
symmetryS S

Article

A Two-Phase Algorithm for Robust Symmetric Non-Negative
Matrix Factorization

Bingjie Li , Xi Shi and Zhenyue Zhang *

����������
�������

Citation: Li, B.; Shi, X.; Zhang, Z.

A Two-Phase Algorithm for Robust

Symmetric Non-Negative Matrix

Factorization. Symmetry 2021, 13,

1757. https://doi.org/10.3390/

sym13091757

Academic Editor:

Juan Luis García Guirao

Received: 7 August 2021

Accepted: 17 September 2021

Published: 20 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mathematics Science, Yuquan Campus, Zhejiang University, Hangzhou 310038, China;
11535017@zju.edu.cn (B.L.); 22035035@zju.edu.cn (X.S.)
* Correspondence: zyzhang@zju.edu.cn

Abstract: As a special class of non-negative matrix factorization, symmetric non-negative matrix
factorization (SymNMF) has been widely used in the machine learning field to mine the hidden
non-linear structure of data. Due to the non-negative constraint and non-convexity of SymNMF, the
efficiency of existing methods is generally unsatisfactory. To tackle this issue, we propose a two-phase
algorithm to solve the SymNMF problem efficiently. In the first phase, we drop the non-negative
constraint of SymNMF and propose a new model with penalty terms, in order to control the negative
component of the factor. Unlike previous methods, the factor sequence in this phase is not required
to be non-negative, allowing fast unconstrained optimization algorithms, such as the conjugate
gradient method, to be used. In the second phase, we revisit the SymNMF problem, taking the
non-negative part of the solution in the first phase as the initial point. To achieve faster convergence,
we propose an interpolation projected gradient (IPG) method for SymNMF, which is much more
efficient than the classical projected gradient method. Our two-phase algorithm is easy to implement,
with convergence guaranteed for both phases. Numerical experiments show that our algorithm
performs better than others on synthetic data and unsupervised clustering tasks.

Keywords: symmetric non-negative matrix factorization; low-rank approximation; non-linear
conjugate gradient method; projected gradient method; data clustering

1. Introduction

A large amount of data in the real world, such as images and texts, are non-negative.
Non-negative matrix factorization (NMF) [1] is a special low rank factorization approach
for these non-negative data. NMF aims to decompose a non-negative matrix X ∈ Rm×n

into the product of two non-negative matrices W ∈ Rm×r (r << min{m, n}) and H ∈ Rn×r,
that is,

min
W,H≥0

‖X−WHT‖2
F, (1)

where ‖ · ‖F is the Frobenius norm of a matrix. Due to the non-negativity of W and H,
NMF has better interpretability than unconstrained matrix factorization. For images, the
columns of W can be interpreted as the basis images, and the columns of H can be seen
as the linear combinations of these basis images. Since the number of basic images is
much smaller than the dimensionality of the original images, H can be regarded as a
low-dimensional representation of X. Generally, the clustering performance on H is better
than that on the original data X. Due to the above advantages of NMF, it has been widely
used in object recognition [2], face feature extraction [3], blind source separation [4], hyper-
spectral imaging processing [5], and many others. In recent years, in order to improve the
representation ability of NMF, a variety of constrained NMF models have been proposed,
including Sparse NMF [6], orthogonal NMF [7] and graph regularized NMF [8]. For a
survey of NMF, we recommend [9,10].

Symmetry 2021, 13, 1757. https://doi.org/10.3390/sym13091757 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0294-4294
https://doi.org/10.3390/sym13091757
https://doi.org/10.3390/sym13091757
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13091757
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13091757?type=check_update&version=2

Symmetry 2021, 13, 1757 2 of 16

In recent years, symmetric non-negative matrix factorization (SymNMF) has become
a competitive low-rank approximation approach in pattern mining. Given a symmetric
non-negative matrix A ∈ Rn×n, SymNMF aims to find a non-negative matrix H ∈ Rn×r ,
in order to solve

min
H≥0

1
4
‖A− HHT‖2

F, (2)

where r << n is given in advance. SymNMF can be regarded as a special form of NMF
in (1), requiring W = H. However, there are significant differences between the two
approaches. In SymNMF, the matrix to be decomposed is the affinity matrix of the data,
instead of the data matrix itself in NMF. SymNMF obtains a low-dimensional representa-
tion of the data, where the non-negative constraint on the representation makes the class
information easy to distinguish. When different classes cannot be separated linearly, the ef-
fect of SymNMF is often better than that of the original NMF and its variants. In addition,
SymNMF is closely related to fuzzy clustering [11]. Let x1, . . . , xn be n independent data
points, and C1, . . . , Cr are the r clusters to which the above data points belong. Assuming
that the probability that the data point xi belongs to the category Cj is pij, then we have
Σr

j=1 pij = 1. Given a similarity matrix A = (aij) such that aij equals the probability that xi
and xj belongs to the same cluster, it has been proved in [12] that the SymNMF of A can
recover P = (pij). Thus, the fuzzy clustering of x1, . . . , xn can be done.

SymNMF has been proven to be effective in cluster inference [13], image segmenta-
tion [14], genetic data analysis [15], and so on. It performs better than classical clustering
approaches, such as K-means [16], PCA [17] and spectral clustering [18].

1.1. Existing Methods

Due to the powerful ability of SymNMF in pattern recognition, it has attracted
widespread attention since its introduction. Most of the algorithms used for solving
(2) are derived from variants of the NMF algorithms, mainly due to the correlation between
SymNMF and NMF. Generally speaking, the mainstream algorithms used for SymNMF can
be divided into three variants: multiplicative update, coordinate descent, and asymmetric
relaxation. Next, we briefly introduce the ideas and progress of these three variants.

Multiplicative update methods. The earliest research on the use of SymNMF in data
mining can be traced back to the work of Zass and Shashua [12]. They extended the
multiplicative update (MU) algorithm from NMF to SymNMF. However, their algorithm
for SymNMF performed poorly on real-world data sets, mainly because the MU algorithm
has no convergence guarantee and the objective function declines very slowly. In [19],
He et al. proposed two algorithms based on parallel MU; namely, α-SNMF and β-SNMF.
Unlike the matrix–vector operations used by Zass and Shashua, α-SNMF and β-SNMF use
matrix–matrix operations to update the non-negative factor, H. The experiments detailed
in [19] demonstrated that the computational efficiency of α-SNMF and β-SNMF is higher
than that of previous algorithms. In [20], based on the method of He et al., the authors
proposed an accelerated MU (AMU) algorithm, which combines the Nesterov method and
the restart strategy. Experiments have shown that the acceleration strategy proposed in [20]
is more effective than α-SNMF and β-SNMF.

