization. To maintain the
correct state estimation by exploiting the observers based on positive system matrices
under discrete-time uncertainties, the results are functions of scalar parameters because the
system is defined in LPV structures.

The method presented in this paper introduces newly defined LMI structures that
improve the feasibility of the method. In particular, it is shown that if there exists an
upper bound in the Lyapunov function difference, then there exists a representation of
the dynamics such that the feedback action in the control and observer structures is
stabilizing. The control effort generated by the proposed method may be enough for a
practical application. In the context of the observation and control problems potentially a
non-negative structure in the system matrix description can be included adequately [27].

The future scope of study in this field is in the direction of using interval representation
of the system parameters in the design of system observers and the functional observers
for uncertain positive discrete-time systems with unknown disturbances.
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Notations

The following basic notations are used in this manuscript:

q(i), u(i), y(i), e(i) state, input and output vectors of variables, state estimation error
F, G, C nominal system matrix parameters
Fc, Fe nominal matrix parameters of the closed-loop and observer structures
M, U, N1, N2, V1, V2 matrices which characterize the structure of the uncertainties
H(i), W(i) matrices with Lebesgue measurable elements
FΘ, FΘ(l, l + h), FΣ,
FΣ(l + h, l) rhombic matrices of F and their diagonals

K, J, L controller gain matrix, observer gain matrix, circulant permutation matrix
Bdj, Cdj, Kdj, Jdj associated block diagonal matrix structures
P, Q, Rj, Sj positive definite diagonal matrix variables of LMIs
M	1, V	1

1 left pseudoinverse of M, V1, repectively
In, Ip γ, δ (n× n), (p× p) identity matrices, real positive tuning parameters

All other notations are defined in the given context fluently.

Appendix A

In the Appendix A, Theorem 1 is proven.

Proof. Considering a positive definite matrix X ∈ Rn×r
+ , then a positive function can be

specified in the Lyapunov sense as

v(q(i)) = qT(i)Xq(i) > 0 (A1)

and for stable system trajectories, it is required to satisfy

∆v(q(i)) = qT(i + 1)Xq(i + 1)− qT(i)Xq(i)

= qT(i)(F◦T(i)XF◦(i)− X)q(i)

< 0 ,

(A2)

where F◦(i) = F + ∆F(i). Furthermore, it can be assumed that (compare [24])

F◦T(i)XF◦(i) � 0 (A3)

and from the equality (A3) it can be obtained the relation[
0 F◦T(i)

F◦(i) −X−1

]
� 0 . (A4)

Using a positive semi-definite matrix Z ∈ Rn×r such that the inequality

X◦ = X−1 − Z � 0 (A5)

is positive definite and regular, then the condition (A4) can be reformulated as[
0 F◦T(i)

F◦(i) −X−1

]
≺
[

0 F◦T(i)
F◦(i) −(X−1 − Z)

]
, (A6)

which can be directly employed as an alternative

F◦T(i)(X−1 − Z)−1F◦(i) � F◦T(i)XF◦(i) � 0 . (A7)

Moreover, using the Sherman–Morrison–Woodbury formula, it can be obtained

(X−1 − Z)−1 = X + X(Z−1 − X)−1X � 0 (A8)

and considering that

Z = ε−1MMT, X◦ = X−1 − ε−1MMT � 0 , (A9)
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then the same formula consists directly of assuming that for any ε > 0

(X−1 − ε−1MMT)−1 = X + X MT(εIp −MX MT)−1MF � 0 , (A10)

which implies
εIp −MX MT � 0 . (A11)

Substituting (A9) in (A6) then the following conditions holds[
0 F◦T(i)

F◦(i) −X◦

]
=

[
0 FT

F −X−1 + 2ε−1MMT

]
+

+

[
0 NT

1 HT(i)MT

MH(i)N1 −ε−1MMT

]
� 0 .

(A12)

Denoting for simplicity that

X• = X◦ − ε−1MMT = X−1 − 2ε−1MMT (A13)

and prescribing that the given uncertainties are particularly conveyed by the transform
matrix

T = diag
[
In M	1], M	1 = (MTM)−1MT, (A14)

it is sufficient to verify that the following inequality is satisfied (when by T is pre-multiplied
the left side and by TT post-multiplied the right side of (A12))[

0 FTM	T

M	F −M	1X•M	T

]
+

[
0 NT

1 HT(i)
H(i)N1 −ε−1 In

]
=

[
εNT

1 HT(i)H(i)N1 FTM	T

M	1F −M	1X•M	T

]
�
[

εNT
1 N1 FTM	T

M	1F −M	1X•M	T

]
≺
[

2εNT
1 N1 FTM	T

M	1F −M	1X•M	T

]
,

(A15)

or, equivalently, using the Schur complement property, the desired result is

2εNT
1 N1 + FTX•−1F � 0 . (A16)

Thus, setting γ = 2ε and combining the inequality (A16) with (A13) it yields

γNT
1 N1 + FT(X−1 − γ−1MMT)−1F � 0 (A17)

and comparing (A3) and (A17), it is fulfilled

F◦T(i)XF◦(i) = (F + MH(i)N1)
TX(F + MH(i)N1)

≤ FT(X−1 − γ−1MMT)−1F + γNT
1 N1 .

