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Abstract: Minimizing between-limb asymmetries during running is often a goal of training, as in-
creased asymmetries are related to decreased efficiency and increased energy expenditure. However,
it is unknown if asymmetries change with increased running exposure or are related to actual race
performance. The purpose of this study was to determine (1) if pre-season asymmetries changed year-
to-year among collegiate cross country runners, and (2) if these asymmetries were associated with
within-season personal records (PRs). Pre-season biomechanical test results and race performance
data were analyzed for 54 unique runners (28 female) across six seasons, totaling 152 assessments
(age: 19.1 (0.9) years, height: 1.71 (0.10) m, weight: 61.7 (7.7) kg (values = mean [standard deviation])).
Biomechanical asymmetries included ground reaction forces; ground contact time; base of gait; foot
inclination angle; and peak hip flexion, hip extension, hip adduction, pelvic drop, knee flexion, and
ankle dorsiflexion. Year of collegiate eligibility was used to quantify training exposure. Asymmetries
during running did not change across years of eligibility (p ≥ 0.12), except propulsive impulse,
which decreased over time (p = 0.03). PR times were faster with decreased propulsive impulse
asymmetry and increased AVLR and peak ankle dorsiflexion asymmetries. This is the first study to
assess longitudinal asymmetries over time and provide potential targets for interventions aimed at
modifying asymmetries to improve performance.

Keywords: symmetry; distance running; performance; ground reaction forces; kinematics

1. Introduction

Running mechanics and between-limb asymmetries are often assessed by clinicians
and coaches to gain insight into an individual’s running performance potential [1–3].
The mechanics of a healthy runner are presumed to be symmetrical [4]; however, some
level of asymmetry is common among healthy runners, with the level of asymmetry
varying considerably depending on the metric of interest [5,6]. Nevertheless, minimizing
between-limb asymmetry during running is often a goal of training, as increased asymmetry
is thought to be related to decreased performance. Indeed, increased asymmetry was
correlated with decreased mechanical efficiency (r = 0.66) during a 10 km run in amateur
trained runners [7]. Similarly, among active individuals, a 10% increase in step time
asymmetry and average vertical ground reaction force asymmetry resulted in a 3.5%
increase in net metabolic power (e.g., energy expenditure), while a 10% increase in ground
contact time asymmetry resulted in a 7.8% increase in metabolic power [8]. Although
increases in asymmetry result in decreased mechanical efficiency and increased metabolic
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power, it is unknown if increased asymmetries also translate to increased race times
(e.g., worse performance).

While asymmetries have been related to performance in cross-sectional studies [9–11],
how asymmetries change over time or with increased running exposure and what impact
those changes may have on performance is less well understood. Prior work has suggested
asymmetries in running mechanics may decrease with increased running experience, as
elite runners have demonstrated significantly less asymmetry than competitive runners
with regard to vertical displacement [9]. Similarly, competitive runners showed smaller
asymmetries than recreational and novice runners in flight time and vertical loading rate,
particularly at speeds greater than 10 km/h [10]. Conversely, when assessing mechanics
across the entire stride cycle, as a time series, in a cohort of children and adolescents
who participated in long-distance running, no influence of maturation on asymmetry was
observed [11].

Presently, no studies have described longitudinal changes in asymmetries of running
mechanics, and it remains unknown if expected levels of asymmetry remain consistent
as a runner increases training volume and running exposure, such as often occurs when
transitioning from a high school to collegiate cross country program. Furthermore, the
relationship between asymmetries and race performances or personal records (PRs) has not
been explored. Clarifying these relationships may be of particular interest to competitive
runners and coaches, such as in the collegiate setting, who are working towards optimizing
mechanics and improving race times. Therefore, the primary aim was to determine if pre-
season between-limb asymmetries change year-to-year in healthy, collegiate cross country
runners. A secondary aim was to determine if between-limb asymmetries at pre-season
were associated with race PRs during the subsequent season. It was hypothesized that
asymmetries would decrease over time and that reduced asymmetries would be related to
improved race PRs.