Coordinate descent methods. Inspired by the high efficiency of the coordinate descent
method [21] in NMF, Vandaele et al. extended it to SymNMF [22]. The authors rewrote the
symmetric non-negative matrix factorization as:

min
h1,...,hr≥0

‖A−
r

∑
i=1

hihT
i ‖2

F,

and changed one of {h1, . . . , hr} in each update, where hi (1 ≤ i ≤ r) is the i-th column
vector of H. This approach can obtain a closed-form solution in each iteration. Their
algorithm is named block coordinate descent (BCD) method. However, BCD is not guar-

Symmetry 2021, 13, 1757 3 of 16

anteed to converge to the stationary point of SymNMF, mainly due to the possibility of
multiple solutions in its update. To overcome this weakness of the BCD algorithm, Shi et al.
proposed an inexact block coordinate descent (IBCD) algorithm [23], updating variables by
successively minimizing a sequence of approximations of the objective function. The IBCD
algorithm and its variants are guaranteed to achieve convergence to stationary solutions
under very mild conditions.

Asymmetric relaxation methods. Unlike the above direct algorithms, Kuang et al. [14]
relaxed (2) to

min
W,H≥0

‖A−WHT‖2
F + λ‖W − H‖2

F, (3)

and solved it by updating W and H alternately, where λ > 0 is a pre-determined parameter.
However, the stationary point (W∗, H∗) of the problem (3) cannot provide a SymNMF.
In [14], the author enforced W∗ = H∗ and adopted H∗H∗T as the approximation of A.
However, H∗ may not be a stationary point of the problem (2). The defect of the asymmetric
relaxation was solved in [24], where Zhu et al. proved that, if the coefficient λ in the problem
(3) is large enough, the (W∗, H∗) automatically satisfies W∗ = H∗, and H∗ is a stationary
point of (2). In addition, Zhu et al. extended the hierarchical alternating least squares
(HALS) method [24] from NMF to the symmetric case. The HALS algorithm is superior to
the previous algorithm, in terms of speed and clustering accuracy, according to their report.

Most of the above algorithms guarantee the stationary point of the problem (2).
However, they have two common flaws as follows:

• The existing SymNMF algorithm always restricts the iteration sequence to be non-
negative. Since non-negative constraint problems are more difficult to solve than un-
constrained problems, the efficiency of existing algorithms is still unsatisfactory, even
though coordinate drops or asymmetric relaxation are used to speed up execution.

• The objective function of SymNMF is a quartic function with non-negative constraints,
which is strongly non-convex and has a lot of local optimal solutions. Starting from
different initial points, the existing algorithms will always find different local optima,
leading to loss of robustness.

These two defects limit the application of SymNMF in practice. Hence, there is an
urgent need for a new SymNMF algorithm with high efficiency and robustness.

1.2. Our Contributions

In this article, we aim to find a fast and robust algorithm for SymNMF. We achieve
this goal through the use of a two-phase strategy. In the first phase, we drop the non-
negative constraint and, instead, punish the negative part of H for making H as close to
a non-negative matrix as possible. The unconstrained optimization problem we propose
for use in this phase can be quickly implemented in the non-linear conjugate gradient
method. In the second phase, we directly solve the problem (2), using the non-negative
part of the factor obtained in the first phase as the initial point. Additionally, in the second
phase, we propose an interpolation projected gradient (IPG) method for SymNMF. IPG uses
the quadratic interpolation technique to determine the step length, which can efficiently
obtain the stationary point of the problem (2). Compared with the existing algorithms, our
two-phase method (TPM) has the following advantages:

• In both phases, TPM works quickly and guarantees convergence. In general, the total
running time of TPM is much smaller than that of existing methods.

• Compared with existing algorithms, TPM can obtain SymNMF with a lower approxi-
mation error, and is more robust to the initial point.

• In real-world unsupervised clustering tasks, TPM performs significantly better than
existing methods. TPM can not only obtain higher clustering accuracy in a shorter
time, but also performs very robustly.

Symmetry 2021, 13, 1757 4 of 16

The rest of the paper is organized as follows: In the second section, we discuss the
proposed two-phase method. The convergence analysis of the two phases is also given in
this section. In the third section, we illustrate the superiority of our algorithm, through
multiple simulations and real-world examples. Finally, we provide our conclusions in
Section 4.

2. Two-Phase Method for SymNMF

Due to the non-convexity and non-negativity constraint of (2), existing SymNMF
algorithms face two dilemmas: low efficiency and dependence on the initial point. The two-
phase algorithm we propose in this section solves the above dilemma in a step-by-step
manner. In the first phase, we propose an unconstrained model for SymNMF. It can be
solved quickly, using the non-linear conjugate gradient method, and can provide a non-
negative factor H of A with a small approximation error. In the second phase, we propose a
first-order algorithm, named interpolation projected gradient (IPG) method, which is more
efficient than the classical gradient projection method. Starting from the factor obtained in
the first phase, IPG quickly converges to the stationary point of (2).

2.1. The Unconstrained Model for SymNMF

In the first phase of our algorithm, we consider dropping the non-negative constraint
in (2) and add a penalty term, in order to ensure that the decomposition factor H of A
contains as few negative entries as possible. Our proposed model is:

min
H∈Rn×r

{ f (H) :=
1
4
‖A− HHT‖2

F +
λ

2
‖[H]−‖2

F}, (4)

where λ > 0 is a pre-determined parameter and [H]− represents the negative part of H
(i.e., [H]− = min{H, 0}). Obviously, f (H) is an unconstrained differentiable function, and
it is easy to verify the gradient of f (H) as follows:

∇ f (H) = (HHT − A)H + λ[H]−.

Hence, first-order optimization methods, such as non-linear conjugate gradient methods
(NCG), can be used to solve (4).

