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Abstract: In this article, a new flexible probability density function with three parameters is proposed
for modeling asymmetric data (positive and negative) with different types of kurtosis (mesokurtic,
leptokurtic and platykurtic). Some of its statistical and reliability properties, including hazard rate
function, moments, moment generating function, incomplete moments, mean deviations, moment
of the residual life, moment of the reversed residual life, and order statistics are derived. Its hazard
rate function can be either constant, increasing-constant, decreasing-constant, U shape, upside down
shape or upside down-U shape. Seven classical estimation methods are considered to estimate the
unknown model parameters. Monte Carlo simulation experiments are performed to compare the
performance of the seven different estimation methods. Finally, a distinctive asymmetric real data
application is analyzed for illustrating the flexibility of the new model.

Keywords: asymmetric data; hazard rate function; moment; different estimation approaches;
simulations; nonparametric test

1. Introduction

Recently, Nadarajah and Haghighi [1] presented and studied a new lifetime model
and pointed out that its probability density function (PDF) has a zero mode. A random
variable (RV) Z is said to have Nadarajah and Haghighi (NH) model if its survival function
(SF) and PDF are given by

Rc(z) = e1−(1+z)c
; z ≥ 0, c > 0, (1)

and
gc(z) = c(1 + z)c−1e1−(1+z)c

; z ≥ 0, c > 0, (2)

respectively, where c is a shape parameter. Nadarajah and Haghighi [1] considered (2) as
an alternative to the exponential (Exp), gamma (Gam), Weibull (W) and exponentiated-
exponential (ExpExp) distributions. Several extensions of the NH model can be cited, such
as the exponentiated NH (E-NH) model by Lemonte [2], the Gam NH (Gam-NH) and
Poisson Gam NH (PGam-NH) by Ortega et al. [3], transmuted NH (Tr-NH) by Ahmed
et al. [4], Kumaraswamy NH (Kuw-NH) by Lim [5], modified NH (Mo-NH) by El-Damcese
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and Ramadan [6], Marshall–Olkin NH (MO-NH) by Lemonte et al. [7], Topp–Leone NH
(TL-NH) by Yousof and Korkmaz [8], beta NH (B-NH) by Dias [9], inverted NH (I-NH)
by Tahir et al. [10], and NH Lindley (NH-L) by Pena et al. [11]. The PDF and cumulative
distribution function (CDF) of the Topp–Leone exponentiated-G(TLE-G) family are given
by

fa,b,Ω(z) = 2abgΩ(z)GΩ
_
(z)ba−1

[
1− GΩ(z)b

][
2− GΩ(z)b

]a−1
(3)

and
Fa,b,Ω(z) =

{
GΩ(z)b

[
2− GΩ(z)b

]}a
, (4)

respectively, where GΩ(z) = 1 − Rc(z) is the CDF of any baseline model and
gΩ(z) = dGΩ(z)/dx is the PDF of any baseline model. For b = 1, we get the TL fam-
ily. By inserting (1) and (2) into (3), we can write the PDF of the TLE-NH model as

f (z) = 2abc(1 + z)c−1e1−(1+z)c
Hab−1,c(z)[1− Hb,c(z)][2− Hb,c(z)]

a−1, (5)

where Hγ1,γ2(z) =
[
1− e1−(1+z)γ2

]γ1
. After a quick study of TLE-NH properties, differ-

ent classical estimation methods under uncensored schemes are considered, such as the
maximum likelihood (ML), Anderson–Darling (AD), ordinary least squares (OLS), Cramér–
von Mises (CVM), weighted least squares (WLS), left-tail Anderson–Darling (LTAD), and
right-tail Anderson–Darling (RTAD) methods. Numerical simulations are performed
for comparing the estimation approaches using different sample sizes for three different
combinations of parameters. The corresponding CDF is given by

F(z) =
{

Hb,c(z)[2− Hb,c(z)]
}a. (6)

For b = 1, the TLE-NH reduces to the TL-NH (see [8]). We provide some plots of the
PDF and hazard rate function (HRF) of the TLE-NH model to show its flexibility. The CDF
in (6) can be expressed as

F(z) =
∞

∑
ς1=0

C(ς1)
Hς•1,c(z)|ς•1=(a+ς1)b, (7)

where C(ς1)
= (−1)ς1

(
1
2

)ς1−a
(

a
ς1

)
and Hς•1,c(z) = Gς•1(z; c) is the CDF of the E-NH

model with power parameter ς•1. The corresponding TLE-NH density function can be
formulated as

f (z) =
∞

∑
ς1=0

C(ς1)
hς•1,c(z), (8)

where hς•1,c(z) is the E-NH PDF with power parameter ς•1. Figure 1a displays some plots of
the TLE-NH density for some parameter values of a, b and c. The plots of the HRF of the
TLE-NH model for some parameter values of a, b and c are obtained in Figure 1b.
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Figure 1. Plots of the TLE-NH PDF (a) and HRF (b) for some parameter values. 

2. Properties 
2.1. Moments 

Figure 1. Plots of the TLE-NH PDF (a) and HRF (b) for some parameter values.

Figure 1a shows that the PDF of the new version has right skew tails with different
shapes whereas Figure 1b shows that the HRF of the TLE-NH has many important failure
rates such as “constant (a = 1, b = 1 and c = 1)”, “increasing-constant (a = 1, b = 2 and
c = 1)”, “decreasing-constant (a = 0.01, b = 0.5 and c = 1)”, “U shape (a = 1, b = 0.5
and c = 1.4)”, “upside down shape (a = 3, b = 1 and c = 1)” and “upside down-U shape
(a = 3.25, b = 1 and c = 1.4)”.

