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Abstract: We discuss the application of stochastic intermittency fields to describe and analyse the
statistical properties of time series of the generalised turbulence intensity in an anisotropic and
inhomogeneous turbulent flow and provide a parsimonious description of the one-, two-, and
three-point statistics. In particular, we show that the three-point correlations can be predicted
from observed two-point statistics. Our analysis is motivated by observed stylised features of the
energy dissipation in homogeneous and isotropic situations where these statistical properties are
well represented within the framework of stochastic intermittency fields. We find a close resemblance
and conclude that stochastic intermittency fields may be relevant in more general situations.

Keywords: von Kármán experiment; correlators; self-scaling; normal inverse Gaussian distribution;
stochastic intermittency field

1. Introduction

Cascade processes and their representation in terms of stochastic intermittency fields
constitute a fundamental stochastic framework that captures strongly intermittent fluctua-
tions and long range correlations with scaling properties [1–7]. These cascade processes
have therefore found widespread applications in the phenomenological description and
modelling of temporal dynamics and spatial structures in turbulent flows [8–13].

From an experimental point of view, spatial structures are often analysed in the time
domain, using the Taylor Frozen Flow Hypothesis (TFFH) [14]. TFFH requires that the
mean flow transports spatial structures without relevant distortion over the observation
point where time series are recorded. In such situations, statistical properties associated
with spatial structures are observed in the time domain and afterwards translated to and
interpreted in the spatial domain [8,15–20]. However, timewise experimental studies of
spatio-temporal phenomena may reveal stylised statistical features that can be used as
robust characteristics of the underlying dynamics in cases where the interpretation in the
spatial domain using TFFH is questionable or impossible.

In this paper, we analyse the generalised turbulence intensity in a von Kármán Experi-
ment with focus on a particular set of such statistical properties and their realisation within
the framework of stochastic intermittency fields, namely self-scaling of correlators [9] and
the representation of three-point statistics in terms of two-point statistics [2,10]. These
temporal statistical properties are well represented within stochastic intermittency fields
and their empirical verification has been done for the statistics of the energy dissipation
in isotropic and homogeneous turbulent flows [9,10,13]. One of our main results is that
the statistical properties displayed by correlators in homogeneous and isotropic flows are
also observed in non-homogeneous and non-isotropic situations where an interpretation in
terms of spatial structures is not possible. Thus, our analysis shows that these specific sta-
tistical properties of correlators are not necessarily related to spatial dynamics and as such
are genuine time wise properties. Based on that, we propose that stochastic intermittency
fields and the statistical properties implied by them may be of relevance in a wider range
of applications than previously anticipated.
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The paper is organised as follows. In Section 2, we give some background on the
data we analysed and briefly outline the analysis of the generalised turbulence intensity as
reported in [21]. Section 3 introduces stochastic intermittency fields together with some
of their most important statistical properties. We examine these statistical properties for
the generalised turbulence intensity in Section 4. Section 5 concludes and summarises the
main results.

2. The Generalised Turbulence Intensity

Our data set is recorded within the von Kármán Experiment (VKE), performed at the
Commissariat á l’Énergie Atomique in Paris. The experiment consists of a realisation of
the von Kármán swirling flow, inertially-driven between two disks fitted with blades, and
with Reynolds number Re = 105, described in detail in [22].

The fluid is seeded with passive particles that sample the fluid velocity field on a
11× 17 spatial point grid by means of Laser Doppler Velocimetry (LDV). The measurements
provide the azimuthal component of the velocity vector with an average data rate of
∼0.5 kHz. Following the recommendation in [23], time series affected by spurious data and
boundary effects are discarded in the present analysis implying that, out of the original
187 time series, only 18 are retained. In [23], the authors state that, for these 18 time series,
they are confident that the LDV is capable of measuring the vertical velocity component.
The location of the 18 measurement points within the experimental device is sketched
in Figure 1.

Figure 1. Location of the measurement points within the experimental device used in the
present analysis.

The velocities of the tracer particles are measured over a fixed period T0 = 3600 s. The
sample size at each location depends on the number of tracer particles passing by, implying
that the length of the measured time series is ranging from n = 1,435,270 to n = 2,462,311.
Moreover, the measurements are not equidistant.