Basically, NCG is of the form:

Hk+1 = Hk + αkDk, (5)

where the step length αk > 0 is obtained by some line search methods, and the search
direction Dk is determined by:

Dk =

{
−∇ f (Hk), k = 1,
−∇ f (Hk) + βkDk−1, k > 1,

(6)

where Dk−1 is the search direction of the previous step. The step length αk and combination
coefficient βk determine the convergence behavior of NCG. Among the various forms of βk
in the literature, the Polak–Ribiere–Polyak (PRP) formula [25]

βPRP
k =

〈∇ f (Hk),∇ f (Hk)−∇ f (Hk−1)〉
‖∇ f (Hk−1)‖2

F
(7)

is popular, due to its high efficiency, where 〈·, ·〉 in (7) is the matrix inner product, that
is, for given matrix A = (aij) and B = (bij), 〈A, B〉 = ∑i ∑j aijbij. However, for general
continuous differentiable functions, the PRP formula does not guarantee convergence.
Meanwhile, the direction Dk determined by (7) may not satisfy the descent property; that
is, 〈∇ f (Hk), Dk〉 ≥ 0 may appear for some k.

Symmetry 2021, 13, 1757 5 of 16

In order to improve the convergence properties of the PRP formula, we combine
the PRP method with the steepest descent method, such that the search direction al-
ways satisfies the descent property. For the current iteration point, Hk, we consider the
search direction

Dk(p) := −∇ f (Hk) +
1
2p βPRP

k Dk−1,

where p is an integer. For p = 0, Dk(p) is equivalent to the direction generated by the PRP
formula. While p→ +∞, Dk(p) is the opposite direction of the gradient. Let us consider
the function:

φk(p) := cos〈Dk(p),−∇ f (Hk)〉 =
〈Dk(p),−∇ f (Hk)〉
‖Dk(p)‖F‖∇ f (Hk)‖F

.

As limp→+∞ φk(p) = 1, for a given µ ∈ (0, 1), there must be an integer p such that
φk(p) > µ. For each k, we take:

Dk = Dk(p∗k), s.t. p∗k = arg min{p ∈ N+ : φk(p) > µ} (8)

as the search direction in (5). For each k, the angle between Dk and −∇ f (Hk) is less than
arccos(µ).

After Dk is determined, we need to find a suitable step length αk. Generally, αk should
at least follow an inexact line search criteria. The weak Wolfe condition [26],

f (Hk + αDk) ≤ f (Hk) + ρα〈∇ f (Hk), Dk〉 (9)

〈∇ f (Hk + αDk), Dk〉 ≥ σ〈∇ f (Hk), Dk〉, (10)

has been commonly used, where ρ and σ satisfy 0 < ρ < σ < 1. In our previous work [27],
we proposed a simple strategy combining bisection with interpolation, which can be
used to obtain αk satisfying (9) and (10). Initially, we set α′k,0 = 0, which satisfies (9)
but not (10), and selects a relatively large α′′k,0 > 0, making (9) invalid. Starting from the
interval [α′k,0, α′′k,0], we iteratively generate a sequence of intervals {[α′k,`, α′′k,`]}, such that
each α′k,` satisfies (9) but does not satisfy (10). At the same time, α′′k,` does not satisfy (9).
For the current interval [α′k,`, α′′k,`], we consider the quadratic function q(α) that satisfies the
interpolation conditions:

q(α′k,`) = f (Hk + α′k,`Dk),

q′(α′k,`) = 〈∇ f (Hk + α′k,`Dk), Dk〉,
q(α′′k,`) = f (Hk + α′′k,`Dk).

The minimizer ck,` = arg minα q(α) can be directly obtained by:

ck,` = α′k,` +
α′′k,` − α′k,`

2

−(α′′k,` − α′k,`)q
′(α′k,`)

q(α′′k,`)− q(α′k,`)− (α′′k,` − α′k,`)q
′(α′k,`)

. (11)

We slightly modified ck,` to:

c̃k,` = max
{

ck,`, ηα′k,` + (1− η)α′′k,`
}
∈ (α′`, α′′`), (12)

where η = σ
2(σ−ρ)

. If the Wolfe–Powell conditions (9) and (10) hold for α = c̃k,`, we can
obtain αk = c̃k,`. Otherwise, we continue to shrink [α′k,`, α′′k,`] as follows:

[α′k,`+1, α′′k,`+1] =

{
[α′k,`, c̃k,`], if (9) does not hold for α = c̃`;
[c̃k,`, α′′k,`], otherwise.

(13)

Symmetry 2021, 13, 1757 6 of 16

Using the Lemma 3 in [27], for a decreasing direction Dk, we can always obtain αk
satisfying (9) and (10) in finite steps.

Summarizing the strategy for determining Dk and αk given above, we propose a
modified non-linear conjugate gradient method for solving (4). The detail of the algorithm
can be seen in Algorithm 1, and the parameters of the algorithm are set as ρ = 0.1, σ = 0.4,
µ = 10−3, ε1 = 10−4, and k(1)max = 500. The sequence generated by Algorithm 1 converges
to the stationary point of f (H), according to the following lemma [28].

Algorithm 1 Modified non-linear conjugate gradient method for solving (4).

Require: initial point H0; parameters λ, 0 < ρ < σ < 1, µ ∈ (0, 1), ε1 > 0, k = 0;
and maximum number of iterations k(1)max.

Ensure: an approximate solution H∗.
1: While k ≤ k(1)max,
2: Compute f (Hk), ∇ f (Hk), and set Dk by (8).
3: If ‖∇ f (Hk)‖∞ < ε1 or k = k(1)max, set H∗ = H and terminate the iteration.
4: Otherwise, compute αk by alternatively repeating (12) and (13), until we obtain

α, satisfying (9) and (10), then update Hk+1 = Hk + αkDk.
5: Set k = k + 1.
6: End for

Lemma 1. Let each αk satisfy the Wolfe–Powell conditions (9) and (10) and each Dk satisfy

cos〈Dk,−∇ f (Hk)〉 ≤ µ

for a fixed µ ∈ (0, 1). If ∇ f exists and and is uniformly continuous on the level set
{H : f (H) ≤ f (H0)}, where H0 is the initial point, then the sequence {Hk} generated by
(5) is convergent and limk→∞ ‖∇ f (Hk)‖F = 0.

By the definition of Dk in (8), it is obvious that cos〈Dk,−∇ f (Hk)〉 ≤ µ holds for each
k. Moreover, the Wolfe–Powell conditions (9) and (10) hold for each αk, from the result
in [27]. Therefore, we know that f (Hk) generated by Algorithm 1 is monotone decreasing
and limk→∞∇‖ f (Hk)‖F = 0.