2. Materials and Methods

This study analyzed routinely collected running mechanics data and race results from
the 2015–2020 National Collegiate Athletic Association (NCAA) Division I cross country
seasons stored in the Badger Athletic Performance Database. The database contains results
from a standardized battery of pre-season assessments every runner undergoes each year
while at the University of Wisconsin–Madison, as well as measures related to athletic
exposure such as race participation and results. The records review was approved by the
university’s Health Sciences Institutional Review Board.

2.1. Subject Selection

Data for a given runner and season (year) were extracted if the runner: (1) was
cleared for full sport participation at the time of a given pre-season running assessment;
(2) had no surgical history prior to the pre-season running assessment; and (3) ran at his
or her preferred speed during the running assessment for at least 2 seasons. Preferred
speed was defined as the speed at which runners performed the majority of their training,
excluding speed workouts and long runs, and was chosen as the speed for analysis based
on prior work showing running speed does not influence the magnitude of asymmetries
observed [5,6]. After identifying eligible running assessment sessions, the year of collegiate
athletic eligibility for each runner at the time of testing was also extracted. Year of athletic
eligibility, as opposed to age, was used to capture the number of years a runner had
been exposed to a collegiate running program. Corresponding within-season PRs for
each runner and the respective season were also recorded from the cross country results
reporting system database. For female runners, 6 km distance PRs were included, while
8 km distance PRs were included for male runners, as these distances are the most common
for each sex, respectively, among NCAA cross country events.
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2.2. Data Acquisition and Processing

Whole body kinematics and ground reaction forces (GRFs) during running were
collected using a protocol previously described in detail [12]. Briefly, a single researcher
(MRSJ) placed 42 reflective markers on each athlete, 23 of which were located on anatomical
landmarks (Figure 1). The running assessment began with runners walking to acclimate
to the testing setup. Speed was then gradually increased until a speed representative of
a moderate intensity training run was achieved and verbally confirmed by the runners.
Fifteen seconds of data were recorded at the preferred running speed after the runner
acclimated to the speed for at least 30 s.

Figure 1. Marker placement for the running analysis protocol.

Kinematic marker data were recorded at 200 Hz using a passive marker system (Mo-
tion Analysis Corporation, Santa Rosa, CA, USA), while synchronous three-dimensional
GRF were recorded at 2000 Hz using an instrumented treadmill (Bertec Corporation, Colum-
bus, OH, USA). Kinematic data were low-pass filtered with a 12 Hz cutoff frequency, while
GRF were low-pass filtered with a 50 Hz cutoff frequency [12]. The body was modeled
as a 14 segment, 31 degree-of-freedom articulated linkage. Segments were individually
scaled using each runner’s height, mass, and respective segment lengths. Stance phase
was defined between initial contact and toe off, where the vertical GRF (VGRF) curve rose
above and fell below 50 N, respectively.

Biomechanical variables considered for analysis reflect those which are commonly eval-
uated clinically and may have relevance to running performance. Some variables were
excluded to minimize type I statistical errors and avoid redundancy. The included variables
were: GRFs—peak VGRF, average vertical loading rate (AVLR), braking impulse, and propul-
sive impulse; spatiotemporal variables—ground contact time, base of gait at midstance; and
joint kinematics during stance—foot inclination angle at initial contact, peak hip flexion,
extension, and adduction, peak pelvic drop, peak knee flexion, and peak ankle dorsiflexion.
Detailed calculations for each variable of interest are provided in Table 1.

2.3. Statistical Analysis

Consistent with prior work [5], asymmetry for biomechanical variables with units of
measurement in degrees and cm were calculated as the absolute value of the between-limb
difference. All other asymmetries were expressed as a percentage, calculated as the absolute
between-limb difference divided by the between-limb average [|left− right|/((left + right)/2)
× 100]. Data for each variable were averaged across 15 strides for each limb before asymme-
tries were calculated.
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Table 1. Definitions and calculations of variables of interest and corresponding units of asymmetry.