In [21], different realisations of the VKE, sampled by Stereoscopic Particle Image
Velocimetry, are considered, producing equidistant time series of velocities on a 58× 58
point grid. The data rate is lower and the time series are shorter compared to the LDV case.
The authors then introduce a so-called generalised turbulence intensity

δ̃(t) =
〈v2(t)〉
〈v2〉 (1)

where 〈·〉 denotes spatial averaging and · denotes time wise averaging. Here, and in
what follows, spatial averaging refers to an ensemble average of the time series after
regularisation in time [23]. This quantity measures the contribution of the instantaneous
kinetic energy of the field to the kinetic energy of the mean field. The spatial averaging in
(1) turns it into a global observable for the VKE.

It is argued in [21] that the generalised turbulence intensity (1) serves as a quantitative
measure for the level of fluctuations compared to the mean flow and their ability to disturb
the mean flow. This characterisation relies on two parameters, the mean value and variance
of δ̃. It is important to note that one of the main arguments behind this point of view
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is the assumption of a Gaussian probability density function (pdf) for δ̃. Moreover, the
analysis in [21] solely focuses on marginal statistical properties, not taking into account
the dynamics of δ̃. In Section 4, we will show that the Gaussian assumption may well be
questioned for our data set and that the dynamical behaviour of a slightly modified version
of the generalised turbulence intensity reveals distinct statistical properties that may serve
to better characterise the various realisations of the VKE experiments.

The analysis performed in Section 4 requires evenly spaced time series. To overcome
the problem of irregular sampling in time in our data set, we define a suitable regular
partition of the total time interval [0, T0] in each of our time series and, as a consequence,
slightly modify definition (1). We choose a constant time interval ∆t as the global average
waiting time for five measurements in the whole data set. We verified that, in this way,
we avoid considering time intervals without any measurement, with no drastic decrease
in the length of the resulting time series and of the corresponding sampling frequency. A
reasonable value is ∆t = 9.27 ms. We then define evenly spaced time points tm = m · ∆t,
m = 0, 1, . . . , M, M =

⌊
T0
∆t

⌋
= 388,267.

Considering this partition, we replace the instantaneous value of the velocity compo-
nent v(t) in (1) by the mean velocity within each time step

v(tm) =
1
n

n

∑
h=1

vh,

where n is the number of measurements vh in ]tm−1, tm]. The modified expression for the
generalised turbulence intensity then reads

δ(tm) =
〈v2(tm)〉
〈v2〉 . (2)

3. Stochastic Intermittency Fields

Stochastic intermittency fields have been introduced as a suitable stochastic framework
that accounts for the specific scaling behaviour of correlators of the turbulent energy
dissipation [1]. These fields predicted statistical properties that go beyond the original
motivation by scaling of correlators and were subsequently verified empirically [9,10].
Relevant for the present analysis of the generalised turbulence intensity δ (2) with respect
to stochastic intermittency fields are self-scaling of correlators (9) and a specific relation
between three-point correlators and two-point correlators (11).

3.1. Lévy Based Model Construction

The basic ingredient for the construction of stochastic intermittency fields is that of an
infinitely divisible and independently scattered random measure, called a Lévy basis. Such
measures associate an infinitely divisible random variable to any bounded subset of the
underlying space S. For disjoint subsets, the associated variables are independent, and the
random variable associated with a disjoint union of sets almost surely equals the sum of
the random variables associated with each of the individual sets (see [24,25] and references
therein for more detail and mathematical rigour).

Here, we restrict to the case of a homogeneous Lévy basis, where the distribution
of the measure does not depend on the localisation of the subset and where the control
measure is proportional to the Lebesgue measure. In this case, it is straightforward to
define integrals with respect to the Lévy basis.

Let Z be a homogeneous Lévy basis on S ⊂ Rn. Then, for x ∈ S, we choose S′(x) ⊂ S,
x ∈ S′(x), and define a stochastic intermittency field as

y(x) = exp
{∫

S′(x)
h(a)Z(da)

}
,
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where h is a deterministic kernel (subject to some minor conditions to ensure the existence
of the above integral).