Generally, Algorithm 1 converges very fast. However, the accumulation point H∗

generated by Algorithm 1 might not be non-negative. However, H∗ is approximately
non-negative, due to the penalty term in (4). Hence, we directly truncate H∗ as [H∗]+ =
max{H∗, 0} and regard [H∗]+[H∗]T+ as an approximation of A.

2.2. The Interpolation Projected Gradient Method for SymNMF

The symmetric non-negative matrix [H∗]+[H∗]T+ obtained by Algorithm 1 approxi-
mates A well. However, we observe that [H∗]+ is generally not a stationary point of
the original SymNMF problem (2). This implies that we can find H ≥ 0 such that
‖A− HHT‖F < ‖A− [H∗]+[H∗]T+‖F. This phenomenon inspires us to solve (2) directly,
starting from [H∗]+, until we find the stationary point of (2).

Among all SymNMF algorithms, the projected gradient (PG) method [29] is simple to
implement and has a low computational cost. However, PG suffers from slow convergence,
mainly due to the inefficiency of the method it uses to determine the step length αk. In this
subsection, we revisit PG and modify it to a significantly faster interpolation projected
gradient (IPG) method for SymNMF. Let

g(H) =
1
4
‖A− HHT‖2

F. (14)

It is easy to verify that its gradient has the form:

∇g(H) = (HHT − A)H.

Symmetry 2021, 13, 1757 7 of 16

Given that Hk and 0 < ν < 1, the PG searches for αk = α such that

Hk(α) := [Hk − α∇g(Hk)]+ (15)

satisfies

g(Hk(α)) ≤ g(Hk) + ν〈Hk(α)− Hk,∇g(Hk)〉, (16)

and update Hk+1 = Hk(αk). Given an initial step length α̂ > 0, PG seeks αk by backtracking.
That is, if α̂ does not satisfy (16), we update the step length using α̂← τα̂, where τ ∈ (0, 1)
is a parameter. It has been proven, in [30], that the required αk satisfying (16) can be found
by backtracking in finite steps. However, PG is generally inefficient, as the derivative
information of g(H) is not used by the backtracking strategy.

Given that α̂ does not satisfy (16), let us consider the minimizer c of g(H(α)) on [0, α̂];
that is,

c = arg min
α∈[0,α̂]

g(Hk(α)). (17)

It is not easy to find c, as g(H) is a quartic function and Hk(α) is a polyline. To tackle
this issue, we approximate g(Hk(α)) using the following two steps. First, we approximate
Hk(α) with a straight line:

Ĥk(α) = Hk +
α

α̂
(Hk(α̂)− Hk)

on [0, α̂], noting that Ĥk(0) = Hk(0) = Hk and Ĥk(α̂) = Hk(α̂). Then, we approximate
g(Ĥk(α)) using a quadratic function q(α) that satisfies the interpolation conditions:

q(0) = g(Hk), q(α̂) = g(Hk(α̂))

q′(0) = 〈∇g(Hk),
1
α̂
(Hk(α̂)− Hk)〉.

q(α) can be seen as a rough approximation of g(Hk(α)) and can be minimized by a closed-
form solution. We have:

Lemma 2. The quadratic function q(α) opens upward and has a minimizer, as follows:

c = − α̂

2
〈∇g(Hk), (Hk(α̂)− Hk)〉

g(Hk(α̂))− g(Hk)− 〈∇g(Hk), (Hk(α̂)− Hk)〉
. (18)

Proof. By the definition of q(α), this can be represented as:

q(α) =g(Hk) + 〈∇g(Hk),
1
α̂
(Hk(α̂)− Hk)〉α

+ (g(Hk(α̂))− g(Hk)− 〈∇g(Hk), (Hk(α̂)− Hk)〉)
α2

α̂2 .

To prove Lemma 2, we first prove:

〈∇g(Hk), (Hk(α̂)− Hk)〉 ≤ 0. (19)

To show (19), we denote U = Hk(α̂)− Hk, V = Hk − α̂∇g(Hk), W = Hk, and Y = ∇g(Hk).
Then, we have:

〈∇g(Hk), (Hk(α̂)− Hk)〉 = ∑
s

∑
t

ustyst,

Symmetry 2021, 13, 1757 8 of 16

and

ustyst =

{
−α̂y2

st, vst ≥ 0;
−wstyst, vst < 0.

For negative vst = wst − α̂yst, we have 0 ≤ wst < α̂yst; thus, −wstyst ≤ 0 always
holds. Therefore, each ustyst is non-positive and (19) is true. As α̂ does not satisfy (16), we
further obtain:

g(Hk(α̂))− g(Hk) > ν〈∇g(Hk), (Hk(α̂)− Hk)〉 ≥ 〈∇g(Hk), (Hk(α̂)− Hk)〉,

which implies that

g(Hk(α̂))− g(Hk)− 〈∇g(Hk), (Hk(α̂)− Hk)〉 > 0.

Hence, q(α) opens upward, and its minimizer can be directly obtained as (18).

To keep c from being too large or too small, we modify c to:

ĉ = min{max{c, α̂τ1}, α̂τ2}}, (20)

where τ1 and τ2 satisfying 0 < τ1 < τ2 < 1, are two parameters. If ĉ satisfies (16), we set
αk = ĉ. Otherwise, we update:

α̂ = ĉ, (21)

and repeat (18), (20), and (21), until we find that αk satisfies (16).
We summarize the whole procedure of IPG method in Algorithm 2, with the parame-

ters set as ν = 0.1, τ1 = 0.01, τ2 = 0.1, and k(2)max = 5000. We also terminate the iteration
while the optimal gap [23] is sufficiently small; that is:

‖Hk − [Hk − (Hk HT
k − A)Hk]+‖∞ < ε2,

where [·]+ represents the non-negative part of a matrix, ‖ · ‖∞ represents the largest absolute
value of all entries in a matrix, and ε2 = 10−8. It has been shown in [31] that this gap is
equal to zero if and only if a stationary point of (2) is achieved. IPG guarantees convergence
to the stationary point of (2). We have the following theorem:

Theorem 1. Any accumulation point H∗∗ generated by Algorithm 2 is a stationary point of
problem (2).

