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Abstract: Among the few exactly solvable problems in theoretical physics, the 2D (two-dimensional)
Newtonian free fall problem in Euclidean space is perhaps the least known as compared to the
harmonic oscillator or the Kepler–Coulomb problems. The aim of this article is to revisit this problem
at the classical level as well as the quantum level, with a focus on its dynamical symmetries. We
show how these dynamical symmetries arise as a special limit of the dynamical symmetries of the
Kepler–Coulomb problem, and how a connection to the quartic anharmonic oscillator problem, a
long-standing unsolved problem in quantum mechanics, can be established. To this end, we construct
the Hilbert space of states with free boundary conditions as a space of square integrable functions
that have a special functional integral representation. In this functional space, the free fall dynamical
symmetry algebra is shown to be isomorphic to the so-called Klink’s algebra of the quantum quartic
anharmonic oscillator problem. Furthermore, this connection entails a remarkable integral identity for
the quantum quartic anharmonic oscillator eigenfunctions, which implies that these eigenfunctions
are in fact zonal functions of an underlying symmetry group representation. Thus, an appropriate
representation theory for the 2D Newtonian free fall quantum symmetry group may potentially open
the way to exactly solving the difficult quantization problem of the quartic anharmonic oscillator.
Finally, the initial value problem of the acoustic Klein–Gordon equation for wave propagation in a
sound duct with a varying circular section is solved as an illustration of the techniques developed
here.

Keywords: super-integrability; dynamical symmetry algebras; integral transforms

1. Introduction

In an elementary freshman physics course, the problem of particle motion under
constant gravitational acceleration on the surface of the earth in Euclidean space, usually
considered as one dimensional, is frequently dubbed as a free fall problem [1,2]. This is not
the more general relativistic problem in which an inertial particle subject to no force moves
along a space-time geodesic [3].

To the best knowledge of the author, up to now, no comprehensive report on the
dynamical symmetries of this 2D Newtonian free fall problem has been found in the
literature besides the seminal work of T. Iwai and S. G. Rew [4]. As the one-dimensional
free fall problem, which has been thoroughly treated classically and quantum mechanically,
displays limited interesting features, we introduce an extra space dimension to allow for
new specific features to emerge. This is how a body of dynamical symmetries comes about,
and how a connection to the quartic anharmonic oscillator problem is generated, which is
one of the most challenging theoretical problems as it is generally thought of as a non-trivial
quantum field theory in zero space dimension. These issues were not considered in [4].

This paper is divided into two main sections and a short section on an application.
Section 2 is devoted to the classical physics of the 2D Newtonian free fall problem.

For the convenience of the reader, some basic concepts on the symmetries of a system are
recalled in the framework of Hamiltonian mechanics before a derivation of the dynamical
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symmetry algebra is undertaken along the lines of [4]. Then, we prove a theorem which
states that the dynamical symmetry algebra of the free fall problem may be obtained as a
special limit of the the dynamical symmetry algebra of the Kepler–Coulomb problem, which
concerns the dynamics of a particle moving in the inverse separation distance potential
field. Both problems are known to be super-integrable, and now they are shown to be
connected at the classical level. Hence, one may access the free fall dynamical symmetry
algebra from the well-known Kepler–Coulomb dynamical symmetry algebra. In addition,
this connection goes even further when a higher order integral of motion in the free fall
problem is shown to be an outgrowth of a Kepler–Coulomb integral of motion at zero
coupling constant. Furthermore, a passage to parabolic coordinates reveals a connection
between the free fall problem and the quartic anharmonic oscillator.

In Section 3, we apply the Schrödinger quantization to the system, which is in fact not
the quantization scheme adopted by T. Iwai and S. G. Rew in [4]. For this, we introduced
a Hilbert space of square integrable wave functions that verify free boundary conditions
in R2 and are suitable for obtaining an image representation of the free fall dynamical
symmetry algebra as Klink’s so-called one-variable algebra of the quartic anharmonic
oscillator. Thus, the Schrödinger quantization does naturally lead to the quartic anharmonic
oscillator besides the passage to parabolic coordinates. This is due to a particular integral
representation of the free fall wave functions, which takes the form of an Airy-Fourier
transform. Finally, by performing a passage to parabolic coordinates, one obtains an
integral identity for the eigenfunctions of the quartic anharmonic oscillator problem, which
turns out to be the characteristic integral equation for zonal functions in the representation
of some underlying group. As the only natural group arising from the 2D free fall problem
is its own dynamical symmetry group, we suspect that a comprehensive development of
its representation theory would reveal that the eigenfunctions of the quartic anharmonic
oscillator problem are just the corresponding zonal functions of this group. We defer this
tantalizing investigation to a future work. In short, the present results on quantizing the 2D
Newtonian free fall dynamical symmetry algebra appear as a necessary intermediate step
in the search for an exact solution to the quantum quartic anharmonic oscillator problem.

The last section, Section 4, uses the functional techniques of Section 3 to solve the
initial problem of sound wave propagation in a cylindrical duct with a particular varying
circular section.

The paper ends with a short conclusion and perspectives on possible further research.

2. The Classical Two-Dimensional Free Fall Problem
2.1. Generalities on Classical Symmetries, Canonical Structure, and Integrals of Motion

As generally admitted, the classical state of a non-moving physical system is described
by a set of functions in a coordinate system. Under a coordinate transformation, these
functions may take different forms. But if they remain invariant, the system is said to admit
a symmetry.

Now, for a physical system in motion, its states are specified by functions of time t and
dynamical coordinates in phase space. If under a transformation of dynamical coordinates
its state functions remain invariant, we say that the system admits a dynamical symmetry.
The set of symmetry transformations may have a group structure, which is called dynamical
symmetry group. Such a dynamical symmetry group (or equivalently, the algebra of its
generators) is of highest interest in the search for solutions of its equation of motion (The
term dynamical symmetry was coined by A. O. Barut [5]. Earlier, such symmetry was known
as hidden or accidental [6]).

In this paper, we are concerned with the dynamical symmetries of a system in the
framework of Hamilton’s canonical formalism of mechanics, with the time-independent
Hamiltonian function H. We now recall some useful main points of this framework.
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- A system with n degrees of freedom is described by 2n canonical variables (qi, pi)
with i = 1, . . . , n in phase space, verifying the following fundamental Poisson bracket
commutation relations: {

qi, qj
}
=
{

pi, pj
}
= 0,

{
qi, pj

}
= δi j, (1)

where the Poisson bracket between two functions in phase space φ and ψ is defined by the
following:

{φ, ψ} =
n

∑
i=1

(
∂φ

∂qi

∂ψ

∂pi
− ∂φ

∂pi

∂ψ

∂qi

)
,

and the canonical equations of motion:

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (2)

the solutions of which depend on the 2n initial conditions (qi(t), pi(t))|t=0 = (q0
i , p0

i ).
Consequently a dynamical symmetry exists if it originates from a canonical coordinate

transformation in phase space, leaving both the Hamiltonian H and the fundamental
Poisson bracket relations invariant. In differential geometry, this is called a symplectic
structure. Non-trivial dynamical symmetry exists only for n > 1.

- Canonical transformations (see Chapters 10–12 of [7]) are parts of a wider class
of coordinate transforms in phase space called contact transformations. A differentiable
mapping (q1, . . . , qn, p1, . . . , pn) → (Q1, . . . , Qn, P1, . . . , Pn) is called a contact transforma-
tion if the differential form ∑n

i=1(PidQi − pidqi) is the exact differential dW of a function
W(q1, . . . , qn, p1, . . . , pn).