We have the fundamental relation

E
{

exp
[∫

S′
h(a)Z(da)

]}
= exp

{∫
S′

K[h(a)]da
}

, (3)

where E denotes the expectation and K[·]da denotes the cumulant function of Z(da),
defined by

ln E{exp(ξZ(da))} = K[ξ]da. (4)

Relation (3) allows for explicitly calculating and modelling the correlation structure of
the stochastic intermittency field y.

A particular simple example of a stochastic intermittency field is

ε(x) = exp
{∫

S′(x)
Z(da)

}
, (5)

where S′(x) = x + S0 for some fixed S0 ⊂ S, x ∈ S. The set S′ is termed ambit set in [26]
(a comprehensive account of so-called ambit stochastics may be found in [25]). Since the
shape and size of the ambit set S′ does not depend on the location x, the resulting process ε
is homogeneous.

The simplified model (5) has been used in [9,10,13] to model cascade processes that
capture the statistics of the energy dissipation in homogeneous, isotropic, and stationary
turbulent flows. For that, the shape of S0 has been chosen such that correlators and
moments of the coarse grained field display scaling relations. Such scaling relations are
considered as defining properties of an underlying cascade process [8].

3.2. The Self-Scaling Property

Depending on the shape and size of the ambit set S0, a wide range of correlations can
be modelled. In what follows, we focus on statistical properties that are independent of
the shape and size of the ambit set and are solely due to the multiplicative structure of
stochastic intermittency fields of type (5).

The multiplicative structure inherent to (5) can be characterised using k-point correla-
tors of order~n = (n1, . . . , nk) defined as

c~n(x1, . . . , xk) =
E{ε(x1)

n1 · · · ε(xk)
nk}

E{ε(x1)n1} · · ·E{ε(xk)nk} . (6)

These correlators can all be expressed in terms of the Euclidean volume of overlaps
V(S′(xi) ∩ S′(xj)), i, j = 1, . . . , k and the corresponding constants

K[ni, nj] = K[ni + nj]−K[ni]−K[nj]. (7)

For k = 2 and~n = (n1, n2), one obtains

c~n(x1, x2) = exp
{

K[n1, n2]V(S′(x1) ∩ S′(x2))
}

. (8)

Here, the properties of the underlying Lévy basis are separated from the properties of
the associated sets S′, which allows for representing correlators of order ~m = (m1, m2) as a
scaling relation of correlators of order~n = (n1, n2) [9]

c~m(x1, x2) = c~n(x1, x2)
r(~m,~n) (9)

where

r(~m,~n) =
K[m1, m2]

K[n1, n2]
. (10)
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This self-scaling property is independent of the shape and size of the associated ambit
sets S′ (and thus independent of the specific behaviour of the correlators) and only depends
on the properties of the underlying Lévy basis.

It is important to note that processes revealing scaling relations for two-point correla-
tors trivially exhibit self-scaling of correlators. For the energy dissipation in homogeneous
and isotropic flow situations, the important observation is that the range where self-scaling
is observed considerably extends the range where scaling of correlators is detected [9].

3.3. Three-Point Correlators

The second fingerprint of an underlying stochastic intermittency field of the type (5)
that is independent of the shape and size of the ambit set concerns the behaviour of three-
point correlators in terms of two-point correlators. We illustrate the relation between
three-point correlators and two-point correlators in a simplified setting. For simplicity, we
set E{ε(x)} = 1, i.e., K[1] = 0, without loss of generality. We also specify the underlying
space to be S = R (for the sake of simplicity) and the associated ambit sets as S′(x) =
[x − L, x], where L > 0 denotes a decorrelation distance. The three-point correlators of
order~n = (1, 1, 1) for x1 ≤ x2 ≤ x3 can then be expressed in terms of two-point correlators
as (see [2,10] for details of the derivation in a more general setting)

c~n(x1, x2, x3) = exp
{

K[2]V((S′(x1) ∩ S′(x2)) \ S′(x3))
}

exp
{

K[2]V((S′(x2) ∩ S′(x3)) \ S′(x1))
}

exp
{

K[3]V(S′(x1) ∩ S′(x3))
}

=
c(1,1)(x1, x2)

c(1,1)(x1, x3)

c(1,1)(x2, x3)

c(1,1)(x1, x3)
c(2,1)(x1, x3)c(1,1)(x1, x3)