Proof. For the current Hk, we claim that the step length αk satisfying (16) can be found
within a finite number of iterations. If the initial α̂ = max{2αk−1, γ} satisfies (16), αk is
directly obtained. Otherwise, by (20) and (21), it is easy to see that α̂ approaches 0 with
updates. Meanwhile, there exists an interval (0, ε), such that (16) holds for any α in it,
where ε is a sufficiently small positive number. Hence, one can always find αk satisfying (16)
within finite iterations. In addition, there exists α′ ∈ (αk, αk

τ1
], such that α′ does not satisfy

(16). The above characteristics of αk satisfy the convergence condition of Theorem 11.5.5
in [28], and the correctness of Theorem 1 can be directly obtained.

Symmetry 2021, 13, 1757 9 of 16

Algorithm 2 Interpolation projected gradient (IPG) method for SymNMF.

Require: initial point H, parameters ν ∈ (0, 1), 0 < τ1 < τ2 < 1, ε2 > 0, k = 0, and
the maximum number of iterations k(2)max.

Ensure: an approximate solution H∗.
1: While k ≤ k(2)max,
2: Compute g(Hk) and ∇g(Hk). If ‖Hk − [Hk − (Hk HT

k − A)Hk]+‖∞ < ε2, termin
-ate the iteration.

3: Set α̂ = max{2αk−1, 10−3}.
4: Alternately repeat (18), (20), and (21), until α̂ satisfies (16). Then, set αk = α̂

and update Hk+1 = [Hk − αk∇g(Hk)]+.
5: Set k = k + 1.
6: End while
7: H∗ = Hk.

Compared with the classical PG method, IPG performs better. To see this, we generated
20 synthetic symmetric non-negative matrices and tested IPG and PG on them. Each of
the generated matrices A = HHT was constructed using a random non-negative factor
H ∈ R200×50, where the entries of H were uniformly distributed in [0, 1]. We set τ1 = 0.01
and τ2 = 0.1 for IPG, and selected τ = 0.01, 0.02, 0.05, 0.1 for PG. The left subgraph of
Figure 1 shows the average SymNMF error

E(H) =
‖A− HHT‖F
‖A‖F

of each algorithm over the CPU time. The efficiency of IPG was always higher than that of
PG, regardless of the parameters of PG.

0 1 2 3 4 5

CPU Time(s)

10-5

10-4

10-3

10-2

10-1

100

S
ym

N
M

F
 E

rr
o

r

IPG vs PG

IPG

PG, = 0.1

PG, = 0.05

PG, = 0.02

PG, = 0.01

0 1 2 3 4 5

CPU Time(s)

10-8

10-6

10-4

10-2

100

S
ym

N
M

F
 E

rr
o

r

IPG vs TPM

IPG

TPM, = 10

TPM, = 20

TPM, = 50

TPM, = 100

Figure 1. The average SymNMF error versus run–time on the synthetic data.

2.3. The Two-Phase Method for Robust SymNMF

Combining Algorithms 1 and 2, we propose our two-phase method (TPM) for Sym-
NMF. Each of these two phases has a unique effect on obtaining a stable SymNMF. The first
phase alleviates the non-convexity of the problem by discarding the non-negativity con-
straints. Meanwhile, in this phase, we designed an NCG algorithm to quickly obtain a
symmetric non-negative approximation of A. Although the convergence point of the first
phase is not a stationary point of (2), it can be used as a good initial point for the second
phase. In the second phase, we proposed the IPG algorithm, which continues to reduce the
SymNMF error and converge to the stationary point of (2) very fast. The combination of
these two phases enables us to efficiently solve the SymNMF problem. We summarize the
whole procedure of TPM in Algorithm 3.

We also compared TPM with IPG on the synthetic symmetric non-negative matrices
generated above. We selected λ = 10, 20, 50, 100 for TPM. The right subgraph of Figure 1

Symmetry 2021, 13, 1757 10 of 16

shows the SymNMF error of each algorithm over the CPU time. The efficiency of TPM was
always higher than that of IPG, regardless of the parameters of TPM.

Algorithm 3 Two-Phase Method (TPM) for SymNMF.

Require: initial point H; parameters λ, 0 < ρ < σ < 1, µ ∈ (0, 1), ν = 0.1, 0 < τ1 < τ2 < 1,
ε1 > 0, ε2 > 0; and maximum number of iterations for each phase k(1)max, k(2)max.

Ensure: a SymNMF factor of A: H∗∗.
1: Starting with H, run Algorithm 1 until ‖∇ f (Hk)‖∞ < ε1 or the number of iterations ex-

ceeds k(1)max. Denote the last Hk obtained by Algorithm 1 as H∗.
2: Set H∗+ = max{H∗, 0}.
3: Starting with H∗+, run Algorithm 2 until ‖Hk − [Hk − (Hk HT

k − A)Hk]+‖∞ < ε2

or the number of iterations exceeds k(2)max. Denote the last Hk obtained by
Algorithm 2 as H∗∗.

3. Numerical Experiments and Comparisons

In this section, we report the numerical performance of our method on both synthetic
data and real-world data, compared to five state-of-the-art SymNMF approaches. The algo-
rithms used for comparison included alternating non-negative least squares (ANLS) [14],
block coordinate descent (BCD) [22], inexact block coordinate descent (IBCD) [23], hierar-
chical alternating non-negative least squares (HALS) [24], and accelerated multiplicative
update (AMU) algorithms [20]. For synthetic data sets, we were concerned about the
decline of the objective function and the convergence behavior near the stationary point.
For real-world data sets, besides the above measurements, we focused on the clustering
performance, in terms of accuracy and stability.

For ANLS, BCD, IBCD, and HALS, we used the respective MATLAB code provided by
the authors. For AMU, we wrote the code ourselves and adopted the default setting for the
parameters recommended by the authors. The parameter λ of TPM could be automatically
set based on the sparsity of the matrix to be decomposed. Generally, one can set λ as

λ ≈ 10nnz
n2 , (22)

where nnz is the number of non-zeros entries in the matrix. In our experiments, according
to (22), we simply set λ = 10 for synthetic examples (dense matrices) and λ = 0.01 for
real-world data sets (sparse matrices). We implemented all the experiments in MATLAB
2020b on a Windows system using a PC with a 1.60 GHz Intel Core i5-8250U CPU and 8 GB
of RAM.