This can be equivalently expressed by requiring the fundamental Poisson brackets in
the variables (Q1, . . . , Qn, P1, . . . , Pn) to be valid:

{Qi, Qj} = {Pi, Pj} = 0, (i, j = 1, . . . , n),

{Qi, Pj} = 0, (i, j = 1, . . . , n; i < j, i > j),

{Qi, Pi} = 1, (i = 1, . . . , n). (3)

The Poisson bracket of two functions (φ, ψ) is invariant under the contact trans-
formations {φ, ψ}(Q,P) = {φ, ψ}(q,p). The lower index (q, p) (resp. (Q, P)) refers to the
variables in the partial derivatives of the respective Poisson brackets. A contact transfor-
mation (q1, . . . , qn, p1, . . . , pn) → (Q1, . . . , Qn, P1, . . . , Pn), which preserves the equations
of motion of the system is a canonical transformation if

∫
∑n

i=1 PidQi is an integral invariant
of the system (Jacobi’s theorem). Consequently, a canonical transformation implements a
dynamical symmetry.

An infinitesimal canonical transformation of parameter τ has the following form:

Qi = qi +
∂Fτ

∂pi
∆τ, Pi = pi −

∂Fτ

∂qi
∆τ, (4)

where Fτ is an arbitrary function of (q1, . . . , qn, p1, . . . , pn) and ∆τ is a small increment
of the parameter τ. Fτ is called the the generating function of the contact transformation.
The variation ∆ f of an arbitrary function f in phase space under an infinitesimal contact
transformation of generator Fτ is given by ∆ f = { f , Fτ}∆τ. Fτ can be an integral of the
motion, a function which takes a constant value and does not explicitly depend on time
t, see [7]. A system of integrals of motion Fi is said to be in involution when {Fi, Fj} = 0
for all (i, j = 1, . . . , m). If F and F′ are two integrals of the motion, their Poisson bracket is
also an integral of the motion (Poisson’s theorem). The set of all Fj forms a Lie algebra with
respect to the Poisson bracket.

The determination of all canonical transformations for a dynamical system is at the
core of finding the dynamical symmetries of this system.
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- For a system with an n degree of freedom, with a time-independent Hamiltonian H,
total energy is conserved and H = E. If there exists n functionally independent integrals of
motion Fi, where i = 1, . . . , n in involution (or {Fi, Fj} = 0 for all (i, j)), the system is said
to be Liouville integrable and its solution can be given up to quadratures. If there are further
m functionally independent integrals of motion Fm, where m = 1, . . . , (n− 1), the system is
called super-integrable [8]. For m = 1 (resp. m = (n− 1)) it is called minimal super-integrable
(resp. maximal super-integrable). These m extra integrals of motion usually build a Lie
algebra. Maximal super-integrable systems are also known as exactly solvable systems, and
their properties can be derived algebraically. Each integral of motion Fi may originate from
Noether’s conservation law or from a coordinate variable separation. The Kepler–Coulomb
(or inverse distance potential) and the isotropic harmonic oscillator problems are known to
be super-integrable systems in two dimensions [9].

2.2. Statement of the Classical Two-Dimensional Free Fall Problem

As it is widely known, the motion of a particle under constant force in two-dimensional
space occurs along parabolas with a symmetry axis parallel to the direction of the constant
force. To simplify the writing, the particle is assumed to have a unit mass and moves in a
two-dimensional configuration space (v, u) ∈ R2, with Ov being the horizontal axis and
the gravitational constant set is also equal to one. Let (v̇, u̇) be the time derivatives of the
Cartesian coordinates (v, u). From the Lagrangian L =

(
1
2 (u̇

2 + v̇2)− u
)

, one gets the
conjugate momenta and the Hamiltonian:

pu =
∂L
∂u̇

= u̇, pv =
∂L
∂v̇

= v̇, and H =
1
2

p2
v +

(
1
2

p2
u + u

)
. (5)

Note that H is the sum of the v-free motion part and of the u-free fall part.

2.3. Dynamical Symmetries

As in two dimensions, the maximal number of possible symmetries is three. Iwai
and Rew [4] were the first to obtain dynamical symmetries by considering linear inho-
mogeneous transformations S(ρ, σ, τ) in the phase space dependent on three parameters
(ρ, σ, τ):

V = v + τpv + σpu + ρ, Pv = pv − σ,

U = u + σpv − τpu −
1
2
(σ2 + τ2), Pu = pu + τ. (6)

Proposition 1. S(ρ, σ, τ) is a canonical transformation.

Proof. By the simple substitution of the (V, U, Pv, Pu) in terms of the (v, u, pv, pu), as given
by Equation (6), it appears that the Hamiltonian function form is invariant:

H =
1
2
(P2

u + P2
v ) + U =

1
2
(p2

u + p2
v) + u. (7)

Moreover, using the expression of the Poisson bracket and Equation (6), one can also
check the following:

{V, U} = {Pv, Pu} = 0,

{V, Pu} = {U, Pv} = 0,

{V, Pv} = {U, pu} = 1, , (8)

Hence, S(ρ, σ, τ) is a bona fide canonical transformation.

Proposition 2. For all triplet (ρ, σ, τ) ∈ R3, the canonical transforms form a group—the dynami-
cal symmetry group of the free fall problem in two dimensions.
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Proof. Composition law. Let another canonical transform S(ρ′, σ′, τ′) with parameters
(ρ′, σ′, τ′) act on the previous one S(ρ, σ, τ) and compute the resulting product S(ρ′, σ′, τ′)
S(ρ, σ, τ), which is expressed by the set of new parameters (V, U, Pv, Pv) :

V = V + τ′Pv + σ′Pu + ρ′,

U = U + σ′Pv − τ′Pu −
1
2
(σ′2 + τ′2),

Pv = Pv − σ′,

Pu = Pu + τ′. (9)

Then, the substitution of Equation (6) into Equation (9) yields the following equations:

V = (v + τpv + σpu + ρ) + τ′(pv − σ) + σ′(pu + τ) + ρ′

= v + (τ + τ′)pv + (σ + σ′)pu + (ρ + ρ′)− (στ′ − σ′τ),

U = (u + σpv − τpu −
1
2
(σ2 + τ2)) + σ′(pv − σ)− τ′(pu + τ)− 1

2
(σ′2 + τ′2)

= u + (σ + σ′)pv − (τ + τ′)pu −
1
2
(σ + σ′)2 − 1

2
(τ + τ′)2,

Pv = (pv′ − σ)− σ′ = pv − (σ + σ′),

Pu = (pu′ + τ′) + τ′ = pu + (τ + τ′). (10)

Hence, we conclude that the composition of two operations is as follows:

S(ρ′, σ′, τ′) · S(ρ, σ, τ) = S((ρ + ρ′)− (στ′ − σ′τ), σ + σ′, τ + τ′). (11)

Because of the extra term (στ′− σ′τ), the previous formula does not correspond to the
additive structure of a group operation with respect to the parameters (ρ, σ, τ). But since
the v variable is a cyclic variable, this term is physically irrelevant´; in this way, the group
structure is physically restored.

Iwai and Rew proposed to represent each element of the group with fifth-order,
upper-triangular matrices, as can be checked by the matrix multiplication rule:

1 0 τ σ ρ

0 1 σ −τ − 1
2 (σ

2 + τ2)
0 0 1 0 −σ
0 0 0 1 τ
0 0 0 0 1



- The inverse transform S−1(ρ, σ, τ) is clearly given by S(−ρ,−σ,−τ) since the extra
term (στ′ − σ′τ) vanishes at (σ + σ′) = 0 and (τ + τ′) = 0.

