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Abstract: This work is motivated by the work of Josip Pecari¢ in 2013 and 1982 and the work of
Srivastava in 2017. By the utilization of the diamond-« dynamic inequalities, which are defined as a
linear mixture of the delta and nabla integrals, we present and prove very important generalized
results of diamond-« Steffensen-type inequalities on a general time scale. Symmetry plays an essential
role in determining the correct methods to solve dynamic inequalities.

Keywords: Steffensen’s inequality; dynamic inequality; diamond-« dynamic integral; time scale

1. Introduction

In 1982, Pecari¢ [1] speculated on the Steffensen inequality, presenting the following
two hypotheses.

Theorem 1. Let f, §, hi : [r1, 2] — R be integrable functions on [ry, 1] such that f/h is
nonincreasing and h is non-negative. Further, let 0 < ¢(1) < 1Vi € [rq,12]. Then,

[ iwgoa < [M fw, )

1 1

where { is the solution of the equation

/rrw@fl(Z)dz - /:fz(z)g(z)dl-

1

N

We obtain the reverse of (1) if £(1)/h(1) is nondecreasing.

Theorem 2. Let f, §, It : [r1,72] — R be integrable functions on [r1,r2] such that f/h is
nonincreasing and h is non-negative. Further, let 0 < ¢(1) < 1V1 € [rq,r2]. Then,

2

for < [* f)as @

=

where { gives us the solution of

/r” h(n)di = /rz R(1)g(1)d.

2§ Jr

A

We obtain the reverse of (2) if f(1)/h(1) is nondecreasing.
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Wu and Srivastava in [2] acquired the accompanying result.

2] — R be integrable functions on [r1, ;] such that f is nonincreas-

Theorem 3. Let 1,7
h(1) Y1 € [rq,12]. Then,

F o "
ing. Further, let 0 < ¢(z

§(1) <

/:_@f(z)fz(z)dz < [0 (Pt - [F0) = F02 = )] [t0) - g(0)] )
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where { is given by

The following interesting findings were published in [3].

Theorem 4. Suppose the integrability of §, h, f ¥ : [r1,72) — R such that f is nonincreasing.
Additionally, suppose that 0 < (1) < §(1) < h(1) — (1) for all 1 € [ry, r2]. Then,

" fog < [ foio - [7100) - o+ o)

SR "
/ h(1)d :/ g(1)du.
1 4]

Theorem 5. Under the hypotheses of Theorem 4,

rz_@f(’)h(’)d“r/rl z)]dzg/r1 F)8(1)dr

where { is given by
r N r
/ ’ h(1)d1 = / ’ $(1)du.
r=p "

The calculus of time scales with the intention to unify discrete and continuous anal-
ysis (see [4]) was proposed by Hilger [5]. For additional subtleties on time scales, we
refer the reader to the book by Bohner and Peterson [6]. Additionally, understanding of
diamond-« calculus on time scales is assumed, and we refer the interested reader to [7] for
further details.

Recently, a massive range of dynamic inequalities on time scales have been investi-
gated by using exclusive authors who have been inspired with the aid of a few applications
(see [8-14]). Some authors found different results regarding fractional calculus on time
scales to provide associated dynamic inequalities (see [15-18]).

We devote the remaining part of this section to the diamond-« calculus on time scales,
and we refer the interested reader to [7] for further details.

If T is a time scale, and ( is a function that is delta and nabla differentiable on T, then,
for any 1 € T, the diamond-« dynamic derivative of { at ¢, denoted by ¥« (1), is defined by

() =al®)+(1-a)¥ (1), 0<ac<l. ®)

1

where { is given by
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We conclude from the last relation that a function ( is diamond-« differentiable if and
only if it is both delta and nabla differentiable. For « = 1, the diamond-« derivative boils
down to a delta derivative, and for &« = 0 it boils down to a nabla derivative.