Concept Variable Definition Units

G
ro

un
d

R
ea

ct
io

n
Fo

rc
es

Peak VGRF Peak vertical ground reaction force during stance phase %

Average Vertical Loading Rate
Average vertical loading rate from 20–80% of the magnitude of
the vertical force between initial contact and the impact peak or
30.79% of time to peak VGRF if the impact peak was absent

%

Braking Impulse Area under the curve of the posteriorly directed portion of the
anterior–posterior ground reaction force %

Propulsive Impulse Area under the curve of the anteriorly directed portion of the
anterior–posterior ground reaction force %

Sp
at

io
-t

em
po

ra
l

Ground Contact Time Duration of stance phase, from initial contact to toe off. %

Base of Gait

Medio-lateral distance at midstance between the body’s line of
gravity and a heel marker placed at the midline of the heel and
affixed to the shoe; positive values indicate a landing position
ipsilateral to the line of gravity

cm

Foot Inclination Angle Angle of the foot segment with respect to the horizontal plane at
initial contact; positive values indicate a rearfoot landing posture degree

Jo
in

t
K

in
em

at
ic

s

Peak Hip Flexion The maximum hip flexion angle during stance phase degree

Peak Hip Extension The maximum hip extension angle during stance phase degree

Peak Hip Adduction The maximum hip adduction angle during stance phase degree

Peak Pelvic Drop The minimum frontal plane pelvic angle during stance phase degree

Peak Knee Flexion The maximum knee flexion angle during stance phase degree

Peak Ankle Dorsiflexion The maximum ankle dorsiflexion angle during stance phase degree

Univariable linear mixed effects models were used to assess the influence of year
of eligibility on asymmetry values. Each runner was modelled with a random effect to
account for the within-subject asymmetry correlation induced by repeated measures across
years. Least square means were also calculated for each year of eligibility for each variable.
Significance was set a priori at p ≤ 0.05.

Separate linear mixed effects models were also used to assess the influence of asymme-
try on within-season PR times (in seconds), controlling for sex to account for the sex-specific
difference in PR times due to running distances. The models also accounted for within-
subject correlation in PR times resulting from repeated measures across years. Asymmetry
variables demonstrating an association with the PR times at the level of p ≤ 0.2 were in-
cluded in a final multivariable model to determine independent associations of asymmetry
variables with the performance outcome. Model parameter estimates and 95% confidence
intervals (CI) for multivariable models adjusted for sex were also calculated. All analyses
were performed in RStudio (version 1.4.1106, RStudio Team, Boston, MA, USA).

3. Results

Records for 54 unique runners (28 female) and 152 total pre-season running assessment
sessions were included in the analysis (age: 19.1 (0.9) years, height: 1.71 (0.10) m, weight:
61.7 (7.7) kg (values are mean [standard deviation]); Table 2). The majority of runners had
data available for two (N = 23, 43%) or three (N = 20, 37%) seasons, with eight (15%) and
two (4%) runners having data available for four and five seasons, respectively.

None of the asymmetry variables of interest changed significantly as year of eligibility
increased (p-values ≥ 0.12, Table 2), with the exception of propulsive impulse (p = 0.03).
However, post hoc analyses revealed no significant pair-wise differences in least square
mean propulsive impulse asymmetry between any years of eligibility (p-values ≥ 0.08).
Least square mean asymmetry values, averaged across all years of eligibility, for GRF
variables ranged from 2.6 to 13.9% and 1.4 to 3.4◦ for kinematic variables. Least square
mean ground contact time asymmetry, averaged across all years of eligibility, was 1.6%,
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while base of gait asymmetry was 1.2 cm. Least square mean values for all variables and
years of eligibility are provided in Table 3.

Table 2. Subject demographics. Values represent mean (standard deviation) unless otherwise noted.

Total Male Female

Unique athletes (N) 54 26 28

2 seasons 23 10 13

3 seasons 20 10 10

4 seasons 9 5 4

5 seasons 2 1 1

Age (years) * 19.1 (0.9) 19.4 (0.9) 18.9 (0.9)

Height (m) * 1.71 (0.10) 1.79 (0.6) 1.64 (0.07)

Weight (kg) * 61.7 (7.7) 68.0 (5.4) 56.3 (4.7)

Preferred running speed (m/s) * 3.86 (0.30) 4.06 (0.28) 3.70 (0.21)

* Data reflect the first year of data available for a given runner.

Table 3. Least square mean asymmetry values (95% confidence interval) for each biomechanical variable of interest. p-values
reflect the association between year of eligibility and levels of asymmetry.