We are motivated to introduce and study the TLE-NH model for the following reasons:

i. The new density in (5) can be “asymmetric unimodal and right skewed” with many
useful shapes.

ii. The HRF of the new model can be constant, increasing-constant, bathtub (U-HRF),
decreasing-constant and upside-down (reversed U-HRF). These characteristics give a
great advantage to the TLE-NH model for analyzing the data sets in which its HRF
can be constant, increasing-constant bathtub, decreasing-constant or upside down-
bathtub.

iii. The new TLE-NH model is recommended for modeling the remission times (in
months) of the bladder cancer patients. The bladder cancer data have some extreme
values.

iv. Also, its nonparametric Kernel density estimation is asymmetric with heavy tail to the
right. Therefore, the TLE-NH model could be useful asymmetric real data especially
the unimodal symmetric heavy tailed right skewed data and the bimodal symmetric
heavy tailed right skewed data.

v. On the other hand, the new TLE-NH model is flexible enough to exhibit the asymmet-
ric densities and right heavy tail shapes as illustrated in Figure 1a.

vi. Moreover, the HRF of the bladder cancer patients is upside-down; this property
matches with our new model which contains the upside-down HRF as illustrated in
Figure 1b. It is vital to mention that the presented class of probabilistic distributions
suitable for modeling asymmetric data also have an important utilization in insurance
(see Maciak et al. [12] for more details) and in dependence modeling (see Gijbels
et al. [13]).

vii. The range of the skewness of the TLE-NH model is falling in the interval (−0.92852,
43.03816 ). However, the skewness of the standard baseline NH model is falling
in the interval (0.27557, 2). The wide range of the skewness gives priority to the
TLE-NH model in modeling and future prediction since many real-life datasets are
negatively skewed. The standard baseline NH model cannot be useful in such cases
(see Tables 1 and 2 and Figures 2 and 3).

viii. The kurtosis of the TLE-NH model is located between 3.03238 and 2722.165, how-
ever the kurtosis of the NH model starts from 3.23056 to 9. Thus, the TLE-NH
extension could be useful for mesokurtic, leptokurtic and platykurtic data sets (see
Tables 1 and 2 and Figures 2 and 3).

ix. The estimation persuaders of the TLE-NH model can be performed under the max-
imum likelihood, Anderson–Darling, ordinary least squares, Cramér–von Mises,



Symmetry 2021, 13, 1730 4 of 20

weighted least squares, left-tail Anderson–Darling, and right-tail Anderson–Darling
methods. Although all estimation methods perform well, the weighted least squares
estimation method is the best in real data modeling, with slight differences in results.

2. Properties
2.1. Moments

The qth ordinary moment of Z is given by µ′q,Z = E(Zq) = ∑∞
ς1=0 C(ς1)

∫ ∞
0 zqhς•1,c(z)dz.

Then we obtain

µ′q,Z =
∞

∑
ς1,}1=0

q

∑
}2=0

V(ς•1,q)
(ς1,}1,}2)

Γ
(

1 +
}2

c
,}1 + 1

)
, (9)

where V(ς•1,q)
(ς1,}1,}2)

= C(ς1)
V(ς•1,q)
}1,}2

, V(ς•1,q)
}1,}2

= ς•1(−1)q+}1−}2e}1+1(}1 + 1)−(1+
}2
c )
(

ς•1− 1
}1

)(
q
}2

)
and Γ(c, z) =

∫ ∞
z zc−1e−zdz refers to the complementary incomplete Gamma function. The

moments in (9) reduce to (∀ ς•1 > 0 integer)

µ′q,Z =
∞

∑
ς1=0

ς•1−1

∑
}1=0

q

∑
}2=0

V(ς•1,q)
(ς1,}1,}2)

Γ
(

1 +
}2

c
,}1 + 1

)
, (10)

when q = 1 in (9) and (10), we have the mean of Z. The qth central moment of Z, say µq,Z, is

µq,Z = E(z− µ)q =
q

∑
h=0

(−1)h
(

q
h

)
(µ′1)

q
µ′q−h.

Table 1 lists the expected value (E(Z)), variance (V(Z)), skewness (S(Z)) and kurtosis
(K(Z)) for the TLE-NH model, whereas Table 2 reports the E(Z), V(Z), S(Z) and K(Z)
values for the NH model. From Tables 1 and 2, we note that the range of S(Z) of the
TLE-NH model is (−0.92852, 43.03816), however the S(Z) of the NH model is (0.27557, 2).
The K(Z) of the TLE-NH model is located between 3.03238 and 2722.165, however the
K(Z) of the NH model starts from 3.23056 to 9. Figure 2 shows three-dimensional (3-D)
skewness plots for c =0.01, 0.25, 5.75, 75, 150, 1000. Figure 3 shows 3-D kurtosis plots for
c = 0.01, 0.25, 5.75, 75, 150, 1000. Figures 2 and 3 illustrate how S(Z) and K(Z) changes
with respect to the new parameter c. Table 1 and plots of Figure 2 Figure 3 show that the
proposed model can be utilized for analyzing the asymmetric data with different types
of kurtosis.
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Table 1. E(Z), V(Z), S(Z) and K(Z) for the TLE-NH model.

a b c E(Z) V(Z) S(Z) K(Z)

0.001 1.0 1.0 0.001286 0.0008056 43.03816 2722.165
0.01 0.012572 0.0078321 13.73513 279.9879
0.1 0.104002 0.0621733 4.697541 35.42657
0.25 0.208241 0.1193405 3.268103 18.69152
0.5 0.326534 0.1790888 2.557750 12.62371
1.0 0.5 0.25 2.0 9.0
1.5 0.665002 0.2803381 1.784458 7.855008

0.001 3.5 5.0 0.001209 0.0001259 14.00467 245.1215
0.1 0.080019 0.0037463 1.444700 4.787573
1.0 0.177359 0.0045912 0.402047 3.032383
3.0 0.222693 0.0061278 −0.92852 4.867656
0.1 0.1 1.25 0.001482 0.0005384 32.69074 1578.728