=c(1,1)(x1, x2)c(1,1)(x2, x3)c(1,1)(x1, x3)
r((2,1),(1,1))−1. (11)

Three-point correlators of order (1, 1, 1) are completely determined by the two-point
correlators of order (1, 1) and the self-scaling exponent r((2, 1), (1, 1)). Equation (11) is the
second implication of an underlying stochastic intermittency field of the type (5) that we
will confront the generalised turbulence intensity δ with.

Formula (11) is derived here for the simple case of ambit sets in R. However, as was
shown in [2], a corresponding identical relation can also be derived for more general ambit
sets in Rn as long as the positions x1, x2, and x3 are along the same coordinate axis and
the associated ambit sets have a finite Euclidean volume. Furthermore, it can be shown
that arbitrary n point correlators can be expressed in terms of two-point correlators and a
suitable set of self-scaling exponents.

4. Statistical Properties of the Generalised Turbulence Intensity

In the following sections, we analyse the generalised turbulence intensity δ with
respect to two-point and three-point statistics and provide empirical evidence for the
properties (9) and (11). We complement the analysis by a discussion of the marginal
law of δ within the class of normal inverse Gaussian distributions and emphasise the
non-Gaussian character in relation to the analysis performed in [21].

4.1. Marginal Distribution of the Generalised Turbulence Intensity

The assumption of a Gaussian distribution for the generalised turbulence intensity is
the starting point for the characterisation of different experimental realisations of the VKE
in [21]. Here, we analyse the log amplitude of the generalised turbulence intensity δ within
the class of normal inverse Gaussian (NIG) distributions which constitute a parsimonious
and flexible class of infinitely divisible distributions that include the Gaussian law as a
limiting case (see Appendix A). It is natural to investigate the distribution of log δ which
in the framework of stochastic intermittency fields of type (5) relates to the law of the
underlying Lévy basis.
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Figure 2 shows the probability density function (pdf) of δ together with the corre-
sponding approximations obtained from a fit of the pdf of δ within the class of Gaussian
distributions and a fit of the pdf of log δ within the class of NIG distributions. The estimated
log-NIG distribution excellently fits the empirical density and is clearly superior to the
Gaussian distribution, able to capture the asymmetry and the detailed tail behaviour. The
mean squared error [27] of the Gaussian approximation is 5.3× 10−4, while that for the
approximation within the class of NIG distributions is 2.6× 10−6. The maximum likelihood
estimates of the parameters of the NIG distribution are µ = 2.087, δ = 1.066, α = 40.269,
and β = −28.708. The four parameters for the NIG distribution reflect the four main
properties of the pdf of δ, the mean, the variance, and the specific tail behaviour including
its asymmetry (see Appendix A for details).
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Figure 2. The probability density function of the generalised turbulence intensity δ (dots). Compari-
son between a Gaussian approximation (dashed line) for δ and an approximation within the class of
normal inverse Gaussian distributions (solid line) for log δ in linear-logarithmic representation.

It is of interest to inquire the dynamical role of the additional parameters of the NIG
distribution in relation to the analysis performed in [21] based on the assumption of a
Gaussian distribution for δ. This is, however, outside the scope of the present analysis and
postponed to a forthcoming study. Another interesting point is the fact that a similar analy-
sis within the class of NIG distributions has been performed for the energy dissipation in
various homogeneous and isotropic turbulent experiments [13] with similar excellent fits.

4.2. Two-Point Correlators of δ

As a first dynamical statistical property of δ, we analyse two-point correlators c~n(∆)
of δ,~n = (n1, n2), where ∆ denotes the time lag ∆ = t2 − t1 ≥ 0 and where

c~n(∆) =
E{δ(t1)

n1 δ(t2)
n2}

E{δ(t1)n1}E{δ(t2)n2} (12)

only depends on ∆ due to stationarity of δ(t).
Figure 3 shows these correlators for~n = (1, 1), (1, 2) and (2, 2). With increasing order

~n, the scatter at large time lags increases and we therefore restrict the discussion to the
relatively low orders displayed in Figure 3.
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Figure 3. Logarithm of two-point correlators c(n1,n2) (12) of orders (n1, n2) = (1, 1) (solid line), (1, 2)
(dashed line) and (2, 2) (dotted line) as a function of ∆ (in logarithmic representation).