3.1. Synthetic Data

For the synthetic data sets, as in Section 2.2, we generated 20 symmetric non-negative
matrices A = HHT by randomly constructing a non-negative factor H ∈ Rn×r , where
n = 200, r = 50, and the entries of H are uniformly distributed in [0, 1]. Note that A is a
completely positive matrix [32]; that is, A has an exact SymNMF.

To comprehensively evaluate the various algorithms, we adopted two criteria for the
performance of SymNMF. The first one was the SymNMF error:

E(t) =
‖A− H(t)H(t)T‖F

‖A‖F
, (23)

where H(t) represents the factor H achieved by an algorithm for a given initialization
within t seconds. The other criterion was the optimal gap:

G(t) = ‖H(t)− [H(t)− (H(t)H(t)T − A)H(t)]+‖∞ (24)

Symmetry 2021, 13, 1757 11 of 16

mentioned in Section 2.2. Recall that G(t) is equal to zero if and only if H(t) is a stationary
point of (2). For each matrix, we executed all algorithms 10 times with different initial
points, and stopped them when their elapsed time exceeded 5 s. The initial point was
randomly generated in the form of κ∗H0 [22], where H0 is uniformly distributed in [0, 1]
and κ∗ satisfies

κ∗ = arg min
κ>0
‖A− (κH0)(κH0)

T‖F =

√
〈AH0, H0〉
‖HT

0 H0‖2
F

. (25)

Figure 2 shows the average E(t) and G(t) over 200 trials for each algorithm. We
observed the following:

• The efficiency of TPM was much better than that of all other algorithms. This advan-
tage was not only reflected in the decrease in the SymNMF error, but also in the speed
at which the iteration approached a stationary point.

• TPM was capable to obtain SymNMF with better quality, compared to other algo-
rithms. The average SymNMF error of TPM was less than 10−5, while the best result
of the other SymNMF algorithms could only achieve an average SymNMF error of
about 10−3.

The above observations demonstrate that TPM not only converged faster than other ap-
proaches but also could obtain SymNMF with lower error.

0 1 2 3 4 5

CPU Time(s)

10
-5

10
-4

10
-3

10
-2

10
-1

E
(t

)

TPM

BCD

IBCD

ANLS

HALS

AMU

0 1 2 3 4 5

CPU Time(s)

10
-2

10
0

10
2

G
(t

)
TPM

BCD

IBCD

ANLS

HALS

AMU

Figure 2. The average E(t) and G(t) (from left to right) of six SymNMF algorithms versus run–time
on the synthetic data.

3.2. Real-World Data

In this subsection, we evaluated the performance of TPM and other SymNMF algo-
rithms in real-world data sets from three perspectives: the SymNMF error, the clustering
accuracy, and the stability. Given the affinity matrix A ∈ Rn×n of a data set {x1, . . . , xn},
SymNMF searched for a non-negative factor H ∈ Rn×r satisfying A ≈ HHT , where r is the
number of classes in the data set. The label of H was determined by the position of the
largest component of each row of H; that is,

`(xi) = arg max
j
{hi1, . . . , hij, . . . , hir}.

where hij (1 ≤ i ≤ n, 1 ≤ j ≤ r) is the entry of the i-th row and j-th column of H.
We conducted experiments on four data sets: COIL-20 [33] (https://www.cs.columbia.

edu/CAVE/software/softlib/coil-20.php, accessed on 29 March 2021), ORL [34] (http:
//www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html, accessed on 19 April
2021), PIE [35] (http://www.ri.cmu.edu/research_project_detail.html?project_id=418&
menu_id=261, accessed on 27 April 2021), and TDT2 [36] (https://www.ldc.upenn.edu/

https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261
http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261
https://www.ldc.upenn.edu/collaborations/past-projects
https://www.ldc.upenn.edu/collaborations/past-projects
https://www.ldc.upenn.edu/collaborations/past-projects

Symmetry 2021, 13, 1757 12 of 16

collaborations/past-projects, accessed on 7 May 2021). Detailed information of these data
sets is given in Table 1.

Table 1. Data sets used in our experiments.

Data Name Type Dimension # Data Points # Clusters

COIL-20 object 32 × 32 1440 20
ORL face 92× 112 400 40
PIE face 32× 32 2856 68

TDT2 document 36,771 8741 20

The affinity matrix for each data set was constructed following the procedures given
in [14]; that is,

• For the image data sets COIL-20, ORL, and PIE, we defined:

eij =

 exp
(
−
‖xi − xj‖2

2
σiσj

)
, i ∈ Nk(j) or j ∈ Nk(i);

0, otherwise,

where Nk(i) is the set of k-nearest neighbors of xi, and σi is the Euclidean distance
between xi and its k̂-th neighbor. We adopted k̂ = 7, as suggested in [37]. The affinity
between xi and xj was defined by

aij = d1/2
i eijd

1/2
j , (26)

where di = ∑n
s=1 eis.

• For the document data set TDT2, all the document vectors xi were normalized to have
unit 2-norm, and we defined:

eij =

{
xT

i xj, i ∈ Nk(j) or j ∈ Nk(i);
0, otherwise.

The affinity between xi and xj was also defined as in (26).

The parameter k in Nk(i) determined the sparseness of the affinity matrix. unlike the
recommended k = [log2(n)] + 1 in [38] , we set k as [log2(

n
nc
)] + 1, where nc is the class

number of the data set. Compared with the original setting, our k was smaller, and the
connected data points were more likely to be class consistent.

We executed all algorithms 20 times with different randomly constructed initial points,
and stopped them when their elapsed time exceeds the time limit. For COIL-20, ORL,
PIE, and TDT2, according to their sizes, the time limits were set as 20, 10, 50, and 120
s, respectively. To compare the average performance of the different algorithms, we
denoted

Ê(t) = E(t)− Emin,

where E(t) is defined as in (23) and Emin is the smallest error obtained by all algorithms
over all initializations. Figure 3 displays the average Ê(t) for each algorithm. In all cases,
TPM performed best and can generate the solution with the lowest SymNMF error among
all of the algorithms.

https://www.ldc.upenn.edu/collaborations/past-projects
https://www.ldc.upenn.edu/collaborations/past-projects

Symmetry 2021, 13, 1757 13 of 16

0 5 10 15 20

CPU Time(s)

10
-5

COIL-20

TPM

BCD

IBCD

ANLS

HALS

AMU

0 2 4 6 8 10

CPU Time(s)

10
-4

10
-2

ORL

TPM

BCD

IBCD

ANLS

HALS

AMU

0 10 20 30 40 50

CPU Time(s)

10
-4

10
-2

PIE

TPM

BCD

IBCD

ANLS

HALS

AMU

0 50 100

CPU Time(s)

10
-4

10
-2

TDT2

TPM

BCD

IBCD

ANLS

HALS

AMU

Figure 3. The average Ê(t) of six SymNMF algorithms versus run–time on real–world data sets.