0.5 0.026813 0.0108739 7.517766 84.14104
1.0 0.079014 0.0331868 4.274762 28.70463
5.0 0.558848 0.1322969 2.206003 7.477113
6.0 0.663141 0.1200882 3.039792 7.785333

0.25 1.5 0.5 1.019356 2.8743150 4.829448 47.14539
1.0 0.353175 0.1882723 2.492174 12.09759
5.0 0.055709 0.0032452 1.602556 5.778513
10.0 0.027117 0.0007387 1.521412 5.350372
20.0 0.013381 0.0001763 1.412999 5.279472

Table 2. E(Z), V(Z), S(Z) and K(Z) for the NH model.

c E(Z) V(Z) S(Z)

1.00 1.0 1.0 2.0
1.50 0.5516834 0.2353814 1.473465
2.00 0.3789361 0.0985353 1.253915
2.50 0.2881511 0.0531792 1.133407
3.00 0.2323270 0.0330535 1.057228
4.00 0.1673480 0.0162348 0.966298
5.00 0.1307332 0.0095934 0.913879
10.0 0.0623942 0.0020517 0.813496
15.0 0.0409678 0.0008665 0.781278
20.0 0.0304945 0.0004752 0.764709
25.0 0.0242857 0.0002996 0.825042
30.0 0.0201773 0.0002059 0.275571 

(a) (b) (c)

(d) (e) (f)

 
Figure 2 

 

Figure 2. 3-D skewness plots for c = 0.01, 0.25, 5.75, 75, 150, 1000 (a–f).
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(a) (b) (c)

(d) (e) (f)

 
Figure 3 

 

 

 

Figure 3. 3-D kurtosis plots for c = 0.01, 0.25, 5.75, 75, 150, 1000 (a–f).

2.2. Moment Generating Function (MGF)

The MGF MZ(τ) = E
(
eτZ) of Z can be derived from Equation (9) or (10) as

MZ(τ) =
∞

∑
ς1,}1,q=0

q

∑
}2=0

τq

q!
V(ς•1,q)
(ς1,}1,}2)

Γ
(

1 +
}2

c
,}1 + 1

)
,

or ∀ ς•1 > 0 integer we have

MZ(τ) =
∞

∑
ς1,q=0

ς•1−1

∑
}1=0

q

∑
}2=0

τq

q!
V(ς•1,q)
(ς1,}1,}2)

Γ
(

1 +
}2

c
,}1 + 1

)
.

2.3. Incomplete Moments (I-Ms)

The sth I-M, say Is,Z(τ), of Z can be expressed from (8) as Is,Z(τ) = ∑∞
ς1=0 C(ς1)

∫ τ
−∞ zshς•1,c(z)dz,

then

Is,Z(τ) =
∞

∑
ς1,}1=0

s

∑
}2=0

V(ς•1,s)
(ς1,}1,}2)

[
Γ
(

1 +
}2

c
, (}1 + 1)

)
− Γ

(
1 +

}2

c
, (}1 + 1)(τ + 1)c

)]
,
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or ∀ ς•1 > 0 integer we have

Is,Z(τ) =
∞

∑
ς1=0

ς•1−1

∑
}1=0

s

∑
}2=0

V(ς•1,s)
(ς1,}1,}2)

[
Γ
(

1 +
}2

c
, (}1 + 1)

)
− Γ

(
1 +

}2

c
, (}1 + 1)(τ + 1)c

)]
.

2.4. The mth Moment of the Residual Life (MoRL)

The mth MoRL can be formulated as

lm,Z(τ)|(z>τ and m=1,2,...) = E[(Z− τ)m] =
1

1− F(τ)

∫ ∞

τ
(z− τ)mdF(z).

Then, the mth MoRL of the TLE-NH model can be reported by

lm,Z(τ) =
1

1− F(τ)

∞

∑
ς1,}1=0

m

∑
}2=0

V[1]
(ς1,}1,}2)

Γ
(

1 +
}2

c
, (}1 + 1)

)
,

where V[1]
(ς1,}1,}2)

= C[1]
(ς1)

V(ς•1,m)
}1,}2

and C[1]
(ς1)

= C(ς1) ∑m
q=0

(
m
q

)
(−τ)m−q or ∀ ς•1 > 0 integer

we have

lm,Z(τ) =
1

1− F(τ)

∞

∑
ς1=0

ς•1−1

∑
}1=0

m

∑
}2=0

V[1]
(ς1,}1,}2)

Γ
(

1 +
}2

c
, (}1 + 1)

)
.

The life expectation at age τ can be defined by

l1,Z(τ) =
1

1− F(τ)

∞

∑
ς1=0

ς•1−1

∑
}1=0

1

∑
}2=0

V[1]
(ς1,}1,}2)

Γ
(

1 +
}2

c
, (}1 + 1)

)
,

which represents the additional expected life length for a certain unit which is alive at
age τ.

2.5. The mth Moment of the Reversed Residual Life (Mm(τ))

The mth moment of the reversed residual life can be expressed as

Mm,Z(τ)|(z≤τ,τ>0 and m=1,2,...) = E
[
(τ − Z)m] = 1

F(τ)

∫ τ

0
(τ − z)mdF(z).

Then, the mth MoRRL of the TLE-NH model can be formulated as

Mm,Z(τ) =
1

F(τ)

∞

∑
ς1,}1=0

m

∑
}2=0

V[2]
(ς1,}1,}2)

 Γ
(

1 + }2
c , (}1 + 1)

)
−Γ
(

1 + }2
c , (}1 + 1)(1 + τ)c

) ,

where V[2]
(ς1,}1,}2)

= C[2]
(ς1)

V(ς•1,q)
}1,}2

and C[2]
ς1 = C(ς1) ∑m

q=0(−1)q
(

m
q

)
τm−q or ∀ ς•1 > 0 integer

we have

Mm,Z(τ) =
1

F(τ)

∞

∑
ς1=0

ς•1−1

∑
}1=0

m

∑
}2=0

V[2]
(ς1,}1,}2)

 Γ
(

1 + }2
c , (}1 + 1)

)
−Γ
(

1 + }2
c , (}1 + 1)(τ + 1)c

) .