Variable Year 1 Year 2 Year 3 Year 4 Year 5 Overall
p-Value

Ground Contact
Time

1.7%
(1.2%, 2.1%)

1.9%
(1.5%, 2.4%)

2.1%
(1.6%, 2.6%)

2.3%
(1.7%, 2.8%)

2.3%
(1.2%, 2.3%) 0.37

Peak VGRF 2.6%
(2.0%, 3.3%)

2.8%
(2.1%, 3.4%)

3.1%
(2.4%, 3.8%)

3.0%
(2.2%, 3.9%)

2.6%
(1.1%, 4.1%) 0.84

Average Vertical
Loading Rate

13.8%
(9.4%, 18.1%)

14.0%
(9.8%, 18.2%)

14.8%
(10.4, 19.3%)

16.9%
(11.8%, 21.9%)

19.7%
(11.7%, 27.7%) 0.52

Braking Impulse 8.1%
(5.8%, 10.3%)

8.7%
(6.5%, 10.8%)

11.1%
(8.8%, 13.5%)

8.5%
(5.6%, 11.3%)

10.2%
(5.2%, 15.2%) 0.23

Propulsive Impulse 7.4%
(5.6%, 9.2%)

8.4%
(6.7%, 10.2%)

5.9%
(4.0%, 7.8%)

5.3%
(3.1%, 7.6%)

3.1%
(0.0%, 7.0%) 0.03 *

Foot Inclination
Angle

2.2◦

(1.6◦, 2.9◦)
2.3◦

(1.6◦, 3.0◦)
3.2◦

(2.4◦, 3.9◦)
2.2◦

(1.4◦, 3.1◦)
2.2◦

(0.7◦, 3.7◦) 0.12

Peak Hip
Flexion

2.0◦

(1.6◦, 2.4◦)
2.0◦

(1.6◦, 2.4◦)
2.0◦

(1.6◦, 2.4◦)
1.9◦

(1.4◦, 2.4◦)
1.1◦

(2.1◦, 1.9◦) 0.34

Peak Hip
Extension

1.4◦

(1.0◦, 1.8◦)
1.9◦

(1.5◦, 2.3◦)
1.6◦

(1.2◦, 2.0◦)
1.8◦

(1.3◦, 2.2◦)
1.8◦

(0.9◦, 2.6◦) 0.24

Peak Knee
Flexion

2.5◦

(1.7◦, 3.3◦)
2.5◦

(1.8◦, 3.3◦)
3.1◦

(2.3◦, 3.9◦)
2.8◦

(1.9◦, 3.8◦)
2.4◦

(0.8◦, 4.0◦) 0.67

Peak Ankle
Dorsiflexion

2.6◦

(2.0◦, 3.2◦)
2.8◦

(2.2◦, 3.4◦)
2.6◦

(2.0◦, 3.2◦)
2.7◦

(1.9◦, 3.4◦)
3.2◦

(1.9◦, 4.5◦) 0.90

Peak Hip
Adduction

3.3◦

(2.7◦, 4.0◦)
2.9◦

(2.3◦, 3.5◦)
2.6◦

(1.9◦, 3.3◦)
3.3◦

(2.4◦, 4.2◦)
3.6◦

(2.0◦, 5.2◦) 0.51

Peak Pelvic Drop 2.6◦

(2.0◦, 3.1◦)
2.3◦

(1.7◦, 2.8◦)
2.7◦

(2.1◦, 3.3◦)
1.8◦

(1.1◦, 2.5◦)
2.2◦

(0.9◦, 3.4◦) 0.26

Base of Gait 1.3 cm
(0.9 cm, 1.6 cm)

1.3 cm
(0.9 cm, 1.6 cm)

1.4 cm
(1.0 cm, 1.7 cm)

1.2 cm
(0.8 cm, 1.5 cm)

1.1 cm
(0.5 cm, 1.6 cm) 0.76

* Significant difference in level of asymmetry between years of eligibility at the level of p < 0.05.



Symmetry 2021, 13, 1729 6 of 9

The linear mixed effect model of the relationship between each asymmetry variable
and PR times, adjusted for sex, identified potential associations between PR time and
asymmetries in AVLR (p = 0.17), propulsive impulse (p < 0.01), and peak ankle dorsiflexion
(p = 0.08) during stance (Table 4).