-The identity matrix is obviously the neutral group element.

2.4. Infinitesimal Iwai–Rew Canonical Linear Transforms and Integrals of Motion

The infinitesimal form of the Iwai–Rew canonical linear transformations is written in
the form of Equation (8), with infinitesimal (∆ρ, ∆σ, ∆τ) as:

V = v + pv∆τ + pu∆σ + ∆ρ + . . . ,

U = u + pv∆σ− pu∆τ + . . . ,

Pv = pv − ∆σ + . . . ,

Pu = pu + ∆τ + . . . . (12)



Symmetry 2022, 14, 27 6 of 21

Proposition 3. The infinitesimal transformations in phase space defined by Equation (12) are canonical
transformations: H and the Poisson brackets {V, Pv}, {V, Pu}, {V, U}, {U, Pu}, {U, Pv}, {Pu, Pv}
are invariant.

Proof. By working out the Poisson brackets using Equation (12), they will appear to remain
in the canonical form of Equation (8), while the form of the Hamiltonian in the variables
(V, U, Pv, Pu) is the same as the form in variables (v, u, pv, pu).

We now determine the three generating functions (Fρ, Fσ, Fτ) from the three sub-
groups of canonical transformations, respectively defined by the following equations:

Fρ : V = v + ∆ρ, U = u, Pv = pv, Pu = pu,

Fσ : V = v + pu∆σ, U = u + pv∆σ, Pv = pv − ∆σ, Pu = pu,

Fτ : V = v + pv∆τ, U = u− pu∆τ, Pv = pv, Pu = pu + ∆τ. (13)

Then, partial derivatives of (Fρ, Fσ, Fτ) with respect to (v, u, pv, pu) can be deduced as
follows:

Fρ :
∂Fρ

∂v
= 0,

∂Fρ

∂u
= 0,

∂Fρ

∂pv
= 1,

∂Fρ

∂pu
= 0,

Fσ :
∂Fσ

∂v
= 1,

∂Fσ

∂u
= 0,

∂Fσ

∂pv
= pu,

∂Fσ

∂pu
= pv

Fτ :
∂Fσ

∂v
= 1,

∂Fσ

∂u
= −1,

∂Fσ

∂pv
= pv,

∂Fσ

∂pu
= −pu. (14)

Therefore, we obtain the exact differentials (dFρ, dFσ, dFτ) in terms of (dv, du, dpv, dpu)
(Schwarz’s theorem is trivially verified for all pairs of variables). Their integration yields
the sought integrals of motion:

Fρ = pv, Fσ = (pv pu + v), Fτ =
1
2

p2
v −

(
1
2

p2
u + u

)
. (15)

Proposition 4. The free fall system in two dimensions is super-integrable since its has three
integrals of the motion:

{Fρ, H} = {Fσ, H} = {Fτ , H} = 0. (16)

Proof. Compute the three Poisson brackets and observe that they are zero.

Proposition 5. The three generating functions (Fρ, Fσ, Fτ) build a Lie algebra structure, the dy-
namical symmetry algebra AFF of the two-dimensional free fall with respect to the Poisson bracket:{

Fρ, Fσ

}
= −I, {Fσ, Fτ} = 2Fρ,

{
Fτ , Fρ

}
= 0. (17)

Proof. Work out the Poisson brackets and use the expressions of the (Fρ, Fσ, Fτ) from
Equation (15). They are identical to those of Iwai–Rew [4]. If we make the substitutions
Fρ → F3, Fσ → F2, Fτ → F1 in our Equation (15), we recover the Iwai–Rew commuta-
tion relations given by their Equation (2.21).

Remark 1. Observe that the classical trajectory data (two initial position coordinates, two initial
momentum coordinates) can be used to compute the values of Ĥ, F̂ρ, F̂σ, F̂τ and vice versa.

Proposition 6. Origins of the integrals of motion
(a) Fρ is due to translational invariance of H in the Ov direction;
(b) Fσ is due the separability of H in a π/4-rotated coordinate system;
(c) Fτ is due to the manifest separability of H in v and u variables.
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Proof. (a) For this case, the proof is trivial because v is a cyclic variable in H.
(b) Consider the change of variables ξ = (u + v), ζ = (u − v), from which one

deduces u = 1
2 (ξ + ζ), v = 1

2 (ξ − ζ). Then, since pv = v̇, pu = u̇, we have pv =
1
2 (pξ + pζ), pu = 1

2 (pξ − pζ). Substitution into the expressions of H and Fσ yields the
following equation:

H =
1
2

{(
1
2

p2
ξ + ξ

)
+

(
1
2

p2
ζ + ζ

)}
, and Fσ =

1
2

{(
1
2

p2
ξ + ξ

)
−
(

1
2

p2
ζ + ζ

)}
. (18)

where H and Fσ are both separable in the new coordinate system obtained by a π/4 rotation
of the (v, u) coordinate system around the origin. In fact, they are the sum and difference
of the one-dimensional free fall Hamiltonian in the ξ and ζ directions. Hence, {Fσ, H} = 0.
In reference [10], it was claimed that at the quantum level, Fσ is due to separability in
translated parabolic coordinates. But so far, no proof has appeared in print.

(c) As H is the sum of a free-motion Hamiltonian in the v-direction, and the Hamilto-
nian is that of a one-dimensional free fall in the u-direction, it is then clear that Fτ , which is
the difference of these two Hamiltonians, should verify {Fτ , H} = 0. Since the total energy
is conserved as H = E, it may be simpler to write Fτ = (p2

v − E).

Remark 2. We notice that v-parity is also a dynamical symmetry and a discrete canonical
transformation since v → −v (which also implies pv → −pv) leaves H as well as {v, pv} = 1
and all other Poisson brackets invariant.

2.5. The Free Fall Problem as a Special Limiting Case of the Kepler–Coulomb Problem

In this section, we show that the free fall problem can emerge from a special limit
of the Kepler–Coulomb (KC) problem or the problem of the inverse distance potential,
occurring either in gravitational or electrical interaction. This problem is known to be
super-integrable and in two dimensions, and the set of its three integrals of motion makes
up the components of the so-called Runge–Lenz vector [11]. Here, we adopt the notations
of [12], with the particle mass set equal to one.

The idea is simple. The inverse distance potential κ/r arising from a source of strength
κ is rotation-symmetric, where r is the distance from the source to the observation site.
If the source recedes to infinity in the u-direction, the potential at the observation site
tends toward zero. But one may compensate this potential decrease by taking a source
strength κ(r), which increases with the distance. Thus, we may choose an increasing
functional dependence so that in the limit of infinite source-observation separation, a linear
potential appears.