The mean inactivity time (MIT) is given by

M1,Z(τ) =
1

F(τ)

∞

∑
ς1,}1=0

1

∑
}2=0

V[2]
(ς1,}1,}2)

 Γ
(

1 + }2
c , (}1 + 1)

)
−Γ
(

1 + }2
c , (}1 + 1)(1 + τ)c

) ,
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or ∀ ς•1 > 0 integer we get

M1,Z(τ) =
1

F(τ)

∞

∑
ς1=0

ς•1−1

∑
}1=0

1

∑
}2=0

V[2]
(ς1,}1,}2)

 Γ
(

1 + }2
c , (}1 + 1)

)
−Γ
(

1 + }2
c , (}1 + 1)(1 + τ)c

) ,

which is the elapsed waiting time since the failure of a certain subsystem occurred in (0, τ).

2.6. Order Statistics

Let Z1, Z2, . . . , Zm be an observed random sample (RS) from the TLE-NH model and
let Z(1:m), Z(2:m), . . . , Z(m:m) be the corresponding order statistics. Then the PDF of ςth order
statistic can be written as

f
(

z[ς: m]

)
=

f (z)
B(ς, m− ς + 1)

m−ς

∑
ζ=0

(−1)ζ
(

m− ς
ζ

)
Fζ+ς−1(z), (11)

where B(·, ·) is the beta function. Substituting (5) and (6) in (11), the PDF of z[ς:m] can be
expressed as

f
(

z[ς: m]

)
=

m−ς

∑
ζ=0

∞

∑
w,d=0

τ(ζ,w,d) h(w+d+c)(z),

where τ(ζ,w,d) =
w(−1)ζ τw δζ+ς−1,d
B(ς,m−ς+1)(w+d) and δζ+ς−1,d can be obtained recursively from

δζ+ς−1,d = (dτ0)
−1

d

∑
m=0

τm[m(ζ + ς)− d]δζ+ς−1,d−m,

∣∣∣∣∣ (d≥1),

where δζ+ς−1,0 = τ
ζ+ς−1
0 . The moments of z[ς:m] can be proposed as

E
(

zq
ς:m

)
=

m−ς

∑
ζ=0

∞

∑
w,d,p=0

q

∑
s=0

V(ς•1,q)
ζ,w,ς1,p,sΓ

( s
c
+ 1, 1 + p

)
, (12)

where V(ς•1,q)
ζ,w,d,p,s = τζ,w,d V(ς•1,q)

p,s or ∀ w + d > 0 integer; the moments in (12) reduce to

E
(

Zq
ς:m

)
=

m−ς

∑
ζ=0

∞

∑
w,d=0

w+ς1

∑
p=0

q

∑
s=0

V(ς•1,q)
ζ,w,d,p,sΓ

( s
c
+ 1, 1 + p

)
.

3. Estimation Methods

We discuss seven methods to estimate the parameters of the TLE-NH model which
can be implemented using the “AdequacyModel” script in “R” software, which provides a
general meta-heuristic optimization technique for maximizing or minimizing an arbitrary
objective function. The major aim of using various estimation approaches is to get the
best estimators for good analytics, for instance Eliwa et al. [14], El-Morshedy et al. [15],
Hamedani et al. [16] and Elgohari et al. [17], among others.

3.1. Maximum Likelihood Estimation (MLE) Method

Let Z1, Z2, . . . , Zm be any observed RS from the new TLE-NH model. The log likeli-
hood function

(
`
(m)
[Ω]

)
for Ω may be expressed as
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`
(m)
[Ω]

= m log 2 + m log a + m log b + m log c + m log c + (c− 1)
m
∑

ς=1
log(z[ς:m] + 1)

+
m
∑

ς=1

[
1− (z[ς:m] + 1)c

]
+ (ba− 1)

m
∑

ς=1
log pς +

m
∑

ς=1
log
(

1− pb
ς

)
+ (a− 1)

m
∑

ς=1
log
(

2− pb
ς

)
,

where pς = 1− e1−(z[ς:m]+1)c
. Following the norm routine of parameter estimation for

the MLE of a, b and c, we differentiate `
(m)
[Ω]

with respect to a, b and c to obtain the score
vector as follows

U(a) =
m
a + b

m
∑

ς=1
log pς +

m
∑

ς=1
log
(

2− pb
ς

)
,

U(b) =
m
b + a

m
∑

ς=1
log pς −

m
∑

ς=1

pb
ς log pς

1−pb
ς
− (a− 1)

m
∑

ς=1

pb
ς log pς

2−pb
ς

,

U(c) =
m
c +

m
∑

ς=1
log(z[ς:m] + 1)−

m
∑

ς=1
(1 + z[ς:m])

c log(z[ς:m] + 1)

+(ba− 1)
m
∑

ς=1

cς

pς
−

m
∑

ς=1

bcς pb−1
ς

1−pb
ς
− (a− 1)

m
∑

ς=1

bcς pb−1
ς

2−pb
ς

,

where cς =
(

z[ς:m] + 1)ce1−(z[ς:m]+1)c
log(z[ς:m] + 1

)
. Setting U(a) = U(b) = U(c) = 0 and

solving them simultaneously yields the MLE of Ω.

3.2. Cramér–Von-Mises Estimation (CVME) Method

The CVME of the parameters a, b and c are obtained via minimizing the following
expression with respect to (WRT) to the parameters a, b and c, respectively,

CVME(Ω) =
1

12
m−1 +

m

∑
ς=1

[
FΩ

(
z[ς:m]

)
− ε(ς,m)

]2
,

where ε(ς,m) = [(2ς− 1)/2m] and

CVME(Ω) =
m

∑
ς=1

((
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
− ε(ς,m)

)2
.