Assume (, ¢ : T — R are diamond-« differentiable functions at : € T, and let
k € R. Then,

) (C+E)% () = %) +E%();
(i) (kg)O (1) = kg% (1);
(iif) (GE)%*(1) =L (DE(D) +al (DB (1) + (1 - )P ()EY (1),
Let ¢ : T — R be a continuous function. Then, the definite diamond-« integral of ( is
defined by

b b b
/g(z)oaz:tx/ @(Z)Al—i—(l—a)/ ¢(1)V, 0<a<1 abeT 4)

Leta,b,c € T, k € R. Then,
@ P20 +20)]Oat = [P0 Cat + [P EW) s
an‘ﬁu‘owzkﬁgmoﬂ
(M)LQO = [0 0u+ [T 1) 0w

(iv) f a( l)<> = _fb <>zx1
@) [, C(1)at
(vi) ifZ(1) >0 on[a bT,thenf (1)t > 0;

(vii) if Z(1 ) E(1) on [a b]r, then f L(1)Out > f (1) Out;
(1)] Qat.

Let ¢ be a diamond — « differentiable function on [a,b]r. Then, { is increasing if
¢9«(1) > 0, nondecreasing if {¥=(1) > 0, decreasing if {¥(1) < 0, and nonincreasing if
g% (1) < 0on [a,b]p.

In this article, we explore new generalizations of the integral Steffensen inequality
given in [1-3] via diamond — « integral on general time scale measure space. We also retrieve
some of the integral inequalities known in the literature as special cases of our tests.

2. Main Results
Next, we use the accompanying suppositions for the verifications of our primary outcomes:

(S1) ([r1, 2], B([r1,72)T), ft) is time scale measure space with a positive o-finite measure
on ‘B([T’l, 7’2]']1‘).

(S2) ¢, Y, E: [r1,r2]T = Ris {yi-integrable functions on [rq, 2] .

(S3) ¢/Eisnonincreasing and = is non-negative.

(S4) 0<Y(1) <1foralli € [ry,ra]T.

(S5) § is a real number.

(Se¢)  is nonincreasing.

(S7) 1<Y(1) <E(1)forallz € [ry,12]7.

(Ss) 0<y(1) <Y(1) <E(1) — (1) forall1 € [r1,r2]T.

(S9) 0<M<Y(1) <1—Mforall: € [r,72]r.

(S10) 0 < (1) <Y(1) <1—9(1) forallt € [ry,r2].
{ is the solution of the equations listed below:

(S11) f[’l,fﬁ‘@]w E(1)Qat = f[ﬁ ralT E@Y(0)Oat.

(512) f[m*@,rz]nr E(1)Qat = f[rl ) E(l) )<>a1

(513) f[’l/"lJF@]'ﬂ‘ E@)Qut = f[’lezh‘ Y (1) f[rzfﬁfzhr E@)Qat-
(514) f[71,71+§1]1r E()Out = f[rl r2l7 Y<l)<>“

(515) f[fz—@,fz]qr E(1)Qat = f[rl,rzhr Y (1) Qat-
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Presently, we are prepared to state and explain the principle results that have had
more effect effect from the literature.

Theorem 6. Let S1, Sy, S3, S4 and Sq1 be satisfied. Then,

/[WT C)Y ()t < /Wﬁ@hT (1) Oat. )

We obtain the reverse of (5) if { /2 is nondecreasing.

Proof.

/[r1 Al C(1)Oat — /[Wz]T ()Y (1) Oat
= =(1)[1 — @ —
- /[,1 n+0lr E(1)[1—=Y( )]E(l) Qu /[mm]T ()Y (1) Out

-~

> Snxh) jg L EOI=YWow= [ LY (0w
ST L ® W—/[rl,,ﬁ@f<l>Y<l><>ﬂ]—/Mﬁ<l>Y<l><>ﬂ
=§(( :Z)){ rm = )Oal_/[7171+@]TE(1)Y(1)<>“1}_/[V1+@,V2]T€(I)Y(Z)<>’Xl

E()Y() ( ggg:g - é((ll))><>az >0

—

[

?’1-‘1—@,7’2]']1*

The proof is complete. [

Corollary 1. Delta version obtained from Theorem 6 by taking « =1

/[71/2]11‘ g(l)Y(l)Al = ./[r1,r1+§)]1r g(l)Al'

Corollary 2. Nabla version obtained from Theorem 6 by taking « = 0

/M]T L()Y(1)Vi < / (1) V.