Table 4. Associations between each asymmetry variable of interest and within-season personal
record times.

Variable Unit of Change in
Asymmetry Estimate * p-Value

Ground Contact Time 1% −4.5
(−14.9, 6.3) 0.39

Peak VGRF 1% −2.7
(−9.2, 3.7) 0.42

Average Vertical Loading Rate 5% −3.3
(−8.1, 1.4) 0.17 ˆ

Braking Impulse 5% 0.0
(−10.4, 10.9) 0.99

Propulsive Impulse 5% 14.6
(4.4, 25.0) <0.01 ˆ

Foot Inclination Angle 1◦ −3.9
(−10.9, 2.9) 0.27

Peak Hip Flexion 1◦ −4.1
(−14.4, 5.7) 0.41

Peak Hip Extension 1◦ −3.1
(−13.7, 7.2) 0.56

Peak Knee Flexion 1◦ −1.3
(−7.2, 4.3) 0.63

Peak Ankle Dorsiflexion 1◦ −6.1
(−12.9, 0.7) 0.08 ˆ

Peak Hip Adduction 1◦ 0.4
(−5.5, 6.1) 0.90

Peak Pelvic Drop 1◦ 2.8
(−4.3, 9.7) 0.42

Base of Gait 1 cm −5.5
(−18.9, 7.8) 0.43

* Model predicted change in personal record time (seconds) for every unit change in the asymmetry variable,
controlling for sex. ˆ Significant association between the level of asymmetry and personal record times at the level
of p < 0.2.

These variables were included in the multivariable model (Table 5), in addition to
controlling for sex. Propulsive impulse asymmetry maintained a positive association with
PR time. For every 5% increase in propulsive impulse asymmetry, PR times increased
(worse performance) by 16.0 s (95% CI: 6.0, 25.8 s). Conversely, for every 1◦ increase in
peak ankle dorsiflexion asymmetry, PR times decreased by 7.6 s (95% CI: −14.4, −1.5 s).
Although it did not reach statistical significance, after adjusting for all other variables in the
model, a 5% increase in AVLR asymmetry suggested a potential 4.3 s (95% CI: −8.7, 0.2 s)
decrease in PR times.
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Table 5. Multivariable associations between each asymmetry variable of interest and season personal
record times.

Variable Unit Estimate * p-Value

Average Vertical Loading Rate 5% −4.3
(−8.7, 0.2) 0.07

Propulsive Impulse 5% 16.0
(6.0, 25.8) <0.01

Peak Ankle Dorsiflexion 1◦ −7.6
(−14.4, −1.5) 0.02

* Model predicted change in personal record time (seconds) for every unit change a given asymmetry variable,
controlling for sex and the other variables in the model.

4. Discussion

This study broadly aimed to assess longitudinal changes in running asymmetries of
collegiate cross country runners. Specifically, the primary purpose of this study was to
determine the association between year of collegiate athletic eligibility and between-limb
asymmetries during running. Although the overall model for propulsive impulse asymme-
try was significant (p = 0.03), post hoc analyses revealed no significant pair-wise differences
in the magnitude of propulsive impulse asymmetry across year of eligibility (p ≥ 0.08).
While year-to-year changes in propulsive impulse asymmetry were not statistically sig-
nificant, propulsive impulse asymmetry showed a trend towards decreasing over time
(Table 3), with 7.4% (95% CI: 5.6, 9.2%) asymmetry observed in the first year of eligibility
and 3.1% (95% CI: 0.1, 7.0%) asymmetry observed in the fifth year of eligibility. No other
asymmetries of interest varied with year of eligibility (p-values ≥ 0.12).

In the present study, generally low levels of asymmetry were observed for ground
contact time, base of gait, and kinematic variables (Table 2). Asymmetries in GRF variables
tended to be more varied, with peak VGRF and AVLR displaying 2.6 (95% CI: 2.0–3.3%)
and 13.9% (95% CI: 9.7–18.1%) asymmetry on average, respectively. Braking and propul-
sive impulses displayed 8.1 (95% CI: 6.0–10.3%) and 7.6% (95% CI: 5.9–9.3%) asymmetry,
on average.