The CVME of the parameters a, b and c are obtained by solving the three following
non-linear equations

m
∑

ς=1

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
− ε(ς,m)

]
∇(a)

(
z[ς:m]; Ω

)
= 0,

m
∑

ς=1

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
− ε(ς,m)

]
∇(b)

(
z[ς:m]; Ω

)
= 0

and
m

∑
ς=1

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
− ε(ς,m)

]
∇(c)

(
z[ς:m]; Ω

)
= 0,

where ∇(a)

(
z[ς:m]; Ω

)
= ∂FΩ

(
z[ς:m]

)
/∂a,∇(b)

(
z[ς:m]; Ω

)
= ∂FΩ

(
z[ς:m]

)
/∂b and

∇(c)

(
z[ς:m]; Ω

)
= ∂FΩ

(
z[ς:m]

)
/∂c.
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3.3. Ordinary Least Squares Estimation (OLSE) Method

Let FΩ

(
z[ς:m]

)
denote the CDF of TLE-NH model and let Z1 < Z2 < . . . < Zm be the

m ordered RS. The OLSEs are obtained upon minimizing

OLSE(Ω) =
m

∑
ς=1

[
FΩ

(
z[ς:m]

)
−(ς,m)

]2
,

then, we have

OLSE(Ω) =
m

∑
ς=1

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
−(ς,m)

]2
,

where (ς,m) =
ς

m+1 . The LSEs are obtained via solving the following non-linear equations

0 =
m
∑

ς=1

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
−(ς,m)

]
∇(a)

(
z[ς:m]; Ω

)
,

0 =
m
∑

ς=1

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
−(ς,m)

]
∇(b)

(
z[ς:m]; Ω

)
and

0 =
m

∑
ς=1

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
−(ς,m)

]
∇(c)

(
z[ς:m]; Ω

)
,

where ∇(a)

(
z[ς:m]; Ω

)
, ∇(b)

(
z[ς:m]; Ω

)
and ∇(c)

(
z[ς:m]; Ω

)
, defined above.

3.4. Weighted Least Squares Estimation (WLSE) Method

The WLSE are obtained by minimizing the function WLSE (Ω) WRT a, b and c

WLSE(Ω) =
m

∑
ς=1

W(ς,m)

[
FΩ

(
z[ς:m]

)
−(ς,m)

]2
,

where W(ς,m) =
[
(1 + m)2(2 + m)

]
/[ς(1 + m− ς)]. The WLSEs are obtained by solving

0 =
m
∑

ς=1
W(ς,m)

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
−(ς,m)

]
∇(a)

(
z[ς:m]; Ω

)
,

0 =
m
∑

ς=1
W(ς,m)

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
−(ς,m)

]
∇(b)

(
z[ς:m]; Ω

)
and

0 =
m

∑
ς=1

W(ς,m)

[(
Hb,c

(
z[ς:m]

){
2− Hb,c

(
z[ς:m]

)})a
−(ς,m)

]
∇(c)

(
z[ς:m]; Ω

)
.

3.5. Anderson–Darling Estimation (ADE) Method

The ADE are obtained by minimizing the function

ADE(Ω) = −m− 1
m

m

∑
ς=1

(2ς− 1)

 log F(Ω)

(
z[ς:m]

)
+ log

[
1− F(Ω)

(
z[−ς+1+m:m]

)] .

The parameter estimates follow by solving the nonlinear equations
0 = ∂

[
ADE(z[ς:m] ,z[−ς+1+m:m])

(Ω)
]
/∂a, 0 = ∂

[
ADE(z[ς:m] ,z[−ς+1+m:m])

(Ω)
]
/∂b and

0 = ∂
[

ADE(z[ς:m] ,z[−ς+1+m:m])
(Ω)

]
/∂c.
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3.6. Right Tail-Anderson–Darling Estimation (RT-ADE) Method

The RTADE is obtained by minimizing

RT-ADE(Ω) =
1
2

m− 2
m

∑
ς=1

F(Ω)

(
z[ς:m]

)
− 1

m

m

∑
ς=1

(2ς− 1)
{

log
[
1− F(Ω)

(
z[−ς+1+m:m]

)]}
.

The estimates follow by solving the nonlinear equations 0 = ∂[
RT-ADE(z[ς:m] ,z[−ς+1+m:m])

(Ω)
]
/∂a, 0 = ∂

[
RT-ADE(z[ς:m] ,z[−ς+1+m:m])

(Ω)
]
/∂b and

0 = ∂
[
RT-ADE(z[ς:m] ,z[−ς+1+m:m])

(Ω)
]
/∂c.

3.7. Left Tail-Anderson–Darling Estimation (LT-ADE) Method

The LTADE is obtained by minimizing

LT-ADE(Ω) = −3
2

m + 2
m

∑
ς=1

F(Ω)

(
z[ς:m]

)
− 1

m

m

∑
ς=1

(2ς− 1) log F(Ω)

(
z[ς:m]

)
.

The parameter estimates can be derived by solving

0 = ∂
[
LT-ADE(z[ς:m])

(Ω)
]
/∂a, 0 = ∂

[
LT-ADE(z[ς:m])

(Ω)
]
/∂b

and 0 = ∂
[
LT-ADE(z[ς:m])

(Ω)
]
/∂c.