In our Cartesian coordinate system, if the source of strength κ is placed at the coordi-
nate origin, the Hamiltonian of the inverse distance problem is the following:

HKC =
1
2
(p2

v + p2
u)−

κ√
u2 + v2

, (19)

and the three integrals of motion are given by [12]:

Lw = (vpu − upv),

Kv = (vpu − upv)pu − v
κ√

u2 + v2
,

Ku = −(vpu − upv)pv − u
κ√

u2 + v2
, (20)

where Lw is the angular momentum around Ow, which is orthogonal to the plane Ovu.
They verify the Poisson bracket relations of the dynamical symmetry algebra AKC

{Lw, Kv} = Ku, {Ku, Lw} = Kv, {Kv, Ku} = −2HKC Lw. (21)
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Now, if the source is no longer at the origin O but situated on the Ou axis at a distance
l from the origin, the Hamiltonian and the components of the Runge–Lenz vector have
new expressions H′KC and (L′w, K′v, K′u), which are deduced from the previous expressions
in which u is replaced by (u + l) and κ by κ(l):

H′KC =
1
2
(p2

v + p2
u)−

κ(l)√
(u + l)2 + v2

, (22)

and

L′w = (vpu − upv)− lpv,

K′v = (vpu − upv − lpv)pu − v
κ(l)√

(u + l)2 + v2
,

K′u = −(vpu − upv − lpv)pv − (u + l)
κ(l)√

(u + l)2 + v2
. (23)

Now, as l → ∞, the asymptotic behaviour of the inverse distance potential is as
follows:

κ(l)√
(u + l)2 + v2

∼ κ(l)
l

(
1− u

l
+O( 1

l2 )

)
. (24)

Hence, if the source strength increases as κ(l) = l2, then the inverse distance potential
reaches the limiting form of a linear potential in u:

− κ(l)√
(u + l)2 + v2

→ −l + u +O(1
l
). (25)

In this limit, the inverse distance potential problem tends toward the free fall problem
up to a negative infinite constant:

H′KC ∼ H − l +O
(

1
l

)
, (26)

and the components of the Runge–Lenz vector take the following asymptotic forms:

L′w ∼ −lpv + (vpu − upv),

K′v ∼ −l(pu pv + v) + (vpu − upv)pu + uv− vO(1
l
),

K′u ∼ −l2 + lp2
v −

[
(vpu − upv)pv − u2

]
+O(1

l
), (27)

Theorem 1. The dynamical symmetry algebra of the free fall problem AFF is a contraction of the
dynamical symmetry algebra of the Kepler–Coulomb problem AKC.

Proof. We now rewrite the Poisson brackets of the Kepler–Coulomb problem when the
potential source is at a large distance l from the origin, and then replace the generators
(L′w, K′v, K′u) by their asymptotic expansions for l → ∞. Therefore:

(a) {L′w, K′v} = K′u becomes

{(vpu − upv)− l Fρ,−l Fσ + (vpu − upv)pu + uv− vO(1
l
)} =

− l2 + l (Fτ + H)−
[
(vpu − upv)pv − u2

]
+O(1

l
). (28)
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Extracting the leading order in l2 on the left-hand side and on the right-hand side, we
obtain {Fρ, Fσ} = −I, as expected; see Equation (17).

(b) {K′u, L′w} = K′v becomes

{−l2 + l (Fτ + H)−
[
(vpu − upv)pv − u2

]
+O(1

l
), (vpu − upv)− l Fρ} =

− l Fσ + (vpu − upv)pu + uv− vO(1
l
). (29)

Collecting terms of leading order in l2 on both sides of this equation, we get {Fτ , Fρ} =
0 since there is no term in l2 on the right-hand side.

(c) {K′v, K′u} = −2H′KC L′w becomes

{−l Fσ + (vpu − upv)pu + uv− vO(1
l
),−l2 + l (Fτ − H)−

[
(vpu − upv)pv − u2

]
+O(1

l
)} =

− 2
(

H − l +O
(

1
l

)) (
(vpu − upv)− l Fρ

)
. (30)

Equating terms of order d2 on both sides of this equation yields precisely {Fσ, Fτ} =
2Fρ. Hence, we reproduce all the Poisson brackets of AFF.

2.6. A “Higher” Order Integral of the Motion

We now raise the question whether there exists a “higher” order integral of the motion
as a construct of the dynamical symmetry algebra generators. What comes to mind is a
weighted sum of squares of the (Fρ, Fσ, Fτ), an object similar to the square of the angular
momentum in a rotation algebra. Instead of a tedious systematic search, a more astute
way of finding such an integral of the motion would start by observing that the symmetry
algebra of the Kepler–Coulomb problem does have a non-trivial limit when the source
strength is turned off, i.e., κ = 0. Then, the generators take the following form:

Lw = (vpu − upv), Kv(0) = (vpu − upv)pu, Ku(0) = −(vpu − upv)pv. (31)

They fulfil the same Poisson bracket relations as those with κ 6= 0:

{Lw, Kv(0)} = Ku(0), {Ku(0), Lw} = Kv(0), {Kv(0), Ku(0)} = −2H0 Lw, (32)

where H0 is the Hamiltonian for free particle motion in two dimensions.
Now, if we allow a linear potential to “grow” in the u-direction, rotational symmetry

disappears. Hence, Lw must be discarded as a possible integral of motion in the presence
of a linear potential u. Thus, from the two remaining (Kv(0), Ku(0)), only one can survive
under a modified form as a “higher” order integral of the motion, because of Poisson ’s
theorem in Section 2.1.

Let F2 be this hypothetical “higher” integral of the motion. As the introduced linear
potential is in the u direction, we may assume F2 to be of the simple form:

F2 = Ku(0) + h(v, u, pv, pu), (33)

where h(v, u, pv, pu) is an unknown function in phase space.

Proposition 7. There exists a second order integral of the motion F2 given by the following
equation:
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F2 = Ku(0)−
1
2

v2 = −(vpu − upv)pv −
1
2

v2. (34)

Proof. The function h(v, u, pv, pu) is determined by the condition
{

F2, H
}
= 0. Since from

explicit computation one gets the following:{
F2, H

}
=

∂h
∂v

pv +
∂h
∂u

pu +
∂h

∂pu
+ vpv = 0, (35)

it is obvious that one should require that h(v, u, pv, pu) = − 1
2 v2.

Remark 3. The same search procedure for another quadratic integral of the motion does not work
with Kv(0) because the commutativity of the Poisson bracket with H leads to impossible conditions
having to be satisfied.

Proposition 8. The expression of F2 in terms of the generators (Fr, Fs, Ft) is as follows:

F2 = HF2
ρ −

1
2

F2
σ −

1
2
(Fτ + H)2, (36)

Proof. Substitute the expressions (H, Fρ, Fσ, Fτ) into the expression of F2.

Corollary 1. The Poisson brackets of F2 with the generators (Fρ, Fσ, Fτ) are easily obtained:{
F2, Fρ

}
= −Fσ,

{
F2, Fσ

}
= 2Fρ Fτ ,

{
F2, Fτ

}
= −2Fρ Fσ. (37)

Proposition 9. The infinitesimal transformation generated by F2 with parameter z is canonical.

Proof. The infinitesimal canonical transform generated by F2 with the parameter z is given
by the following equations:

V = v + (vpu − 2upv)∆z + . . .

U = u + vpv ∆z + . . .

Pv = pv − (pv pu + v)∆z + . . .

Pu = pu + p2
v ∆z . . . (38)

We can check that the Hamiltonian remains invariant if the terms of order (∆z)2 are
ignored:

H(v′, u′, pv′ , pu′) = H(v, u, pv, pu) +
(
(pv pu + v)2 + p4

v

)
(∆z)2 + . . . (39)

Next, we can verify that the six canonical Poisson brackets are preserved, but the
details are not presented here. Moreover, it does possess the additive abelian group
property with respect to z, i.e., S(z) · S(z′) = S(z + z′), as can be checked explicitly.