(A18)

Therefore it can be substituted (A17) into (A2) to carry out the following property

∆v(q(i)) = qT(i)(F◦T(i)XF◦(i)− X)q(i)

> qT(i)FT(X−1 − γ−1MMT)−1Fq(i)+

+ qT(i)(γNT
1 N1 − X)q(i)

< 0 ,

(A19)
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and, with respect to given conditional positivity, the discrete system stability is
determined as

FT(X−1 − γ−1MMT)−1F + γNT
1 N1 − X ≺ 0 , (A20)

X−1 − γ−1MMT � 0 . (A21)

Thus, the property of Schur complement then implies that[
−X + γNT

1 N1 FT

F −(X−1 − γ−1MMT)

]
≺ 0 . (A22)

Introducing
T◦ = diag

[
P In

]
, P = X−1 (A23)

then, by T◦ defined the coordinate transform of (A22) conveys[
γPNT

1 N1P− P PFT

FP −(P− γ−1MMT)

]
≺ 0 . (A24)

Obviously, with the setting
γ−1 = δ (A25)

the inequality (6) then immediately follows from (A24) and (A21) gives (7).
When reflecting (4) and considering the following expression

Z = ε−1V1VT
1 , X◦ = X−1 − ε−1V1VT

1 � 0 , (A26)

then, analogously, it is guaranteed that the following holds[
0 F◦T(i)

F◦(i) −X◦

]
=

[
0 FT

F −X−1 + 2ε−1V1VT
1

]
+

+

[
0 UTWT(i)VT

1
V1W(i)U −ε−1V1VT

1

]
� 0 .

(A27)

The solution then becomes, if denoting

X• = X◦ − ε−1V1VT
1 = X−1 − 2ε−1V1VT

1 (A28)

and defining the composite matrix

Ta = diag
[
In V	1

1

]
, V	1

1 = (VT
1 V1)

−1VT
1 (A29)

that, when using pre-multiplication by Ta and post-multiplication by TT
a , this adjustment

determines an improved form in the dependency on (A27)[
0 FTV	T

1
V	1 F −V	1

1 X•V	T
1

]
+

[
0 UTWT(i)

W(i)U −ε−1 In

]
=

[
εUTWT(i)W(i)U FTN	T

1
V	1

1 F −V	1
1 X•V	T

1

]
�
[

εUTU FTV	T
1

V	1
1 F −V	1

1 X•V	T
1

]
≺
[

2εUTU FTV	T
1

V	1
1 F −V	1

1 X•V	T
1

]
,

(A30)
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or, equivalently, the problem becomes nontrivial, since

2εUTU + FTX•−1F � 0 . (A31)

Thus, resetting γ = 2ε, it yields with respect to (A7)

γUTU + FT(X−1 − γ−1V1VT
1 )
−1F � 0 (A32)

and comparing (A3) and (A31), as a consequence of this phenomenon, the following stays
positive

F◦T(i)XF◦(i) = (F + V1W(i)U)TX(F + V1W(i)U)

≤ FT(X−1 − γ−1V1VT
1 )
−1F + γUTU .

(A33)

From this follows that the problem solved is given by

∆v(q(i)) = qT(i)(F◦T(i)XF◦(i)− X)q(i)

> qT(i)FT(X−1 − γ−1V1VT
1 )
−1Fq(i)+

+ qT(i)(γUTU − X)q(i)

< 0 ,

(A34)

FT(X−1 − γ−1V1VT
1 )
−1F + γUTU − X ≺ 0 , (A35)

respectively. Thus, the complement of a symmetric block-matrix provides the reasonable
specification [

−X + γUTU FT

F −X−1 + γ−1V1VT
1

]
≺ 0 . (A36)

Introducing the matrix

T◦a = diag
[
In Q

]
, Q = X−1 (A37)

pre- and post-multiplication of (A36) by T◦a entails that (A36) can be expressed in the
following matrix inequality form[

−Q + γUTU FTQ
QF −Q + γ−1QV1VT

1 Q

]
≺ 0 . (A38)

The new formulation of the problem can then be stated as[
−Q + γUTU FTQ

QF −Q

]
+ γ−1

[
0

QV1

][
0 VT

1 Q
]
≺ 0 (A39)

and this inequality merely expresses the fact that−Q + γUTU FTQ 0
QF −Q QV1
0 VT

1 Q −γIp

 ≺ 0 . (A40)

On the other hand, defining the following transform matrix

T• =

 0 In 0
In 0 0
0 0 Ip

 (A41)

to have a similar structure to (6), pre- and post-multiplication of (A40) by T• implies (9)
and, as a consequence, (10). This concludes the proof.
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It can now be ready to state that the algebraic conditions in Theorem 1 mean feasibility
of the set of LMIs.
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