4. Simulation for Comparing Various Estimation Methods

Simulation studies are performed to compare and assess the above-mentioned es-
timation methods. The simulation studies are based on N = 1000 generated data sets
from the TLE-NH version, where n = 50, 100, 150, 200 and a = 3.0, b = 0.3 and c = 0.1.
The performance of the different estimators is compared in terms of the average of its
estimates

(
AV(Ω)

)
and mean-standard error

(
MSE(Ω)

)
. The confidence intervals 95%

(Lower CI(LCI), Upper CI(UCI)) have been also calculated. Tables 3–5 list the simulation
results. From Tables 3–5, it is noted that the MSE(Ω) tend to zero and A-Vs tend to initial
values when n increases, which means the incidence of consistency property. For more
illustration and based on Table 3, we have the following results, For a = 3:

i. The MSE under ML decreased from 0.27643 |n=50 to 0.08205 |n=200 .
ii. The MSE under CVM decreased from 0.24741 |n=50 to 0.06579 |n=200 .
iii. The MSE under OLS decreased from 0.29624 |n=50 to 0.07117 |n=200 .
iv. The MSE under WLS decreased from 0.29093 |n=50 to 0.06882 |n=200 .
v. The MSE under AD decreased from 0.19796 |n=50 to 0.05345 |n=200 .
vi. The MSE under RT-AD decreased from 0.27743 |n=50 to 0.07353 |n=200 .
vii. The MSE under LT-AD decreased from 0.18347 |n=50 to 0.04942 |n=200 .
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Table 3. Simulation results for the parameter a = 3.

Method n A-V MSE 95% (LCI, UCI)

ML 50 3.03681 0.27643 (2.18975, 4.24236)
CVM 3.03876 0.24741 (2.20664, 4.17194)
OLS 3.16297 0.29624 (2.31059, 4.32059)
WLS 3.17337 0.29093 (2.30181, 4.36224)
AD 3.04235 0.19796 (2.29968, 4.06564)

RT-AD 3.07986 0.27743 (2.20827, 4.27400)
LT-AD 3.02975 0.18347 (2.33653, 3.99886)

ML 100 3.03694 0.17449 (2.33953, 3.93597)
CVM 3.03081 0.13932 (2.39139, 3.87721)
OLS 3.09770 0.15591 (2.46020, 3.95783)
WLS 3.10215 0.15521 (2.47454, 3.97494)
AD 3.03040 0.11091 (2.46244, 3.77999)

RT-AD 3.04675 0.15603 (2.39973, 3.97069)
LT-AD 3.02643 0.10135 (2.48184, 3.73488)

ML 150 3.02443 0.10695 (2.43548, 3.73870)
CVM 3.20857 0.09305 (2.49738, 3.68579)
OLS 3.05006 0.09204 (2.51645, 3.70989)
WLS 3.05504 0.08916 (2.52952, 3.69274)
AD 3.00771 0.07070 (2.54121, 3.58907)

RT-AD 3.01729 0.09353 (2.45689, 3.67173)
LT-AD 3.00554 0.06687 (2.54325, 3.56276)

ML 200 3.02241 0.08205 (0.26984, 3.65394)
CVM 3.02505 0.06579 (2.56864, 3.57190)
OLS 3.04558 0.07117 (2.57289, 3.59672)
WLS 3.05014 0.06882 (2.58386, 3.59850)
AD 3.01060 0.05345 (2.57513, 3.47962)

RT-AD 3.02168 0.07353 (2.53566, 3.59174)
LT-AD 3.00676 0.04942 (2.58677, 3.44691)

Table 4. Simulation results for the parameter b = 0.3.

Method n A-V MSE 95% (LCI, UCI)

ML 50 0.30119 0.00106 (0.26950, 0.34076)
CVM 0.30128 0.00089 (0.24819, 0.36707)
OLS 0.30876 0.00102 (0.25515, 0.37516)
WLS 0.30949 0.00100 (0.25491, 0.37580)
AD 0.30195 0.00077 (0.25249, 0.36324)

RT-AD 0.30370 0.00098 (0.24798, 0.37036)
LT-AD 0.30119 0.0075 (0.25460, 0.36071)

ML 100 0.30281 0.00071 (0.25957, 0.35778)
CVM 0.30129 0.00051 (0.26067, 0.35069)
OLS 0.30533 0.00055 (0.26553, 0.35585)
WLS 0.30566 0.00055 (0.26633, 0.35696)
AD 0.30148 0.00044 (0.26439, 0.34838)

RT-AD 0.30214 0.00056 (0.26144, 0.35536)
LT-AD 0.30128 0.00042 (0.26485, 0.34544)

ML 150 0.30178 0.00042 (0.26481, 0.34670)
CVM 0.30134 0.00034 (0.26797, 0.34002)
OLS 0.30266 0.00034 (0.26924, 0.34110)
WLS 0.30300 0.00033 (0.27002, 0.34034)
AD 0.30020 0.00028 (0.26963, 0.33577)

RT-AD 0.30064 0.00035 (0.26439, 0.33953)
LT-AD 0.30006 0.00028 (0.26951, 0.33562)

ML 200 0.30161 0.00032 (0.26984, 0.34085)
CVM 0.30124 0.00024 (0.27248, 0.33357)
OLS 0.30248 0.00026 (0.27296, 0.33533)
WLS 0.30279 0.00025 (0.27391, 0.33466)
AD 0.30047 0.00022 (0.27244, 0.32996)

RT-AD 0.30101 0.00027 (0.27062, 0.33456)
LT-AD 0.30023 0.00021 (0.27235, 0.32815)
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Table 5. Simulation results for the parameter c = 0.1.