2.7. Passage to Parabolic Coordinates and the Physical Meaning of F2

The issue here is to understand how F2 arises as a dynamical symmetry. The com-
prehensive work of Miller et al. [13] on quantum separability has revealed that parabolic
coordinates do play a central role. Following this indication, we make a passage to parabolic co-
ordinates (x, y) from our Cartesian coordinates (v, u), as defined by u = 1

2 (x2− y2), v = xy.
The Lagrangian L then changes to a new expression:

L =
1
2
(u̇2 + v̇2)− u =

1
2
(x2 + y2)(ẋ2 + ẏ2)− 1

2
(x2 − y2). (40)
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From the following definitions of conjugate momenta:

pu =
∂L
∂u̇

= u̇, pv =
∂L
∂v̇

= v̇,

px =
∂L
∂ẋ

= (x2 + y2)ẋ, py =
∂L
∂ẏ

= (x2 + y2)ẏ, (41)

we deduce a relation between the (v, u) and the (x, y) momenta:

pu =
xpx − ypy

(x2 + y2)
, pv =

ypx + xpy

(x2 + y2)
. (42)

This allows for the acquisition of new expressions of H and F2 in parabolic coordinates:

H =
1
2

p2
x + p2

y

(x2 + y2)
+

1
2
(x2 − y2), (43)

F2 =
x2y2

2(x2 + y2)

{(
p2

x
x2 + x2

)
−
(

p2
y

y2 − y2

)}
. (44)

As such, these expressions do not show any obvious x and y variable separation.
The three integrals of motion (Fρ, Fσ, Fτ) also do not display any obvious separation into an
x part and a y part when re-expressed in the parabolic coordinates. Next, we recall that the
initial conditions (v0, u0, p0

v, p0
v) fully determine the four integrals of motion (H, Fρ, Fσ, Fτ).

Hence, F2 has a fixed value because it is a construct of these four integrals of motion.

Proposition 10. For H = E, F2 takes a constant value in the range of energy values E+(E) of a
confining quartic oscillator with an angular frequency square (−E).

Proof. As total energy is conserved, H = E implies that the following relation must be
verified for all (x, y) 6= (0, 0):

1
(x2 + y2)

{(
1
2

p2
x − Ex2 +

1
2

x4
)
+

(
1
2

p2
y − Ey2 − 1

2
y4
)}

= 0. (45)

This means that for a given E, the sum of the Hamiltonians of a confining quartic x-
oscillator and a non-confining quartic y-oscillator must be equal to zero for all (x, y) 6= (0, 0).
Since these one dimensional quartic oscillators are time-independent, their respective
Hamiltonians have fixed values, i.e.:(

1
2

p2
x − Ex2 +

1
2

x4
)
= E+(E),

(
1
2

p2
y − Ey2 − 1

2
y4
)
= E−(E), (46)

however, subjected to the condition E+(E) + E−(E) = 0. Note that for a given E, E+(E)
takes all real values above the minimum value of the quartic x-oscillator Hamiltonian
polynomial in phase space.

On the other hand, F2 may be rewritten as follows:

F2 =
x2y2

(x2 + y2)

{
1
x2

(
1
2

p2
x − Ex2 +

1
2

x4
)
+

1
y2

(
1
2

p2
y − Ey2 − 1

2
y4
)}

=
x2y2

(x2 + y2)

(
E+(E)

x2 − E−(E)
y2

)
. (47)

Since E+(E) + E−(E) = 0, one gets F2 = E+(E). This is due to this new aspect of
separation of variables called the Stäckel separation of variables.
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2.8. Third Order Integrals of the Motion

In [13], it is shown that third order super-integrable systems separable in parabolic
coordinates admit second order integrals, while third order integrals are reducible, i.e., they
are Poisson brackets of second order integrals of motion. Here, we have:

F3σ =
{

Fσ, F2
}
= p3

v − 2upv − pv p2
u, F3τ =

{
Fτ , F2

}
= −(pu p2

v + 2vpv). (48)

However, these third order reducible integrals of motion do not generate one pa-
rameter infinitesimal canonical transformations because they do not leave H functionally
invariant and are consequently uninteresting.

3. Schrödinger Quantization of the Two-Dimensional Free Fall Problem
3.1. Quantization

The Hamiltonian form of the free fall problem lends itself nicely to its quantization.
The classical canonical variables are put into one-to-one correspondence with their quantum
counterparts, as self-adjoint operators in a Hilbert space of states H:

(v, pv, u, pu) ↔ (Q̂v, P̂v, Q̂u, P̂u). (49)

They build a direct product of v and u Heisenberg algebras (here h̄ = 1 for ease of
writing):

[Q̂v, P̂v] = i, [Q̂u, P̂u] = i, and [Ôv, Ôu] = 0, (50)

where Ôv (respectively Ôu) means (Q̂v, P̂v) (respectively Ôu = (Q̂u, P̂u)).
The quantum Hamiltonian, the dynamical symmetry algebra generators, and the

quadratic integral of motion are then given by the following equation:

Ĥ =
1
2

(
P̂2

v + P̂2
u

)
+ Q̂u, F̂ρ = P̂v, F̂σ = P̂v P̂u + Q̂v, F̂ρ = P̂2

v . (51)

They fulfil the quantum commutation relations deduced from their Poisson brackets
classical counterparts:

[F̂ρ, F̂σ] = −iI, [F̂σ, F̂τ ] = 2iF̂ρ, [F̂τ , F̂ρ] = 0, (52)

where I is the identity operator. The quadratic integral of motion F̂2 is as follows:

F̂2 = Q̂u P̂2
v −

1
2
(P̂vQ̂v + Q̂v P̂v)P̂u −

1
2

Q̂2
v. (53)

3.2. Schrödinger Representation

It is convenient to work with the Schrödinger coordinate representation. The Hilbert
space H of states |ψ〉 ∈ H is represented by the square integrable functions ψ(v, u) =
〈v, u|ψ〉, where |v, u〉 for (v, u) ∈ R2 is a continuous set of complete and total set in H.
The canonical dynamical operators by differential operators in (v, u) are as follows:

(Q̂v, P̂v, Q̂u, P̂u) =

(
v,−i

∂

∂v
, u,−i

∂

∂u

)
. (54)
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Consequently, the differential operator representation of the Hamiltonian, the dynam-
ical symmetry generators, and the quadratic integral of motion are as follows:

Ĥ = −1
2

(
∂2

∂v2 +
∂2

∂u2

)
+ u,

F̂ρ = −i
∂

∂v
, F̂σ =

(
− ∂2

∂v ∂u
+ v
)

, F̂τ = −
(

∂2

∂v2 + Ĥ
)

,

F̂2 =

(
v

∂2

∂v ∂u
− u

∂2

∂v2 +
1
2

∂

∂u
− 1

2
v2
)

. (55)

All Poisson brackets from the classical (H, Fρ, Fσ,Fτ,, F2) now become quantum com-
mutators between (Ĥ, F̂ρ, F̂σ, F̂τ , F̂2), as can be easily checked. Let ÂFF be the algebra
generated by (Ĥ, F̂ρ, F̂σ, F̂τ).

Corollary 2. F̂2 can be expressed in terms of (Ĥ, F̂ρ, F̂σ, F̂τ) as

F̂2 = Ĥ F̂2
ρ −

1
2

F̂2
σ −

1
2

(
F̂τ + Ĥ

)2
. (56)

Proof. Use the expressions in Equation (55) and substitute in (56).

As usual, the space of relevant wave functions L2(v, u) are generated by the eigenfunc-
tions of the stationary Hamiltonian operator Ĥ. At this step, to determine this functional
space, boundary conditions should be specified. As pointed out in the previous section
on the classical mechanics of free fall motion, we are concerned with global motion along
parabolic trajectories in R2, with concavity turned downward and not with the bouncing
motion on a horizontal line v =constant or the billiard motion inside a two-dimensional
box. Both have overly restrictive boundary conditions, rending the wave functions uninter-
esting. Therefore, only stationary wave functions with free boundary conditions on the
v-axis and on the negative u-axis solutions of Ĥ ψE(v, u) = E ψE(v, u) are considered here.