Figures 4 and 5 show the functional dependence between correlators of different
orders in double logarithmic representation. A self-scaling relation of the form

c~m(∆) = c~n(∆)
r(~m,~n) (13)

will result in a straight line where the slope is given by the self-scaling exponent r. Self-
scaling of correlators is well established for the generalised turbulence intensity δ and
holds for all time lags ∆ covered by Figure 3. The estimated self-scaling exponents are
r((1, 2), (1, 1)) = 1.92 and r((2, 2), (1, 1)) = 3.69. The ratio of these exponents may be
expressed as, using (7) and (10),

r((2, 2), (1, 1))
r((1, 2), (1, 1))

=
K[4]− 2K[2]

K[3]− K[2]− K[1]
.

For a Gaussian Lévy basis of an underlying stochastic intermittency field, this ratio is
2. In the present analysis, we get a ratio of 1.95 expressing the fact that the Lévy basis is not
Gaussian, but not too far away from the Gaussian case with respect to the modelling of the
low order moments of the generalised turbulence intensity.

The self-scaling exponents r((1, 2), (1, 1)) and r((2, 2), (1, 1)) are estimated from the
empirical correlators and the relation

log c~m(∆) = r(~m,~n) log c~n(∆)

using least-squares estimation. Another possibility is to extract these exponents directly
from the correlators at ∆ = 0 and the marginal law of the generalised turbulence intensity.
For ∆ = 0, the self-scaling relation (9) may be written as, assuming a NIG distribution for
the generalised turbulence intensity and using the cumulant function (A2),
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r((1, 2), (1, 1)) =
log c(2,1)(0)
log c(1,1)(0)

=
log E{δ3} − log E{δ2} − log E{δ}

log E{δ2} − 2 log E{δ}

=
−
√

α2 − β2 −
√

α2 − (β + 3)2 +
√

α2 − (β + 2)2 +
√

α2 − (β + 1)2

−
√

α2 − β2 −
√

α2 − (β + 2)2 + 2
√

α2 − (β + 1)2

and

r((2, 2), (1, 1)) =
log c(2,2)(0)
log c(1,1)(0)

=
log E{δ4} − 2 log E{δ2}
log E{δ2} − 2 log E{δ}

=
−
√

α2 − β2 −
√

α2 − (β + 4)2 + 2
√

α2 − (β + 2)2

−
√

α2 − β2 −
√

α2 − (β + 2)2 + 2
√

α2 − (β + 1)2
.

Inserting the estimated values α = 40.269 and β = −28.708 from the fitted NIG
distribution for the generalised turbulence intensity gives the values r((1, 2), (1, 1)) =
1.91 and r((2, 2), (1, 1)) = 3.66 which are very close to those shown in Figures 4 and 5,
thus confirming the appropriateness of the NIG distribution as the marginal law of the
generalised turbulence intensity.

Self-scaling of correlators is a characteristic feature of the dynamics of the turbulent
energy dissipation in homogeneous and isotropic flows [9]. There, stochastic intermittency
fields interpreted as spatial continuous cascade processes using TFFH provide a theoretical
framework for this striking observation. However, in the present analysis, the flow is not
homogeneous and isotropic. Due to the performed spatial averaging in the definition of
δ (2), self-scaling of correlators can not be related to spatial structures and is thus established
here as a genuine property of time series.
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.0

4
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.0

6
1
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8

c(1,1)

c
(1

,2
)

Figure 4. Correlator c(2,1) as a function of c(1,1) (◦) in double logarithmic representation. The solid
line indicates the self-scaling property (13).
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Figure 5. Correlator c(2,2) as a function of c(1,1) (◦) in double logarithmic representation. The solid
line indicates the self-scaling property (13).