Method n A-V MSE 95% (LCI, UCI)

ML 50 0.10278 0.00019 (0.08003, 0.13200)
CVM 0.10325 0.00040 (0.07203, 0.14932)
OLS 0.09856 0.00035 (0.06916, 0.14042)
WLS 0.09829 0.00029 (0.07108, 0.13747)
AD 0.10080 0.00027 (0.07333, 0.13986)

RT-AD 0.10035 0.00023 (0.07550, 0.13723)
LT-AD 0.10284 0.00048 (0.0686, 0.15093)

ML 100 0.10088 0.00012 (0.08288, 0.12489)
CVM 0.10140 0.00020 (0.07679, 0.13352)
OLS 0.09895 0.00019 (0.07483, 0.12875)
WLS 0.09888 0.00016 (0.07697, 0.12543)
AD 0.10046 0.00027 (0.07333, 0.13986)

RT-AD 0.10037 0.00013 (0.07932, 0.12518)
LT-AD 0.10121 0.00024 (0.07412, 0.13534)

ML 150 0.10055 0.00007 (0.08561, 0.11873)
CVM 0.10066 0.00013 (0.08098, 0.12565)
OLS 0.09979 0.00012 (0.08058, 0.12422)
WLS 0.09964 0.00010 (0.08221, 0.12250)
AD 0.10062 0.00010 (0.08334, 0.12268)

RT-AD 0.10042 0.00008 (0.08424, 0.12040)
LT-AD 0.10143 0.00016 (0.07940, 0.12853)

ML 200 0.10045 0.00006 (0.08675, 0.11694)
CVM 0.10031 0.00009 (0.08338, 0.12044)
OLS 0.09958 0.00009 (0.08265, 0.12009)
WLS 0.09948 0.00008 (0.08404, 0.11900)
AD 0.10024 0.00007 (0.08518, 0.11782)

RT-AD 0.10008 0.00006 (0.08585, 0.11621)
LT-AD 0.10086 0.00012 (0.08238, 0.12495)

Similar results are recorded regarding the other two parameters.

5. Asymmetric Data Analysis
5.1. For Comparing Methods under Asymmetric Data

For comparing the classical methods, an application to a real data set is analyzed. We
consider the Cramér–Von Mises (CM) and the Anderson–Darling (AD) statistics. The real
data set represents the remission time (in months) of an RS of 128 bladder cancer patients
(0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,
3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70,
5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,
7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66,
11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10,
1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53,
12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69) (see Lee and
Wang [18]). Table 6 lists the different estimators as well as CM and AD.

From Table 6, the WLS method is the best method, with CM = 0.03673 and AD = 0.24138,
among all estimation techniques; however, MLE, CVM, OLS, ADE, RT-ADE and LT-ADE
performed well. Figure 4 shows the probability-probability (P-P) plots for comparing
estimation methods. Figure 5 shows the estimated CDF (ECDF) plots for comparing
estimation methods. Figure 6 provides Kaplan–Meier estimation plots for comparing
estimation methods. Figures 4–6 ensures the results obtained in Table 6.
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Table 6. Application results for comparing methods.

Method a b c CM AD

MLE 0.341 6.896 0.388 0.05587 0.38410
CVM 0.507 5.491 0.396 0.05416 0.37560
OLS 0.722 3.999 0.383 0.05871 0.40834
WLS 0.687 3.877 0.372 0.03673 0.24138
ADE 0.179 14.474 0.422 0.06226 0.41748

RL-ADE 0.162 15.808 0.424 0.06355 0.42509
LT-ADE 0.175 14.626 0.420 0.06264 0.42010
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5.2. For Comparing Competitive Models

An application is present, based on the data set of Cordeiro et al. [18], to show the
flexibility of the TLE-NH model. We compare the TLE-NH model with some competitive
models such as the Burr type-XII NH (BuXII-NH) ([19]), Lomax NH (Lx-NH) (Selim [19]),
exponentiated exponential (Exp-Exp) beta exponential (B-Exp), Kumaraswamy exponen-
tial, TL-NH, inverse generalized power Weibull (IGPW) ([20]), inverse NH (I-NH), inverse
Weibull (IW), inverse Rayleigh (IR), inverse exponential (IE) and NH distributions. Select-
ing the best model is performed using the estimated −log-likelihood, Akaike-Information-
Criterion (AIc), Consistent-Akaike-Information-Criteria (CAIc), Bayesian-Information-
Criterion (BIc), and Hannan–Quinn Information-Criterion (HQIc). This data has a uni-
modal HRF-shape. The results of this application are listed in Tables 7 and 8. Table 7
lists the MLEs and the standard errors (SEs) for the asymmetric real data. Table 8 lists the
statistics for the asymmetric real data. These results show that the TLE-NH distribution
has the lowest AIc, CAIc, BIc and HQIc values among all the fitted models. Hence, it could
be chosen as the best model under these criteria. Figure 7 gives the total time in test (TTT),
box, quantile-quantile (QQ) and nonparametric Kernel density estimation (NKDE) plots for
the real data. Figure 8 shows the estimated PDF (EPDF), ECDF, EHRF and Kaplan–Meier
estimation plots. Clearly, the TLE-NH distribution provides a closer fit to the empirical
functions. For this data, we have the following results: E(Z) = 12.21692, V(Z) = 91.23032,
S(Z) = 4.546743 and K(Z) = 38.4308.

Table 7. The MLEs (SEs) for the real data.

Model a b c

TLE-NH 0.3414 6.896 0.3875
(0.3277) (6.366) (0.0347)

BuXII-NH 1.4763 0.11737 0.8259
(0.2510) (0.0215) (0.00264)

B-Exp 1.1726 26.8142 0.0046
(0.1312) (0.6327) (0.0006)

Kuw-Exp 1.4512 0.2816 0.4105
(0.0240) (0.0274) (0.0154)

IGPW 0.4435 15.7165 1.2110
(0.0482) (4.8326) (0.1023)

T-NH (−1.0181) 0.43629
(0.0505) (0.01736)

TL-NH 3.1644 0.3161
(0.3828) (0.0165)

Lx-NH 0.1786 0.8259
(0.01586) (0.0027)

Exp-Exp 1.2179 0.1211
(0.1488) (0.0135)

NH 0.9227 0.1216
(0.1515) (0.0344)

IW 2.4311 0.7520
(0.2192) (0.0424)

INH 0.5064 10.5947
(0.0480) (2.3220)

IE 2.4847
(0.2020)

IR 0.6174
(0.0545)
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Table 8. Statistics for the real data.