Between-limb asymmetries have been shown to be lower in highly trained runners
compared to recreational or novice runners [10,13]. Given that the current study population
was comprised of high-level, NCAA Division I runners, it was expected that the overall
magnitude of asymmetries observed would be low, and that this may contribute to the lack
of association between year of athletic eligibility (e.g., increased training exposure) and
asymmetry magnitudes. It is possible that a training effect on asymmetries may be more
pronounced among less trained runners.

The secondary purpose of this study was to determine if between-limb asymmetries
at pre-season were associated with race PRs within the subsequent season. With every 5%
increase in propulsive impulse asymmetry, PR times were 16.0 s slower (95% CI: 6.0, 25.8
s). To provide perspective, in the 2021 NCAA cross country championships, there was a
45 s difference between first and tenth place among men and a 25 s difference between first
and tenth place among women. Thus, a 16 s difference in race time related to propulsive
impulse asymmetry could substantially impact an individual’s finishing position and
overall team performance.

While propulsive impulse asymmetry has not specifically been assessed relative to
performance, the importance of propulsive impulse for overall running performance is
well recognized. For example, forward propulsion is a primary contributor to the metabolic
cost of running [14,15]. Furthermore, propulsive impulse explains 57% of the variance
in sprint velocity [16], with decreases in running speeds during sprinting related to an
inability to maintain propulsive force [17]. While the present study does not support causal
inferences regarding the relationship between propulsive impulse asymmetries and race
performance, our findings suggest that symmetrical propulsive impulse, in addition to



Symmetry 2021, 13, 1729 8 of 9

greater overall propulsive impulse in accordance with prior work, may be beneficial for
improving race PRs.

Interestingly, an opposite effect was observed for AVLR and peak ankle dorsiflexion
asymmetries, with PR times being 4.3 (95% CI: −8.7, 0.2 s) and 7.6 s (95% CI: −14.4, −1.5 s)
faster for every 5% and 1◦ increase in asymmetry, respectively. Peak ankle dorsiflexion
occurring later in stance has been related to improvements in running economy [18], but
how increased asymmetry may result in improved running performance is unclear. Addi-
tionally, although AVLR did not achieve statistical significance in the final multivariable
model, the magnitude of the 95% CI indicates a possible inverse association between AVLR
asymmetry and PR times. A considerable number of studies have investigated AVLR with
regard to injury occurrence, but there is no evidence regarding potential mechanisms by
which increased asymmetry in AVLR may improve PR times.

This study provides initial evidence supporting that asymmetries generally do not
change over time among collegiate cross country runners, and propulsive impulse asym-
metries may be important factors for optimizing performance. We utilized one method of
asymmetry calculation, which we believe is most clinically useful, as the units are in de-
grees, cm, or percentages, as compared to other methods of calculating asymmetry, which
remove the units of measurement. We also did not assess the influence of limb dominance,
as our goal was to assess the overall magnitude of asymmetry and not the direction of
asymmetry. Limb dominance has previously been shown to not influence side-to-side
asymmetries [19,20], but may be an area of consideration for future work. Additionally,
we did not account for other within-season factors, which may influence race PRs, such as
training volume and injuries. Future work incorporating these metrics may help clarify
the relationship between pre-season running mechanics and in-season performance. Fi-
nally, the pre-season running assessment was performed on a treadmill, and mechanics
may differ between treadmill and overground running, although prior research suggests
mechanics are comparable between the two surfaces [21]. It is possible asymmetries dur-
ing treadmill running are smaller than during overground running [22], but the overall
relationships observed in the present study are likely consistent across environments.

5. Conclusions

Asymmetries during running do not change across years of eligibility among NCAA
Division I cross country runners. Asymmetries were associated with in-season race PRs,
with PR times decreasing with decreased propulsive impulse asymmetry and increased
AVLR and peak ankle dorsiflexion asymmetries. Future work should aim to clarify the
mechanisms by which AVLR and peak ankle dorsiflexion may impact running performance.
Additionally, interventional studies investigating the effect of minimizing propulsive
impulse asymmetry on improving performance are also warranted.

Author Contributions: Conceptualization, M.R.S.-J., S.A.K., J.A.M., and B.C.H.; methodology,
M.R.S.-J., C.S.T., and R.B.; formal analysis, M.R.S.-J. and S.A.K.; writing—original draft preparation,
M.R.S.-J.; writing—review and editing, M.R.S.-J., S.A.K., J.A.M., C.S.T., R.B., and B.C.H. All authors
have read and agreed to the published version of the manuscript.