Sy +@lr

Remark 1. In case of T = R in Corollary 1, we recollect [1] (Theorem 1).

Theorem 7. Assumptions S1, Sy, S3, Sq and Sy imply

/[rZ_@,,z]T C(1)Our < /{th Z(OY (1) Out ©

We obtain the reverse of (6) if (/2 is nondecreasing.
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Proof.
/[H £(1) Ot — /[ IGNOISY
oy EONYOIETOu= [ 20¥(00u
gg((:j?) /rz o EON=Y@0a= [ Z¥(0)0u
—g(g:g[ o EWY)0u - /M,,ﬂf“)Y(”W}‘ f . EOY0ou
- g8 / G EOYO0u= [ Y00
iy rori i

O

Corollary 3. Delta version obtained from Theorem 7 by taking « =1

[ coms [ covoa ™
[r2=f.r2]T [rir2]r
Corollary 4. Nabla version obtained from Theorem 7 by taking & = 0
[ v [ coxove ®)
[r2=f.r2]T [rir2]r

Remark 2. In Corollary 8 and T = R, we recapture [1] (Theorem 2).
We will need the following lemma to prove the subsequent results.

Lemma 1. Let S1, Sy, S5 hold, such that

2(1)Out = Y(1)Opt = E(1)Opt.
/[V1,f1+@]1r ) [rir2lT ) /[fz—@ﬂzhr )

Then,
/M]Té(z)Y(z)oaz = /Wﬁm (é(z)E(z)f () —¢(r1+9)][E() ()})<>a
* Jroray BO -8 DIV 0Ow, ©
and
fo GOYO0u = [ [ =2l = )Y 0w (10)

[ ([E020 = 20 =202 = )] 30 Y] ) O
Proof. The suppositions of the Lemma imply that

1’1§1’1+@§1’2 and rlgi’z—@grz.
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Now we have proved (9), we see that
S, GOZ0 = [0 =801+ 0] [0 YO 0wt = [ 2Y() 0w
N Jr,r+@)r (g(l) - Y(Z)])Otxl
S ROV DT B DMOEN
_ C(n + ) [B() = Y(1)] Qat - /H“ ()Y (1)t

[rr+olr

—f(n+ @)( Jo g B00a= [ Y(z)oaz) o AR} (LAY

[x1
=
Nad

|
o~
=
Nl
<
pay
Na

|
—
~
=
=

\
o~
A

3
i
+
<
=

[1]
=
=

Since
B(1)Opt = Y(1)Out,
/[71r71+§)hr (1)< /[flrrzhr (1)

we have

trni+o) ( /[Vl r+plr () 0ut = [rLr+flr O“l) /[f1+g9 ralr o

- g(rl * @) ( /71 ral ~/[71 71+50]1r > /VH'KJ 2] <>ocl

= (1 +9) /[W] Y0O0u— [ Y0 0w

= B+ 9) = W)Y () Ot (12)

[r+,r2)r

Combination of (11) and (12) led to the required integral identity (9) asserted by the
Lemma. The integral identity (16) can be proved similarly. The proof is complete. [J

Corollary 5. Delta version obtained from Lemma 1 by taking o« = 1

J, covos = [ (G086 - (20~ g +0))[20) - Y] )ar

" /[rm?»rzh (€0 =&l +p)]Y (1A, (13)
and
/[rmh Ceyia = /Wr@hr (1) = 2(ra = 9)]Y(1) M (14)
) (020 = [0 =502 = 9)] [20) ~ Y] )&
such that

2(1)A1 = Y(1)A1 = (1) A
/[Tl,f1+@]1r (B /[Tl,fzhr (1) /[rzfﬁ,fzh B
Corollary 6. Nabla version obtained from Lemma 1 by taking a« = 0
J,coveose = [ (6086 - (20~ g +0))[20) - Y] )ar
L A CORGRNINOLY 1s)
and
[ YoV = [ e = - )] YO (16)
[r172]r [rr2—@lr
+ [ (cwEw - [20) - - 9] [20) - Y(@)] ) Ve
[ra=oralr
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such that
/ E(1)Vi :/ Y(1) Vi :/ E(1)Vu
[ri 1+l [r172]T [ra—pralT