Since Ĥ is separable in the v and u parts, elementary solutions are of the product form:

eikv Ai
(

γu +
k2

γ2 − γE
)

, (57)

where γ3 = 2 and Ai(x) is the first Airy function which decreases at x → ∞; see [14].
Hence, the spectrum of Ĥ is real and continuous. An arbitrary stationary eigenfunction

ψE(u, v) with an eigenvalue E is given by an integral on k:

ψE(u, v) =
∫
R

dk eikv ψ̃E(k)Ai
(

γu +
k2

γ2 − γE
)

, (58)

where ψ̃E(k), yet to be determined, appears as a density amplitude representing the relative
distribution of the v-motion with respect to the u-motion parts for a fixed E in ψE(u, v).
Both ψE(u, v) and ψ̃E(k) describe two aspects of the same quantum state |ψE〉.

Proposition 11. As ψE(u, v) represents a probability amplitude in L2(v, u), ψ̃E(k) is a square
integrable function on R, i.e., ψ̃E(k) ∈ L2(k).

Proof. Let us compute the overlap integral 〈ψE|ψE′〉 between two eigenstates of energies
E and E′:

〈ψE|ψE′〉 =
∫
R2

du dv
2π

ψ∗E(v, u)ψE′(v, u) =
∫
R2

du dv
2π∫

R
dk e−ikv ψ̃∗E(k)Ai

(
γu +

k2

γ2 − γE
) ∫

R
dk′ eik′v ψ̃E′(k

′)Ai
(

γu +
k′2

γ2 − γE′
)

. (59)
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The 2π factor is just for convenience. Integration over dv yields 2π δ(k− k′). Then,
after k′-integration, one may consider the remaining u-integration.

This u-integral is readily given in [14] by equation 3.108 on page 57 as follows:

1
|α β|

∫ ∞

−∞
du Ai

(
u + a

α

)
Ai
(

u + b
β

)
×

= δ(a− b), if β = α,

=
1

|β3 − α3| 13
Ai

(
b− a

|β3 − α3| 13

)
, if β > α. (60)

Hence, we have a relation between the inner product in L2(v, u) and the inner product
in L2(k): ∫

R2

du dv
2π

ψ∗E(v, u)ψE′(v, u) = γ−2 δ(E− E′)
∫
R

dk ψ̃∗E(k) ψ̃E′(k). (61)

It expresses the completeness of the eigenfunctions ψE(v, u), provided that:∫
R

dk ψ̃∗E(k) ψ̃E(k) < ∞. (62)

Hence, ψ̃E(k) ∈ L2(k).

Theorem 2. The integral mapping ψE(v, u) ∈ L2(v, u) → ψ̃E(k) ∈ L2(k) is invertible, i.e.,

ψ̃E′(k
′) =

∫
R

dE
∫
R2

du dv ψE(u, v) e−ik′v Ai
(

γu +
k′2

γ2 − γE′
)

. (63)

Proof. By integrating both sides of Equation (58) with the following equation:

∫
R2

du dv
2π

e−ik′v Ai
(

γu +
k′2

γ2 − γE′
)

, (64)

we get the following integral on the right-hand side:

∫
R2

du dv
2π

e−ik′v Ai
(

γu +
k′2

γ2 − γE′
) ∫

R
dk eikv ψ̃E(k)Ai

(
γu +

k2

γ2 − γE
)

. (65)

Assuming Fubini’s theorem hypothesis, we can exchange integrations and the dv
2π -

integration would yield δ(k− k′). Then, after integration on dk, the right-hand side be-
comes:

ψ̃E(k′)
∫
R

du
2π

Ai
(

γu +
k2

γ2 − γE
)

Ai
(

γu +
k′2

γ2 − γE′
)

, (66)

which, upon application of the integration formula (60), yields the following:

∫
R2

du dv
2π

ψE(u, v) e−ik′v Ai
(

γu +
k′2

γ2 − γE′
)
= ψ̃E(k′) γ−2 δ(E− E′). (67)

A last integration on dE on both sides of this equation gives the final result:

ψ̃E′(k
′) = γ2

∫
R

dE
∫
R2

du dv ψE(v, u) e−ik′v Ai
(

γu +
k′2

γ2 − γE′
)

. (68)

Hence, the integral mapping ψE(v, u) → ψ̃E(k) is invertible, provided that a sum-
mation on E is performed or uses complete data. In this respect, it may be called the
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Fourier-Airy Transform. These two amplitudes describe the same physics in two different
contexts.

3.3. Representation of the Dynamical Symmetry Algebra ÂFF by Klink’s Algebra

Proposition 12. The action of the ÂFF generators on the wave function ψE(v, u) is easily trans-
ferred to the wave function ψ̃E(k) according to the following:

ĤψE(v, u) = E
∫
R

dk ψ̃E(k) eikv Ai
(

γu +
k2

γ2 − γE
)

,

F̂ρψE(v, u) =
∫
R

dk (kψ̃E(k)) eikv Ai
(

γu +
k2

γ2 − γE
)

,

F̂σψE(v, u) =
∫
R

dk
(

i
d
dk

)
ψ̃E(k) eikv Ai

(
γu +

k2

γ2 − γE
)

,

F̂τψE(v, u) =
∫
R

dk (k2 − E)ψ̃E(k) eikv Ai
(

γu +
k2

γ2 − γE
)

. (69)

Proof. The action of Ĥ is E since ψE(v, u) is an eigenfunction of Ĥ.
As F̂ρ and F̂τ are represented in L2(v, u) by v-derivatives acting under the integral

sign on eikv, we successively get k and k2 acting on ψ̃E(k).
For the action of F̂σ =

(
− ∂2

∂u ∂v + v
)

, we observe that:

v ψE(v, u) =
∫
R

dk ψ̃E(k)
(
−i

∂

∂k
eikv
)

Ai
(

γu +
k2

γ2 − γE
)

. (70)

Since the Airy function vanishes for k = ±∞, we perform a partial integration in k to
get the following:

v ψE(v, u) =∫
R

dk
(

i
∂

∂k
ψ̃E(k)

)
eikv Ai

(
γu +

k2

γ2 − γE
)
+
∫
R

dk ψ̃E(k) eikv Ai’
(

γu +
k2

γ2 − γE
)

iγk. (71)

where Ai’(x) is the derivative of Ai(x). We then observe that the second integral is as
follows:

∂2

∂u ∂v
ψE(v, u). (72)

Hence, the action of F̂σ on ψE(v, u) is replaced by i ∂
∂k ψ̃E(k) in L2(k).

Corollary 3. As a consequence, the action of F̂2 on ψE(v, u) is translated into action on ψ̃E(k)
as the action of the one-dimensional confining quartic anharmonic oscillator Hamiltonian in the k
variable on the wave function ψ̃E(k):

F̂2 ψE(v, u) = −
∫
R

dk
{(
−1

2
d2

dk2 − Ek2 +
1
2

k4
)

ψ̃E(k)
}

eikv Ai
(

γu +
k2

γ2 − γE
)

(73)

Proof. Use the expression of F̂2 in terms of the following dynamical symmetry algebra
generators (F̂ρ, F̂σ, F̂τ):

F̂2 = (Ĥ F̂2
ρ −

1
2

F̂2
σ −

1
2
(F̂τ + Ĥ)2), (74)

and the previous proposition.

Corollary 4. The mapping ψE(v, u) → ψ̃E(k) induces an isomorphism between the two-variable
algebra generated by (F̂ρ, F̂σ, F̂τ), and the one-variable algebra generated by (k, i d

dk , k2), which is
known as Klink’s algebra for quartic anharmonic oscillator and for which the quadratic integral of
motion F̂2 is the Schrödinger Hamiltonian of this quartic anharmonic oscillator [15].
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Proof. The commutators of (F̂ρ, F̂σ, F̂τ) are isomorphic to those of (k, i d
dk , k2) by computa-

tional checking.