Model −` AIc, CAIc, BIc, HQIc

TLE-NH 411.5920 829.1840, 829.3775, 837.7401, 832.6604
Kuw-Exp 412.4602 830.9204, 831.1139, 839.4765, 834.3968
Exp-Exp 413.0776 830.1552, 832.3487, 840.7113, 835.6316

B-Exp 413.3671 832.7342, 835.0594, 846.1423, 839.3693
NH 414.2255 832.4510, 832.5470, 838.1550, 834.7686

T-NH 414.4753 832.9505, 833.0465, 838.6546, 835.2681
BuXII-NH 414.5475 835.0949, 835.2885, 843.6510, 838.5713

TL-NH 415.0535 834.1069, 834.2029, 839.8110, 836.4245
Lx-NH 416.2293 836.4585, 836.5545, 842.1626, 838.7761
IGPW 426.9104 859.8194, 860.0135, 868.3751, 863.2964
INH 431.0593 866.1184, 866.2145, 871.8222, 868.4363
IW 444.0013 892.0022, 892.0986, 897.7060, 894.3192
IE 460.3826 922.7653, 922.7962, 925.6174, 923.9233
IR 774.3427 1550.683, 1550.715, 1553.535, 1551.842

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 19 
 

 

Table 8. Statistics for the real data. 

Model −ℓ AI𝒄, CAI𝒄, BI𝒄, HQI𝒄 
TLE-NH 411.5920 829.1840, 829.3775, 837.7401, 832.6604 
Kuw-Exp 412.4602 830.9204, 831.1139, 839.4765, 834.3968 
Exp-Exp 413.0776 830.1552, 832.3487, 840.7113, 835.6316 

B-Exp 413.3671 832.7342, 835.0594, 846.1423, 839.3693 
NH 414.2255 832.4510, 832.5470, 838.1550, 834.7686 

T-NH 414.4753 832.9505, 833.0465, 838.6546, 835.2681 
BuXII-NH 414.5475 835.0949, 835.2885, 843.6510, 838.5713 

TL-NH 415.0535 834.1069, 834.2029, 839.8110, 836.4245 
Lx-NH 416.2293 836.4585, 836.5545, 842.1626, 838.7761 
IGPW 426.9104 859.8194, 860.0135, 868.3751, 863.2964 
INH 431.0593 866.1184, 866.2145, 871.8222, 868.4363 
IW 444.0013 892.0022, 892.0986, 897.7060, 894.3192 
IE 460.3826 922.7653, 922.7962, 925.6174, 923.9233 
IR 774.3427 1550.683, 1550.715, 1553.535, 1551.842 

 
Figure 7. The TTT, box, QQ and NKDE plots for real data. 

Figure 7. The TTT, box, QQ and NKDE plots for real data.



Symmetry 2021, 13, 1730 19 of 20

Symmetry 2021, 13, x FOR PEER REVIEW 18 of 19 
 

 

 
Figure 8. ECDF, EPDF, EHRF and Kaplan–Meier estimation plots. 

6. Conclusions 
In this paper, we have introduced a new flexible extension to the Nadarajah and 

Haghighi model called the Topp–Leone exponentiated Nadarajah and Haghighi model 
(TLE-NH). The PDF of the TLE-NH model can be expressed as a simple linear represen-
tation of the exponentiated NH density. Some of its statistical properties have been de-
rived and studied in detail. The HRF can take different shapes, such as constant, increas-
ing-constant, decreasing-constant, bathtub, upside down and upside down-U, which 
make the TLE-NH model able to analyze different types of data sets in various fields. 
Moreover, the TLE-NH model can be utilized to discuss both negatively and positively 
skewed data. The model parameters have been estimated by utilizing various estimation 
methods. Monte Carlo simulation experiments have been performed to compare the esti-
mation methods. Finally, a real data set is analyzed for illustrating the flexibility of the 
proposed model, and it is found that the TLE-NH model showed its superiority in mod-
eling the real data set. 

Author Contributions: M.M.A.A. (writing-review and editing; Funding acquisition and conceptu-
alization), M.A.A. (writing-review and editing, validation), M.S.E. (writing-review and editing; con-
ceptualization; software; methodology and validation), M.E.-M. (writing-review and editing; soft-
ware; conceptualization and validation) and H.M.Y. (writing the original draft preparation; soft-
ware; resources; project administration and validation). All authors have read and agreed to the 
published version of the manuscript. 

Funding: The author extends his appreciation to the Deanship of Scientific Research at King Khalid 
University for funding this work under grant number (RGP. 1/26/42), received by Mohammed M. 
Almazah (www.kku.edu.sa (accessed date: 12 August 2021)). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data set is available in Lee and Wang (2003) and given in Section 
5.1. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 8. ECDF, EPDF, EHRF and Kaplan–Meier estimation plots.

6. Conclusions

In this paper, we have introduced a new flexible extension to the Nadarajah and
Haghighi model called the Topp–Leone exponentiated Nadarajah and Haghighi model
(TLE-NH). The PDF of the TLE-NH model can be expressed as a simple linear representa-
tion of the exponentiated NH density. Some of its statistical properties have been derived
and studied in detail. The HRF can take different shapes, such as constant, increasing-
constant, decreasing-constant, bathtub, upside down and upside down-U, which make the
TLE-NH model able to analyze different types of data sets in various fields. Moreover, the
TLE-NH model can be utilized to discuss both negatively and positively skewed data. The
model parameters have been estimated by utilizing various estimation methods. Monte
Carlo simulation experiments have been performed to compare the estimation methods.
Finally, a real data set is analyzed for illustrating the flexibility of the proposed model, and
it is found that the TLE-NH model showed its superiority in modeling the real data set.
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