Besides the SymNMF error, we also compared the clustering performance for each
algorithm. We adopted two criteria—average correction (AC) and normalized mutual
information (NMI) [39]—to measure the clustering performance. The average values over
all the 20 trials are listed in Table 2. We observed that TPM performed better than the other
algorithms. On COIL-20, ORL, PIE, and TDT2, we increased the highest clustering accuracy
of existing methods by 8.46%, 3.09%, 6.87%, and 6.15% respectively. In order to further
illustrate the clustering stability of all algorithms, we drew the results of 20 runs from
different starting points in a box plot, as shown in Figure 4. Unlike the larger variance of
other algorithms, the clustering results of TPM were very concentrated. This phenomenon
demonstrated that TPM was very robust to the initial point.

Table 2. Clustering performance measured by AC (%) and NMI (%) on real-world databases.

Metric Data Set TPM ANLS BCD IBCD HALS AMU

AC

COIL-20 82.98 74.52 60.25 65.77 56.16 71.04
ORL 78.00 74.57 72.55 74.91 74.30 74.29
PIE 86.91 80.04 48.32 50.27 56.61 78.80

TDT2 93.30 87.15 56.31 69.57 33.59 79.93

NMI

COIL-20 91.63 88.13 78.75 81.00 73.22 86.61
ORL 90.20 89.01 87.82 88.80 88.67 88.77
PIE 94.96 93.11 76.56 77.53 81.26 92.55

TDT2 88.33 85.81 62.18 70.53 34.69 80.92

Symmetry 2021, 13, 1757 14 of 16

Figure 4. Box-plot of the clustering results of six algorithms on four real-world data sets.

4. Conclusions

In this paper, we proposed a two-phase algorithm for SymNMF. Our method is more
efficient and robust than state-of-the-art algorithms, and performed well in real-world
clustering tasks. Moreover, our algorithm is guaranteed to converge to the stationary
solutions of the SymNMF problem. However, there are still some issues that need to
be explored. First, although our algorithm has high efficiency, a theoretical analysis
of the convergence rate should be conducted. Second, in real-world clustering tasks,
the structure of the graph can significantly affect the clustering results obtained by the
SymNMF algorithm. Thirdly, we need to consider how to reduce the time complexity
and the storage requirements of the algorithm when processing large-scale data. The
distributed-memory parallel strategy proposed in [40] provides a good inspiration. In the
future, we intend to carry out further research on the above-mentioned issues.

Author Contributions: Funding acquisition, Z.Z.; methodology B.L.; supervision, Z.Z.; validation,
B.L. and X.S.; writing—original draft, B.L.; writing—review and editing, B.L., X.S. and Z.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: The work was supported in part by NSFC project 11971430 and Major Scientific Research
Project of Zhejiang Lab (No. 2019KB0AB01).

Symmetry 2021, 13, 1757 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [CrossRef]

[PubMed]
2. Liu, W.; Zheng, N. Non-negative matrix factorization based methods for object recognition. Pattern Recognit. Lett. 2004, 25,

893–897. [CrossRef]
3. David, G.; Jordi, V. Non-negative Matrix Factorization for Face Recognition. In Proceedings of the 5th Catalonian Conference on

AI: Topics in Artificial Intelligence, Castellón, Spain, 24–25 October 2002; pp. 336–344.
4. Zdunek, R.; Cichocki, A. Non-negative Matrix Factorization with Quasi-Newton Optimization. In Proceedings of the Artificial

Intelligence and Soft Computing, Zakopane, Poland, 25–29 June 2006; pp. 870–879.
5. Jose, M.B.D.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview:

Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379.
6. Hoyer, P.O. Non-Negative Matrix Factorization with Sparseness Constraints. J. Mach. Learn. Res. 2004, 5, 1457–1469.
7. Ding, C.; Li, T.; Peng, W.; Park, H. Orthogonal nonnegative matrix t-factorizations for clustering. In Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006;
pp. 126–135.

8. Cai, D.; He, X.; Han, J.; Huang, T.S. Graph Regularized Nonnegative Matrix Factorization for Data Representation. IEEE Trans.
Pattern Anal. Mach. Intell. 2011, 33, 1548–1560.

9. Wang, Y.; Zhang, Y. Nonnegative Matrix Factorization: A Comprehensive Review. IEEE Trans. Knowl. Data Eng. 2013, 25,
1336–1353. [CrossRef]

10. Esposito, F. A Review on Initialization Methods for Nonnegative Matrix Factorization: Towards Omics Data Experiments.
Mathematics 2021, 9, 1006. [CrossRef]

11. Yang, M.S. A survey of fuzzy clustering. Math. Comput. Model. 1993, 18, 1–16. [CrossRef]
12. Zass, R.; Shashua, A. A unifying approach to hard and probabilistic clustering. In Proceedings of the IEEE International

Conference on Computer Vision, Beijing, China, 17–21 October 2005; pp. 294–301.
13. Raviteja, V.; Kim, Ø.R.; Gopinath, C.; Boian, A. Determination of the number of clusters by symmetric non-negative matrix

factorization. In Proceedings of the Big Data III: Learning, Analytics, and Applications, Online, 12 April 2021; Volume 11730,
p. 15.