4.3. Three-Point Correlators of δ

As a further indication of the relevance of stochastic intermittency fields in the present
context, we examine the generalised turbulence intensity δ with respect to the predictability
of three-point correlators from estimated two-point correlators as outlined in Equation (11).
The self-scaling exponent r((2, 1), (1, 1)) entering (11) is extracted from Figure 4 by esti-
mating the slope of log c(2,1) as a function of log c(1,1). To facilitate the representation, we
choose a reference time lag T well inside the range of time lags where correlations are
observed, T ≤ L (i.e., where two-point correlators do not factorise and are not identical to
one) and consider the three-point correlators as a function of the time lag ∆ ≥ 0

c(1,1,1)(∆) =
E{δ(t)δ(t + T)δ(t + ∆)}

E{δ(t)}E{δ(t + T)}E{δ(t + ∆)} .

Equation (11) then translates into, using (12),

c(1,1,1)(∆) =c(1,1)(min{∆, T})c(1,1)(max{T − ∆, ∆− T})
c(1,1)(max{∆, T})r((2,1),(1,1))−1. (14)

Figures 6 and 7 show the empirical three-point correlators for T = 100 and T = 300,
respectively, compared to the prediction by stochastic intermittency fields as established
in Equation (14). Similar results also hold for other choices of T (not shown). The peaks
are located at ∆ = T with values c(2,1)(T). The correspondence between data and theory
is excellent and clearly confirms that three-point correlations of time series of δ are in
accordance with those reflecting stochastic intermittency fields of type (5).
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Figure 6. Comparison between empirical (◦) three-point correlators and the theoretical (solid line)
three-point correlator c(1,1,1) (14) for T = 100.

0 100 200 300 400 500 600

1
.0

0
1

.0
2

1
.0

4
1

.0
6

∆

c
(1

,1
,1

)(
∆
)

Figure 7. Comparison between empirical (◦) three-point correlators and the theoretical (solid line)
three-point correlator c(1,1,1) (14) for T = 300.

5. Discussion

Motivated by statistical properties observed for the energy dissipation in homoge-
neous and isotropic turbulent flows, the statistical properties of the generalised turbulence
intensity in a non-homogeneous and non-isotropic flow situation are analysed in relation
to characteristic statistics implied by stochastic intermittency fields. We observe a close
resemblance with respect to the type of marginal distributions and the statistical properties
of two-point and three-point correlators.
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The present study reveals for the first time the appropriateness and superiority of
NIG distributions compared to Gaussian distributions for the description of the marginal
law of the generalised turbulence intensity. We have shown that the marginal law of the
generalised turbulence intensity is parsimoniously described by a log-NIG distribution that
takes into account the asymmetry and non-Gaussianity of the tails observed for the data.
Compared to Gaussian approximations, this wider class of distributions is still tractable in
the sense that its characteristic function is explicitly known (see Appendix A). Moreover,
NIG distributions are infinitely divisible and as such may serve as the underlying Lévy
basis in a stochastic intermittency framework.

Going beyond the one-point statistics, a detailed analysis of higher order correlations
of the generalised turbulence intensity provides evidence for novel stylised dynamical
statistical features. In particular, we report for the first time the predictability of higher
order correlations from two-point correlations. We have also shown that the generalised
turbulence intensity reveals the dynamical behaviour characteristic for stochastic intermit-
tency fields of type (5), and supplements the statistical analysis by providing a stochastic
model that captures the observed statistical features. We observe self-scaling of correlators,
a simple relation between two-point statistics of different orders, and a specific relation
between three-point correlators and two-point correlators. In this sense, the dynamics
are also described in a parsimonious way since only lowest order two-point statistics and
the self-scaling exponents are needed to describe higher order two-point statistics and
multi-point statistics. It remains to be examined how these additional characteristics are
useful to qualitatively and quantitatively describe different flow realisations within the
VKE experimental set-up in the spirit of [21].