Theorem 8. Suppose that S1, Sp, S¢, Sy and Sq3 give
S o S0E@Oa < [ (E020) - [20) ~ 22 = )] [E() ~ Y(0)] ) Ous
/[71 ra]T LY () Ou

S R (OO R OB CRA CORMOIEN

= /[VMH@]T C(Z)E(I)Qal-

Proof. In perspective of the considerations that the function ¢ is nonincreasing on [ry, 7]
and 0 < Y(1) < E(1) forall 1 € [rq, 2], we infer that

IN

/[r r2—p] [2() = C(r2 = §)]Y (1) Qar 2 0, (17)

and

/[rz—gf) ralr [C(r2—9) = C()] [E(1) = Y(1)] Gat > 0. a8)

Using (9), (17) and (18), we find that

J, o S0E00a < [ (G020 (60~ 22~ 0)][20) - Y] )0
< /WZ] ()Y (). (19)
J SO0 < [ (6086 - [20) - 2l + 0] [E0) - Y] )0

IN

/ LB Our 20)
[r.r+lr

The confirmation is finished by joining the integral inequalities (19) and (20). O

Corollary 7. Delta version obtained from Theorem 8 by taking « =1
S o f0E@a < [ (2020) - [20) - 2 - )] [36) - V() )
< /[] L)Y (1A
[ (fwEW - 50 — s+ 9] [E0) - Y0)] )ar
[rir1+plr

/ WE@)AL
[r 14+l

IN



Symmetry 2021, 13,1738

8 of 13

Corollary 8. Nabla version obtained from Theorem 8 by taking « = 0
S BV < [ (C020) - (20 -2~ )] [20) - Y0)]) 9
< /[1 OMON,
[ (s0E0) - [0 -2+ p)] [E0) - Y] ) v
Jrnn+lr

/ - C(WE@)V
[r1r1+0]7

Remark 3. We can reclaim [2] (Theorem 1) in Corollary 7 and T = R.

IN

Theorem 9. Assume that S1, Sy, S¢, Sg and S13 are fulfilled. Then,

Qat

[2(1) = Z(ra = )] (1)

[ t0E@O.+
[r2—pralr
= -/[7112]11‘ LY () Ou

< DE()Opt —
/[71r71+@]1r CWER) /[71,f2]1r

Proof. Clearly, function ( is nonincreasing on [r1, 2] and 0 < ¢(1) < Y(1) < E(2) — (1)
for all 1 € [rq,72]; so, we obtain

[ryr2]T

[20) =2+ )]p@)

Qutl, (21)

[ W=+ o) EQ - YW+ [ (5 +9) = S0] Y1) Our
[r1.11+6] [r1+@ralr
= e@) =+ ) [ED Y@ Oa+ [ 2+ 9) = @)Y (1) Out
[rir1+9lT [r1+o.r2)r
> 2@ = Er + 0) [ ()Qar + 12(r1 4+ §) = ()| ()
[rr1+flr [r1+@ralr
> [ |0 2+ 0] 0w
Additionally,
[ 0=+ I EO = YWou+ [ 6+ ) = L] Y0 0w
[rr1+@lr [r+o.r2]T
> /H [20) = (1 + 9)] (1) Oar. (22)
Similarly, we find that
S oy B0 =8 = 0¥ 0w+ [ 62 =) = 0] [20) = Y(0)] Gut
> [ |60 =502 0] 0w @)

By combining (9), (16), and (22), (23), we arrive at the inequality (21), asserted by
Theorem 9. [
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Corollary 9. Delta version obtained from Theorem 9 by taking « =1
/ L()Z() M1+
[r2—piralr

< /[W]Ta(zwu)m

Wz - [

[rir2lT

[ri.r2)T

<

/[”1 J1+QIT

Corollary 10. Nabla version obtained from Theorem 9 by taking & = 0
/ OO
Jra=p.ral7

< /MTaz)Y(z)vl

< HE() Vi —
/[71r71+@h‘ C=) ~/[71/72]1r

[r1.r2)T

Remark 4. If we take T = R, in Corollary 9, we recapture [2] (Theorem 2).