14. Kuang, D.; Yun, S.; Park, H. SymNMF: Nonnegative low-rank approximation of a similarity matrix for graph clustering. J. Glob.
Optim. 2015, 62, 545–574. [CrossRef]

15. Ma, Y.; Hu, X.; He, T.; Jiang, X. Hessian Regularization Based Symmetric Nonnegative Matrix Factorization for Clustering Gene
Expression and Microbiome Data. Methods 2016, 111, 80–84. [CrossRef]

16. Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
17. Jolliffe, I.T. Principal Component Analysis. J. Mark. Res. 2002, 87, 513.
18. Ng, A.Y.; Jordan, M.I.; Weiss, Y. On Spectral Clustering: Analysis and an Algorithm. In Proceedings of the Advances in Neural

Information Processing Systems, Vancouver, BC, Canada, 14 April 2001; pp. 849–856.
19. He, Z.; Xie, S.; Zdunek, R.; Zhou, G.; Cichocki, A. Symmetric Nonnegative Matrix Factorization: Algorithms and Applications to

Probabilistic Clustering. IEEE Trans. Neural Netw. 2011, 22, 2117–2131.
20. Wang, P.; He, Z.; Lu, J.; Tan, B.; Bai, Y.; Tan, J.; Liu, T.; Lin, Z. An Accelerated Symmetric Nonnegative Matrix Factorization

Algorithm Using Extrapolation. Symmetry 2020, 12, 1187. [CrossRef]
21. Wright, S.J. Coordinate Descent Algorithms. Math. Program. 2015, 151, 3–34. [CrossRef]
22. Vandaele, A.; Gillis, N.; Lei, Q.; Zhong, K.; Dhillon, I. Efficient and Non-Convex Coordinate Descent for Symmetric Nonnegative

Matrix Factorization. IEEE Trans. Signal Process. 2016, 64, 5571–5584. [CrossRef]
23. Shi, Q.; Sun, H.; Lu, S.; Hong, M.; Razaviyayn, M. Inexact Block Coordinate Descent Methods for Symmetric Nonnegative Matrix

Factorization. IEEE Trans. Signal Process. 2017, 65, 5995–6008. [CrossRef]
24. Zhu, Z.; Li, X.; Liu, K.; Li, Q. Dropping Symmetry for Fast Symmetric Nonnegative Matrix Factorization. arXiv 2018,

arXiv:1811.05642.
25. Polyak, B.T. The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [CrossRef]
26. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: New York, NY, USA, 2006.
27. Zhang, Z.; Li, B. Exterior Point Method for Completely Positive Factorization. arXiv 2021, arXiv:2102.08048.
28. Sun, W.; Yuan, Y. Optimization Theory and Methods: Nonlinear Programming; Springer Science & Business Media: New York, NY,

USA, 2006.
29. Kuang, D.; Ding, C.; Park, H. Symmetric Nonnegative Matrix Factorization for Graph Clustering. In Proceedings of the 2012

SIAM International Conference on Data Mining (SDM), Anaheim, CA, USA, 26–28 April 2012; pp. 106–117.
30. Calamai, P.; More, J. Projected gradient methods for linearly constrained problems. Math. Program. 1987, 39, 93–116. [CrossRef]
31. Razaviyayn, M.; Hong, M.; Luo, Z.Q.; Pang, J.S. Parallel Successive Convex Approximation for Nonsmooth Nonconvex

Optimization. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December
2014; pp. 1440–1448.

http://doi.org/10.1038/44565
http://www.ncbi.nlm.nih.gov/pubmed/10548103
http://dx.doi.org/10.1016/j.patrec.2004.02.002
http://dx.doi.org/10.1109/TKDE.2012.51
http://dx.doi.org/10.3390/math9091006
http://dx.doi.org/10.1016/0895-7177(93)90202-A
http://dx.doi.org/10.1007/s10898-014-0247-2
http://dx.doi.org/10.1016/j.ymeth.2016.06.017
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.3390/sym12071187
http://dx.doi.org/10.1007/s10107-015-0892-3
http://dx.doi.org/10.1109/TSP.2016.2591510
http://dx.doi.org/10.1109/TSP.2017.2731321
http://dx.doi.org/10.1016/0041-5553(69)90035-4
http://dx.doi.org/10.1007/BF02592073

Symmetry 2021, 13, 1757 16 of 16

32. Shaked-Monderer, N.; Berman, A. Copositive and Completely Positive Matrices; World Scienfic: Hackensack, NJ, USA, 2021.
33. Nene, S.; Nayar, S.; Murase, H. Columbia Object Image Library (COIL-20); Tech. Rep. CUCS-005-96; Columbia University: New

York, NY, USA, 1996.
34. Samaria, F.; Harter, A. Parameterisation of a stochastic model for human face identification. In Proceedings of the Second IEEE

Workshop on Applications of Computer Vision, Sarasota, FL, USA, 5–7 December 1994; pp. 138–142.
35. Sim, T.; Baker, S.; Bsat, M. The CMU Pose, Illumination, and Expression (PIE) database. In Proceedings of the Fifth IEEE

International Conference on Automatic Face Gesture Recognition, Washinton, DC, USA, 20–21 May 2002; pp. 46–51.
36. Fiscus, J.; Doddington, G.; Garofolo, J.; Alvin, M. NIST’s 1998 Topic Detection and Tracking evaluation (TDT2). In Proceedings of

the 1999 DARPA Broadcast News Workshop, Herndon, VA, USA, 28 February–3 March 1999; pp. 19–24.
37. Zelnik-Manor, L.; Perona, P. Self-Tuning Spectral Clustering. In Proceedings of the Advances in Neural Information Processing

Systems, Vancouver, BC, Canada, 13–18 December 2004; pp. 1601–1608.
38. Luxburg, U.V. A Tutorial on Spectral Clustering. Stat. Comput. 2004, 17, 395–416. [CrossRef]
39. Wu, W.; Jia, Y.; Kwong, S.; Hou, J. Pairwise Constraint Propagation-Induced Symmetric Nonnegative Matrix Factorization. IEEE

Trans. Neural Netw. Learn. Syst. 2018, 29, 6348–6361. [CrossRef]
40. Eswar, S.; Hayashi, K.; Ballard, G.; Kannan, R.; Vuduc, R.; Park, H. Distributed-Memory Parallel Symmetric Nonnegative Matrix

Factorization. In Proceedings of the SC20: The International Conference for High Performance Computing, Networking, Storage
and Analysis, Atlanta, GA, USA, 9–19 November 2020; pp. 1–14.

http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1109/TNNLS.2018.2830761

	Introduction
	Existing Methods
	Our Contributions

	Two-Phase Method for SymNMF
	The Unconstrained Model for SymNMF
	The Interpolation Projected Gradient Method for SymNMF
	The Two-Phase Method for Robust SymNMF

	Numerical Experiments and Comparisons
	Synthetic Data
	Real-World Data

	Conclusions
	References