This relation shows how the one-dimensional confining quartic anharmonic oscillator
is linked to the two-dimensional free fall. Note that this relation cannot be established if one
had started with the one-dimensional free fall problem. In classical physics, the presence
of quartic anharmonic oscillators in the free fall problem arises only when parabolic
coordinates are introduced. This is not the case here. There is still another curious relation
between the two systems discovered by Voros in [16].

3.4. Finite Quantum Canonical Transforms

Proposition 13. The finite quantum unitary transforms generated by (F̂ρ, F̂σ, F̂τ) are expressed as
follows:

Ûρ = exp−iρ F̂ρ, Ûσ = exp−iσ F̂σ, Ûτ = exp−iτ F̂τ . (75)

They produce the quantum version of the classical Iwai–Rew transform (see Equation (8)).

Proof. The proof is trivial and involves the use of the Baker–Hausdorff–Campbell formula:

eŶX̂eŶ = X̂ + [Ŷ, X̂] +
1
2!
[Ŷ,+[Ŷ, X̂]] + . . .

where (X̂, Ŷ) are operators. Because of the commutation relations of ÂFF, the computation
of this Baker–Hausdorff–Campbell on (Q̂v, P̂v, Q̂u, P̂u) yields only a few terms, whose
coefficients are precisely those in Equation (8).

Proposition 14. The action of (Ûρ, Ûσ, Ûτ) on the wave function ψE(v, u) may be represented by
the following integral transforms:

ÛρψE(v, u) =
∫
R

dk
(

e−ikρψ̃E(k)
)

eikv Ai
(

γ(u− E) +
k2

γ2

)
,

ÛσψE(v, u) =
∫
R

dk ψ̃E(k + σ) eikv Ai
(

γ(u− E) +
k2

γ2

)
,

ÛτψE(v, u) =
∫
R

dk
(

e−iτ(k2−E) ψ̃E(k)
)

eikv Ai
(

γ(u− E) +
k2

γ2

)
. (76)

Proof. The proof is straightforward. It uses the action of each generator given by Equation (69)
and then exponentiates it as action on ψ̃E(k). This leads to unitary factors for Ûρ and Ûτ as
well as a shift in the argument of ψ̃E(k) for Ûσ. This is an alternative form to the one obtained
by Iwai–Rew [4].

3.5. Quantum Integrals of Motion and Consequences on the Schrödinger Wave Functions

In this subsection, we study the nature of the quantum integrals of motion. In particu-
lar, when a manifest separation of variables occurs in an operator Ô(v, u) = Ô(v) + Ô(u),
the operator F̂(v, u) = Ô(v)− Ô(u) automatically commutes with Ô(v, u).

(a1)F̂ρ exists since [Ĥ, F̂ρ] = 0 because ρ is a cyclic variable, as in the classical case.
(a2) F̂τ is due to the separation in the (v, u) Cartesian variables. Hence,

Ĥ =

(
−1

2
∂2

∂v2

)
+

(
−1

2
∂2

∂u2 + u
)

, and F̂τ =

(
−1

2
∂2

∂v2

)
−
(
−1

2
∂2

∂u2 + u
)

(77)

commute.
(b1) F̂σ is due to the separation in π/4 rotated Cartesian variables (ξ, ζ). With the

following change in variables:

(v, u) =
1
2
((ξ + ζ), (ξ − ζ)), (ξ, ζ) = ((u + v), (u− v)), (78)
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(Ĥ, F̂σ) becomes (Ĥ(ξ, ζ), F̂σ(ξ, ζ)) given by the following equations:((
− ∂2

∂ξ2 +
1
2

ξ

)
+

(
− ∂2

∂ζ2 +
1
2

ζ

)
,
(
− ∂2

∂ξ2 +
1
2

ξ

)
−
(
− ∂2

∂ζ2 +
1
2

ζ

))
(79)

which commute.
(b2) However, there was an unproven claim of separation of variables in displaced

parabolic coordinates [10] as a justification for the existence of (F̂σ). Hereafter, we provide
an argument that may explain this claim. Consider the intermediate space (k, u), obtained
after a partial v-Fourier transform from the (v, u) space. The Schrödinger equation in the
(k, u) space for stationary states of the eigenvalue E admits solutions in the form of:

Ai
(

γu +
k2

γ2 − γE
)

. (80)

This solution has a constant value C on the parabolas of equation
(

u + 1
2 k2 − E

)
= C,

where C is a shift of the parabolas. Consequently, the tangential derivative of any function
of (k, u) along these parabolas is zero. This tangential derivative is just t · ∇, where
∇ =

(
∂
∂k , ∂

∂u

)
is the gradient operator and t = (1,−k) is the tangent vector to the parabola.

Thus, we have the following:(
−k

∂

∂u
+

∂

∂k

)
Ai
(

γu +
k2

γ2 − γE
)
= 0. (81)

Going back to the (v, u) space by the k-Fourier inverse transform, this tangential
derivative reappears as a (v, u)−partial differential operator

(
∂2

∂u ∂v − v
)

, which is just −F̂σ.
Therefore, the claim of reference [13] is only valid in the (k, u)-space.

(c) F̂2 is due to a special form of separation of variables (Stäckel separation of variables),
when one changes from Cartesian (v, u) to parabolic (x, y) coordinates by the following

formulas: (u, v) =
(

x2−y2

2 , xy
)

. After working out the expressions of the (x, y) partial

derivatives, we end up with new expressions in (x, y) for (Ĥ, F̂2):

Ĥ(x, y) =
1

x2 + y2

{ (
−1

2
∂2

∂x2 +
1
2

x4
)
+

(
−1

2
∂2

∂y2 −
1
2

y4
)}

,

F̂2(x, y) =
(−1)

x2 + y2

{
y2
(
−1

2
∂2

∂x2 +
1
2

x4
)
− x2

(
−1

2
∂2

∂y2 −
1
2

y4
)}

. (82)

These expressions can also be obtained from the quantization of classical expres-
sions by replacing (px, py) with

(
−i ∂

∂x ,−i ∂
∂y

)
. The meaning of this Stäckel separation of

variables is given in the following proposition.

Proposition 15. As the total energy is conserved as Ĥ = E, the eigenfunctions of Ĥ in parabolic
coordinates are products of Schrödinger eigenfunctions of confining and non-confining quartic
oscillators in the form of ψE(v, u) ∼ ψE(x, y) = ψ

(+)
E (x)ψ(−)

E (y). Then, F̂2ψ
(+)
E (x)ψ(−)

E (y) =

−Eψ
(+)
E (x)ψ(−)

E (y).