Theorem 10. Let S1, Sy, S¢, So be satisfied, and

0<

>

1 < / Y(1)Oat < fp <10 —14.
[r1.72]T

Then,

Jo o E0at g ( f, . Y0ou- @1)
Qal

+M

[rir2]7 ¢w - f(7’2 - Aﬁﬁzhr Y(Z><>’XZ>
< C0)Y(1)Qat

[r172]T

< L) Out — Z(r2) (@2 -/

[r1r1+2]T 12T

-M

o) f (n " Y<z><>az>

[rir]T [rim2]T

Proof. By using straightforward calculations, we have

/WZ]T C(z)Y(z)<>az—/Wﬁ@zhg(z)oaz+g(r2)(@2_/[r

R ONOIEy A (GL Ay A
60 = LEIYO0u— [ [2®) = 5(r2)]0ar

[rr1+elr

1:”2]11‘

[”1/7'2]’11‘

< /H (1) = C(ra) Y (1) Gt — / 00 = L) 0wt

[rin+], Y (1)at]

rirlr

where we used the theorem'’s hypotheses

rn<rn+om<rn+t Y(1)Out <114+ 92 <1

[rir2lT

and
(1) —=C(r2) >0 forall 1€ [ry,r).

[C(1) = (2 — @)]lp(z)‘Az
[C(1) = ¢(r + @)]lp(l)‘Az,
[C(1) = Z(ra — @)]Eb(l)‘Vz

() = 2n + )] p(0)| v,

Y(l)<>al>

Qal.

Y(I)Qal)
L(r2) Ot — /[

(24)

| L)Y () Out

(25)
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The function {(2) — {(r2) is nonincreasing and integrable on [ry, rp] and, by applying
Theorem 9 with E(1) = 1, (1) = M and {(1) replaced by (1) — (r2),
ORI OENEY . o vty S0 £
(26)
-M () — f(n + Y(z)<>,xz> Oul.
[rir2]r [rir2lr

From (25) and (26), we obtain

/[,W]T g(l)Y(l)Oa“/ C(1)Oat + T(r2)( /[r1 o (1)at)

[rir1+@2lT

(27)
-M o] 5(1)—f(71+ - <>,x1> Out,
which is the right-hand side inequality in (24).
Similarly, one can show that
/[rlr"Z]’]I‘ g(l)Y(Z)O“l - /[rz P12l C(Z)O,Xl - g(rZ) ( /[rl,rz]T Y(l)(},xz B @2>
2 [7‘1172]’]1‘ [g(l) - g( ):| <>IXZ + /2 frl ?‘Z]T <>D(l fz] [g(rz) - g(l)] <>ﬂcl
=M sl ¢ —f (Vz - /Wz]1I Y(l)<>a1) Oal, (28)

which is the left-hand side inequality in (24). O

Corollary 11. Delta version obtained from Theorem 10 by taking & = 1

f . d0a) ( f Y0u- o)
M [r1r2]T ¢ = f(i’z - /[71,72]1r Y(I)Al>
< /thr C()Y (1) A

<[ =i <@2 . Y(z)Az)
2(1) —f(ﬁ + Y(z)Az)

A1

-M

[r1.72)T

A1,

[r1r2])T

such that
Ogﬁlg/ Y(l)AlS@zSTQ*T’l.
[rin2lT
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Corollary 12. Nabla version obtained from Theorem 10 by taking « = 0

Jo o fovirg ([ XO¥i- )
+M . 40 —f(rz - -/[.71,72]11‘ Y(z)Vz> ’Vz

[r1.r2]T

< /H ONONS

<[ L vt (e [ YW
é@)—f(m—% \xovo‘vu

-M

[rir]r [rir2]T

such that
0<pr < |

[rir2lT

Y(1)Vi< pp <1y —r1.

Remark 5. Ref. [2] (Theorem 3) can be obtained if T = R in Corollary 11.