To the best of the author’s knowledge, the proposed framework of a stochastic inter-
mittency field of type (5) is the first explicit and analytically tractable stochastic model to
describe the generalised turbulence intensity in a von Kármán Experiment. Its applicability
relies on the presence of self-scaling of correlators and a specific relation between higher
order correlators and two-point correlators. A full characterisation of the model requires
the specification of the underlying Lévy basis and the shape and size of the associated
ambit set. In the present case where the two-point correlators are monotonically decreas-
ing, the shape and size of the ambit set can be estimated under the assumption that it is
bounded by a monotonic function [9]. The underlying Lévy basis may then be estimated
from the marginal distribution of the amplitude of the stochastic intermittency field using
the knowledge of the shape and size of the associated ambit set [13]. A detailed analysis
along these lines will be subject to a forthcoming publication.

The similarity between the statistical properties of the generalised turbulence intensity
(which is based on a spatial average) to what is observed for the energy dissipation in
homogeneous and isotropic situations is striking and clearly shows that these characteristic
statistical properties of stochastic intermittency fields may be observed in the time domain
without reference to any underlying homogeneous and isotropic spatial process. We thus
conclude that the observed statistical properties of self-scaling of two-point correlators and
the relation between three-point correlators and two-point correlators are of relevance in
more general situations than previously reported.

In this respect, it is also important to note that the specific dynamics of correlators are,
in the present analysis, not related to a multifractal character of the analysed time series as
is the case for time series of the energy dissipation in homogeneous and isotropic turbulent
flows. Such a multifractality would show itself in a scaling relation for the moments of the
coarse-grained intensity defined as

Mn(t) = E
{(

1
t

∫ t

0
δ(s)ds

)n}
. (15)

Figure 8 displays M2(t) as a function of t in double logarithmic representation. No
clear scaling behaviour can be detected. It can, however, be shown [2,9] that a pronounced
scaling behaviour of M2 implies scaling of c(1,1) from which scaling of c(n1,n2)

may be
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expected, which, in turn, trivially implies self-scaling of correlators. Since such a sufficient
scaling of M2 or c(n1,n2)

is not observed, self-scaling of two-point correlators may be
attributed to a general class of processes that extends the class of cascade processes with
multifractal scaling. Stochastic intermittency fields are a promising candidate for such a
class of processes.
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Figure 8. Second order moment M2(t) (15) in double logarithmic representation.
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Appendix A. Normal Inverse Gaussian Distributions

The normal inverse Gaussian (NIG) distribution is a four-parameter family of distri-
butions with density function

fα,β,µ,δ(x) =
αeδγ

π
eβ(x−µ)

K1

(
δαq
(

x−µ
δ

))
q
(

x−µ
δ

) , (A1)

where µ ∈ R, δ ∈ R+, 0 ≤ |β| < α, γ =
√

α2 − β2, q(x) =
√

1 + x2 , and K1 denotes the
modified Bessel function of the second kind with index 1. The parameters α and β are
shape parameters, µ determines the location, and δ determines the scale. We denote the
distribution by NIG(α, β, µ, δ).



Symmetry 2021, 13, 1752 13 of 14

The cumulant function K(z; α, β, µ, δ) = log E[exp{zV}] of a random variable V with
distribution NIG(α, β, µ, δ) is given by

K(z; α, β, µ, δ) = zµ + δ

(
γ−

√
α2 − (β + z)2

)
. (A2)

It follows immediately from this that the normal inverse Gaussian distribution is
infinitely divisible. Namely, if Xi ∼ NIG(α, β, µi, δi), i = 1, 2, are independent random
variables, then we have X1 + X2 ∼ NIG(α, β, µ1 + µ2, δ1 + δ2).

It is useful to represent NIG distributions in the so-called shape triangle based on the
asymmetry and steepness parameters χ and ξ defined by

ξ = (1 + γ)−1/2, χ = ρξ,

where ρ = β/α and γ = δγ = δ
√

α2 − β2. The range of χ and ξ defines the NIG
shape triangle

{(χ, ξ) : 0 < ξ < 1,−ξ < χ < ξ}.
When χ = 0, the NIG distribution is symmetric. Values χ > 0 correspond to positively

skewed distributions and χ < 0 to negatively skewed distributions. The heaviness of the
tails is characterised by the steepness parameter ξ. The normal distribution corresponds to
the lower limit ξ = 0.

The NIG law has a wide range of applications. For more details about this distribution
and their applications, we refer to [28–31] and references therein.
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