Proof. Using the expression of Ĥ in parabolic coordinates given by Equation (82) and call-
ing the corresponding wave function ψE(x, y), we can transform the stationary Schrödinger
equation ĤψE(x, y) = EψE(x, y) for all (x, y) 6= (0, 0) into the following condition:{ (

−1
2

∂2

∂x2 − Ex2 +
1
2

x4
)
+

(
−1

2
∂2

∂y2 − Ey2 − 1
2

y4
)}

ψE(x, y) = 0. (83)
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Since this condition is to be satisfied for all (x, y) 6= (0, 0), ψE(x, y) should be a product
of eigenfunctions of the two separate Schrödinger operators in x and in y, with opposite
eigenvalues. For the confining quartic potential in x, it is known that this Schrödinger
operator has discrete non-degenerate point spectrum with the eigenvalues E = εn, with
n ∈ N, which are bounded below. On the other hand, the Schrödinger operator with
non-confining quartic potential in y has a continuous, real, non-degenerate, scattering-type
spectrum. Thus, ψE(v, u) ∼ ψE(x, y) must be of the product form (up to a multiplicative
constant):

ψE(x, y) = ψ
(+)
E (x)ψ

(−)
E (x),

verifying the stationary Schrödinger equations:(
−1

2
∂2

∂x2 − Ex2 +
1
2

x4
)

ψ
(+)
E (x) = H(+)

osc (x)ψ(+)
E (x) = +E ψ

(+)
E (x),(

−1
2

∂2

∂y2 − Ey2 − 1
2

y4
)

ψ
(−)
E (y) = H(−)

osc (y)ψ
(−)
E (y) = −E ψ

(−)
E (y). (84)

Then, after rewriting the expression of F̂2 under the following form:

F̂2 =
(−1)

x2 + y2

{
y2
(
−1

2
∂2

∂x2 − Ex2 +
1
2

x4
)
− x2

(
−1

2
∂2

∂y2 − Ey2 − 1
2

y4
)}

, (85)

we see that
F̂2ψE(x, y) = F̂2ψ

(+)
E (x)ψ

(−)
E (y) = −E ψ

(+)
E (x)ψ

(−)
E (y). (86)

Hence, for Ĥ = E, we have necessarily −E as an eigenvalue of F̂2, where E = εn is
any eigenvalue of the confining quartic potential + 1

2 x4.

3.6. Integral Relation for Schrödinger Eigenfunctions of Quartic Oscillators

The passage to parabolic coordinates has a remarkable consequence on the eigenfunc-
tions of quantum quartic oscillators, as stated in the following theorem.

Theorem 3. The eigenfunctions of quantum confining and non-confining quartic oscillators verify
the following integral relation:

ψ
(+)
E (x)ψ

(−)
E (y) = µE

∫
R

dk ψ
(+)
E (k) eikxy Ai

(
x2 − y2 + k2 − 2E

γ2

)
. (87)

Proof. Recast the expression of ψE(v, u) in parabolic coordinates to get the following:

ψ
(+)
E (x)ψ

(−)
E (y) = µE

∫
R

dk ψ̃E(k) eikxy Ai
(

x2 − y2 + k2 − 2E
γ2

)
, (88)

where µE takes care of the fact that ψE(v, u) ∼ ψE(x, y) up to a multiplicative constant. Let

F̂2 operate on both sides of this equation. On the left-hand side, we get −Eψ
(+)
E (x)ψ

(−)
E (y)

according to Equation (86). On the right-hand side, we obtain:

− µE

∫
R

dk
(
−1

2
d2

dk2 − Ek2 +
1
2

k4
)

ψ̃E(k) eikxy Ai
(

x2 − y2 + k2 − 2E
γ2

)
, (89)

according to Equation (73). Hence, to have consistency between the two sides, one must
require that ψ̃E(k) = ψ

(+)
E (k). Therefore, it follows that the eigenfunctions of the confining

and non-confining quartic oscillators should verify the integral relation above.

Since the confining quartic oscillator is of dominant physical interest as a non-trivial
field theory model in zero space dimension, an integral identity for its eigenfunctions can
be derived from the previous identity via a “Wick-rotation” [17].
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Corollary 5. The eigenfunctions ψ
(+)
E (x) of the confining quartic oscillator fulfil the following

integral identity:

ψ
(+)
E (x)ψ

(+)
E (x′) = µE

∫
R

dk ψ
(+)
E (k)

(
cosh xx′k
sinh xx′k

)
Ai
(

x2 + x′2 + k2 − 2E
γ2

)
. (90)

Proof. Since
H(−)

osc (ix′) = −H
(+)
osc (x′), and ψ

(−)
E (ix′) = ψ

(+)
E (x′), (91)

replace y with y = ix′ in Equation (88). Then, as parity is a good quantum number for
H(+)

osc , the factor e−kxy in the integrand should be replaced by either sinh xx′k or cosh xx′k,
according to the parity of the state of energy E = εn for n ∈ N. This last integral identity
was discovered long ago via the Weyl quantization of anharmonic oscillators [18] and
recently rediscovered by [19].

4. An Application to Wave Propagation in Duct of Varying Section

In 2003, B J Forbes et al. [20] observed that the Webster equation describing the excess
pressure p(u, t) in a fluid flowing in a duct with a slowly varying circular cross-sectional
area S(u):

1
c2

∂2 p(u, t)
∂t2 =

1
S(u)

∂

∂u

(
S(u)

∂p(u, t)
∂u

)
, (92)

where u is the space coordinate along the axis of the duct, t the time, and c is the constant
wave speed in the fluid, which can be turned into a Klein–Gordon equation with a potential
V(u) for a wave function ψ(u, t):(

1
c2

∂2

∂t2 −
∂2

∂u2 + V(u)
)

ψ(u, t) = 0, (93)

if ψ(u, t) = p(u, t)
√

S(u) and

V(u) =
1√
S(u)

d2
√

S(u)
du2 . (94)

Hence, if we require that the potential to be linear V(u) = (u− d), where d is an arbi-
trary distance, Equation (94) shows that the duct section should vary as S(u) =Ai(u− d),
and consequently, Equation (93) is obtained from the two-dimensional free fall Schrödinger
equation by “Wick-rotation” v = ict [17] (without a factor 1/2 in the partial derivatives).
This Klein–Gordon Equation (93) admits a dynamical symmetry algebra which is the Wick
rotated ÂFF. Note that the free fall F̂τ integral of motion now becomes the Klein–Gordon
operator, and conversely, the free fall Hamiltonian operator is now an integral of the mo-
tion for the Klein–Gordon operator. The quadratic integral operator of the Klein–Gordon
problem is now the Wick rotated free fall F̂2 operator. In this case, one directly gets the
integral identity for the Schrödinger eigenfunctions of the confining quartic anharmonic
oscillator; see Equation (90).

The general solution of this Klein–Gordon wave equation φd(t, u) is formally analo-
gous to ψE(v, u); it is given by the ω-integral for t > 0:

φd(t, u) =
∫
R

dω f (ω)Ai
(

γ(u− d) +
ω2

c2γ2

)
, (95)

with the initial conditions φd(0, u) and φ̇d(0, u) = d
dt φd(t, u)|t=0.

Theorem 4. The angular frequency distribution f (ω) of φd(t, u) is fully determined by the initial
conditions.
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Proof. The proof uses the integral given by Equation (60) and also by correctly integrating
the delta function δ(ω2 −ω′2):

1
2
( f (ω′) + f (−ω′)) =

|ω′|
c2

∫
R

du φd(0, u)Ai
(
(u− d) +

ω′2

c2

)
,

1
2
(− f (ω′) + f (−ω′)) =

sgnω′

c2

∫
R

du φ̇d(0, u)Ai
(
(u− d) +

ω′2

c2

)
(96)

where sgnω = ω
|ω| is the sign of ω. This fully determines f (ω).

5. Conclusions and Perspectives

In this paper, a complete account of the dynamical symmetries of the two-dimensional
free fall is provided both classically and quantum mechanically. The results may open
the way towards the construction of the representation of its dynamical algebra. This is a
challenging task which makes it necessary to understand the zonal character of the integral
relation fulfilled by the eigenfunctions of the confining quartic oscillator [21]. An extension
to dimensions higher than two, which may reveal new unexpected features of this simple
physical problem as it did in two dimensions, is foreseen as future work.
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