Funding: The contributions of author J.A.M. were supported by a research grant from the Virginia
Horne Henry Fund for Women’s Physical Education and Movement.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of the University of
Wisconsin-Madison (2018-0049, approved: 02/15/18).

Informed Consent Statement: Subject consent was waived as this study involved a review of
routinely collected healthcare and performance data. The records review was approved by the
university’s Health Sciences Institutional Review Board.

Data Availability Statement: Data and corresponding statistical analysis code may be made available
by contacting the corresponding author.



Symmetry 2021, 13, 1729 9 of 9

Acknowledgments: The authors would like to acknowledge the Sports Medicine staff in the Univer-
sity of Wisconsin–Madison Division of Athletics for their commitment to the welfare of the student
athletes and contributions to the Badger Athletic Performance program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pipkin, A.; Kotecki, K.; Hetzel, S.; Heiderscheit, B. Reliability of a qualitative video analysis for running. J. Orthop. Sports Phys.

Ther. 2016, 46, 556–561. [CrossRef] [PubMed]
2. Dicharry, J. Kinematics and kinetics of gait: From lab to clinic. Clin. Sports Med. 2010, 29, 347–364. [CrossRef] [PubMed]
3. Byrne, M. On the run: A coach’s perspective. J. Orthop. Sports Phys. Ther. 2014, 44, 729–730. [CrossRef] [PubMed]
4. Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The symmetry angle: A novel, robust method of quantifying asymmetry. Gait

Posture 2008, 27, 622–627. [CrossRef]
5. Stiffler-Joachim, M.R.; Lukes, D.H.; Kliethermes, S.A.; Heiderscheit, B.C. Lower extremity kinematic and kinetic asymmetries

during running. Med. Sci. Sports Exerc. 2020, 53, 945–950. [CrossRef]
6. Furlong, L.M.; Egginton, N.L. Kinetic asymmetry during running at preferred and nonpreferred speeds. Med. Sci. Sports Exerc.

2018, 50, 1241–1248. [CrossRef]
7. Melo, C.C.; Carpes, F.P.; Vieira, T.M.; Mendes, T.T.; de Paula, L.V.; Chagas, M.H.; Peixoto, G.H.C.; Andrade, A.G.P. Correlation

between running asymmetry, mechanical efficiency, and performance during a 10 km run. J. Biomech. 2020, 109, 109913. [CrossRef]
8. Beck, O.N.; Azua, E.N.; Grabowski, A.M. Step time asymmetry increases metabolic energy expenditure during running. Eur. J.

Appl. Physiol. 2018, 118, 2147–2154. [CrossRef]
9. Cavanagh, P.R.; Pollock, M.L.; Landa, J. A biomechanical comparison of elite and good distance runners. Ann. N. Y. Acad. Sci.

1977, 301, 328–345. [CrossRef] [PubMed]
10. Mo, S.; Lau, F.O.Y.; Lok, A.K.Y.; Chan, Z.Y.S.; Zhang, J.H.; Shum, G.; Cheung, R.T.H. Bilateral asymmetry of running gait in

competitive, recreational and novice runners at different speeds. Hum. Mov. Sci. 2020, 71, 102600. [CrossRef]
11. Garcia, M.C.; Taylor-Haas, J.A.; Ford, K.R.; Long, J.T. Assessment of waveform similarity in youth long-distance runners. Gait

Posture 2020, 77, 105–111. [CrossRef]
12. Stiffler-Joachim, M.R.; Wille, C.M.; Kliethermes, S.A.; Johnston, W.; Heiderscheit, B.C. Foot angle and loading rate during running

demonstrate a nonlinear relationship. Med. Sci. Sports Exerc. 2019, 51, 2067–2072. [CrossRef] [PubMed]
13. Nakayama, Y.; Kudo, K.; Ohtsuki, T. Variability and fluctuation in running gait cycle of trained runners and non-runners. Gait

Posture 2010, 31, 331–335. [CrossRef] [PubMed]
14. Moore, I.S. Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy.