Theorem 11. If Sq, So, Se, S7 and Sy4 hold. Then,

[ ev0oas [ iz0)0a- [

)T

[(C() = 2(r 4+ £) (1) [Qar. (29)

Proof. This proof is similar to the proof of the right-hand side inequality in Theorem 9. O

Corollary 13. Delta version obtained from Theorem by taking « = 1

)Y (1)A1 <
/[fwzhr CY@ar< /[71/71+§>

Corollary 14. Nabla version obtained from Theorem by taking « = 0

CWEWM = [ |(§0) = 5+ 9) ()]

IT [r1.72]T

/[flrfz]w g(l)Y(l)Vl = /[r1,r1+§>]1r g(l)E(l)vl B /[r

Remark 6. If we take T = R, in Corollary 13, we recapture [3] (Theorem 2.12).

1(C(1) = ¢(r1+ ) p(1)| Ve

L2l

[1]

Corollary 15. Hypotheses S1, Sp, S3, S19 and S11 yield
(C(Z) {(r1+9) )

/[7'1:72]11‘ DY) Our < /[71,r1+§) E(1) - (r+ )

Proof. Insert Y (1) — E(1)Y(1), {(2) — {(2)/E(1) and ¢(2) — E(1)¢(2) in Theorem 11. [

CW 0w — [

[71,72]11'

()

Qal. (30)

It

Corollary 16. Delta version obtained in Corollary 15 by taking & =1

i)  n+o)\x
DHY(1)Ar < 1)A1 — =L — 2 — |E(1)(1)| At
/[7’1r72]11‘ CapY(ar < /[mfﬁ@hr ¢ /[Twz]ir ('5(1) E(r + @)) 190)
Corollary 17. Nabla version obtained in Corollary 15 by taking « = 0
1)  n+o)\x
NY(1)Vi < 1)Vi— =L =2 — |E(1)y((1)| Vi
/[71/72]11‘ LYV < /[71,r1+§1]11‘ ¢ /[7112]11‘ (':'(1> E(r+ P)) 190)

Remark 7. Ref. [3] (Corollary 2.3) can be recovered with the help of T = R, in Corollary 16.
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Theorem 12. If 51, Sy, Sg, S7 and Sys hold, then

J, o SOB@Ot [ 160 5= 0)90)[0n < [ ZY@ow 6D

Jryralr [rir2]T

Proof. Carry out the same proof of the left-hand side inequality in Theorem 9. O

Corollary 18. Delta version obtained from Theorem 12 by taking « =1

[ twE@a [ @0 == e)p0la < [ sy
[ra—p.ra]r

[r1ralT [r1r2]T

Corollary 19. Nabla version obtained from Theorem 12 by taking « = 0

[ eVt [ @0 -2t -0)y0|Vi< [ ey
[ra—p.ra]T

[r1r2]T [rir2]T

Remark 8. Ifwe take T = R, in Corollary 18, we recapture [3] (Theorem 2.13).

Corollary 20. Let S1, Sy, S3, Sg and S13, be fulfilled. Then,

(S - Lz =gy,

—_ N

E(1)  E(2—9)

/ L) Qar+ Oazg/ 2()Y (1) Oat (32)
[r2—.r2]T [r1,72]

[r1r2]T

Proof. Proof can be completed by taking Y(1) — E(1)Y(z), (1) — {(1)/E(1) and
P(1) = E(1)p(1) in Theorem 12. [

Corollary 21. Delta version obtained from Corollary 20 by taking o =1

/[szﬁ,fzhr Cart [r, 2] (g(l) - femd) )E‘(l)lp(l)

E(1)  E(n-9)
Corollary 22. Nabla version obtained from Corollary 20 by taking &« = 0

/[szﬁ,fzh g(Z)VI * [riralT (C(Z) N 5(72 - @) )E‘(l)lp(l)

Remark 9. By letting T = R, in Corollary 21, we recapture [3] (Corollary 2.4).

Azg/[ | ()Y (1)Au.

50) Bl —0) Vi < ‘/[71/72]11‘ ()Y (1) V.

3. Conclusions

In this article, we explore new generalizations of the integral Steffensen inequality
given in [1-3] by the utilization of the diamond-& dynamic inequalities which are used in
various problems involving symmetry. We generalize a number of those inequalities to a
general time scale measure space. In addition to this, in order to obtain some new inequali-
ties as special cases, we also extend our inequalities to a discrete and constant calculus.
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