Sports Med. 2016, 46, 793–807. [CrossRef] [PubMed]
15. Hoogkamer, W.; Kram, R.; Arellano, C.J. How biomechanical improvements in running economy could break the 2-h marathon

barrier. Sports Med. 2017, 47, 1739–1750. [CrossRef] [PubMed]
16. Hunter, J.P.; Marshall, R.N.; McNair, P.J. Relationships between ground reaction force impulse and kinematics of sprint-running

acceleration. J. Appl. Biomech. 2005, 21, 31–43. [CrossRef]
17. Nagahara, R.; Girard, O. Alterations of spatiotemporal and ground reaction force variables during decelerated sprinting. Scand. J.

Med. Sci. Sports 2021, 31, 586–596. [CrossRef]
18. Moore, I.S.; Jones, A.M.; Dixon, S.J. Mechanisms for improved running economy in beginner runners. Med. Sci. Sports Exerc. 2012,

44, 1756–1763. [CrossRef]
19. Brown, A.M.; Sizchock, R.A.; Hillstrom, H.J. The effects of limb dominance and fatigue on running biomechanics. Gait Posture

2014, 39, 915–919. [CrossRef]
20. Hamill, J.; Bates, B.T.; Knutzen, K.M. Ground reaction force symmetry during walking and running. Res. Q. Exerc. Sport 1984, 55,

289–293. [CrossRef]
21. Van Hooren, B.; Fuller, J.T.; Buckley, J.D.; Miller, J.R.; Sewell, K.; Rao, G.; Barton, C.; Bishop, C.; Willy, R.W. Is motorized treadmill

running biomechanically comparable to overground running? A systematic review and meta-analysis of cross-over studies.
Sports Med. 2020, 50, 785–813. [CrossRef] [PubMed]

22. Robadey, J.; Staudenmann, D.; Schween, R.; Gehring, D.; Gollhofer, A.; Taube, W. Lower between-limb asymmetry during running
on treadmill compared to overground in subjects with laterally pronounced knee osteoarthritis. PLoS ONE 2018, 13, e0205191.
[CrossRef] [PubMed]

http://doi.org/10.2519/jospt.2016.6280
http://www.ncbi.nlm.nih.gov/pubmed/27266886
http://doi.org/10.1016/j.csm.2010.03.013
http://www.ncbi.nlm.nih.gov/pubmed/20610026
http://doi.org/10.2519/jospt.2014.0115
http://www.ncbi.nlm.nih.gov/pubmed/25269866
http://doi.org/10.1016/j.gaitpost.2007.08.006
http://doi.org/10.1249/MSS.0000000000002558
http://doi.org/10.1249/MSS.0000000000001560
http://doi.org/10.1016/j.jbiomech.2020.109913
http://doi.org/10.1007/s00421-018-3939-3
http://doi.org/10.1111/j.1749-6632.1977.tb38211.x
http://www.ncbi.nlm.nih.gov/pubmed/270926
http://doi.org/10.1016/j.humov.2020.102600
http://doi.org/10.1016/j.gaitpost.2020.01.008
http://doi.org/10.1249/MSS.0000000000002023
http://www.ncbi.nlm.nih.gov/pubmed/31525170
http://doi.org/10.1016/j.gaitpost.2009.12.003
http://www.ncbi.nlm.nih.gov/pubmed/20056419
http://doi.org/10.1007/s40279-016-0474-4
http://www.ncbi.nlm.nih.gov/pubmed/26816209
http://doi.org/10.1007/s40279-017-0708-0
http://www.ncbi.nlm.nih.gov/pubmed/28255937
http://doi.org/10.1123/jab.21.1.31
http://doi.org/10.1111/sms.13884
http://doi.org/10.1249/MSS.0b013e318255a727
http://doi.org/10.1016/j.gaitpost.2013.12.007
http://doi.org/10.1080/02701367.1984.10609367
http://doi.org/10.1007/s40279-019-01237-z
http://www.ncbi.nlm.nih.gov/pubmed/31802395
http://doi.org/10.1371/journal.pone.0205191
http://www.ncbi.nlm.nih.gov/pubmed/30335784

	Introduction 
	Materials and Methods 
	Subject Selection 
	Data Acquisition and Processing 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

