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Abstract: In this paper, we firstly investigate the constant H(X) proposed by Gao further by dis-
cussing several properties of it that have not yet been discovered. Secondly, we focus on a new
constant GL(X) closely related to H(X), along with a variety of geometric properties. In addition,
we show several relations among it and the several basic geometric constants via a few inequalities.
Finally, we manage to characterize the geometric properties of its generalized forms GL(X, p) and
CL(X) explicitly.
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1. Introduction

The geometric constant has received widespread attention, for the reason that it not
only essentially reflects the geometric properties of a space X, but also enables us to
study the space quantitatively. As a research tool, geometric constants are also of great
significance for their exclusive research, such as the estimations of them on some specific
space, the relationships among them via several inequalities, and the relationships between
one of them and its dual.

The most classic constants are the Jordan–von Neumann constant CNJ(X) and James
constant J(X). The James constant J(X) was proposed by Gao et al. in 1990, and the
concept of it was derived from James’ characterization of uniformly non-square space.
Further research concerning J(X) has been conducted on the issue of whether the space
has a normal structure or not. For the result and application of this constant, please refer to
the article [1–5].

The constant H(X) was proposed by Gao in 2000. Distinct from the existing geometric
constants, this one combines the unit sphere inscribed with an equilateral triangle, inno-
vatively taking the quantity 2x − y into consideration. It is worth mentioning that the
introduction of the quantity 2x− y here has actually increased the difficulty of its study to
a large extent. Some classical geometric properties and the connection of constants might
be invalid. On the one hand, the constant H(X) is no longer symmetrical, although most
of the geometric constants we know all have a symmetrical structure. On the other hand,
there are also differences in a few techniques for inequalities scaling when tackling the
issues brought by the asymmetric geometric constants.

Motivated by Gao’s constant H(X), we continue to study the geometric property
of it in the subsequent section. In addition, we will introduce a brand new geometric
constant GL(X) by giving an explanation at the very beginning of Section 3 of this paper
in a geometric sense. In particular, some characterizations of geometric properties such
as the value of inner product space and uniform non-squareness are given by utilizing
certain equalities and inequalities on Banach spaces. Furthermore, we will provide the
relationships among it and some other geometric constants via several inequalities.
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2. Preliminaries

Throughout the paper, we will assume that X represents a non-trivial Banach space,
that is, dim X ≥ 2, and use SX and BX to represent the unit sphere and unit ball of X,
respectively.

Definition 1 ([6]). A Banach space X is called uniformly convex if, for any ε > 0, there exists
δ > 0, such that for any x, y ∈ S(X) with ‖x− y‖ > ε, ‖(x + y)/2‖ < 1− δ.

The Clarkson modulus of convexity of a Banach space X is defined as follows [7]:

δX(ε) = inf
{

1− ‖x + y‖
2

: x, y ∈ SX , ‖x− y‖ ≥ ε

}
.

The constant J(X)

J(X) = sup{min(‖x + y‖, ‖x− y‖) : x, y ∈ SX}

is called the James constant [8], and the constant CNJ(X) [9] is introduced by Clarkson to
describe the inner product space. In a sense, it can be understood as the following formula,
for which

CNJ(X) = sup
{
‖x + y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: (x, y) 6= (0, 0)

}
.

The constant CZ(X) was introduced by Zbăganu [10]:

CZ(X) = sup
{
‖x + y‖‖x− y‖
‖x‖2 + ‖y‖2 : x, y ∈ X, (x, y) 6= (0, 0)

}
.

CZ(X) and CNJ(X) seem to be compatible. It is worth mentioning that Alonso and Mar-
tin [11] gave a counterexample that CZ(X) 6= CNJ(X).

The next constant, which is closely related to the new constant we studied, was defined
by Gao. The constant H(X) is defined as [12]

H(X) = sup{min{‖x + y‖, ‖2x− y‖} : x, y, x− y ∈ S(X)}.

Listed below are some of the results of the constant H(X) given in [12]:

(i) For a Banach space, H(X) ≤ 2.
(ii) If X is a Hilbert space, then H(X) =

√
3.

(iii) If H(X) < 2, then X is uniformly non-square.

Next, we give more properties of the H(X) constant, because some of the techniques
used in it only appeared after the H(X) constant was introduced. The proof of Theorem 2
is based on the method published in 2001 by Kato et al.

Theorem 1. Let Banach space X be finite-dimensional, if H(X) = 2, then X is not strictly convex.

Proof. Assume that H(X) = 2. Since the unit sphere of finite-dimensional Banach space
is compact, so there exist x0, y0, x0 − y0 ∈ S(X), such that ‖x0 + y0‖ = 2, which implies
that point x0+y0

2 is not an extreme point of a closed unit sphere of X, so X is not strictly
convex.

Theorem 2. Let X be a Banach space, then

2H(X)− 2 ≤ H(X∗) ≤ 1
2

H(X) + 1.
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Proof. For any x, y, x− y ∈ S(X), we have ‖x + y‖ ≤ ‖x‖+ ‖y‖ = 2, ‖2x− y‖ ≤ 2, thus

‖x + y‖+ ‖2x− y‖ ≤ sup{min{‖x + y‖, ‖2x− y‖}}+ 2.

For any ε > 0, there exist x, y, x− y ∈ S(X), such that

min{‖x + y‖, ‖2x− y‖} ≥ H(X)− ε.

Additionally, by Hahn–Banach Theorem, there exist functionals u∗, v∗ ∈ S(X∗),
such that

u∗(x + y) = ‖x + y‖, v∗(y− 2x) = ‖y− 2x‖ = ‖2x− y‖.

Thus,
H(X∗) = sup{‖u∗ + v∗‖, ‖2u∗ − v∗‖}

≥ ‖u∗ + v∗‖+ ‖2u∗ − v∗‖ − 2

≥ (u∗ + v∗)(y− x) + (2u∗ − v∗)(x)− 2

= u∗(x + y) + v∗(y− 2x)− 2

= ‖x + y‖+ ‖2x− y‖ − 2

≥ 2(min{‖x + y‖, ‖2x− y‖})− 2

≥ 2(H(X)− ε)− 2.

Since ε can be arbitrarily small,

H(X∗) ≥ 2H(X)− 2.

To prove the right side of inequality, assume that u∗, v∗ ∈ S(X∗), there exist x, y, x−
y ∈ S(X), such that

(u∗ + v∗)(y− x) > ‖u∗ + v∗‖ − ε, (2u∗ − v∗)(x) > ‖2u∗ − v∗‖ − ε.

Therefore,

sup{min{‖u∗ + v∗‖, ‖2u∗ − v∗‖}} ≤ 1
2
(‖u∗ + v∗‖+ ‖2u∗ − v∗‖)

≤ 1
2
((u∗ + v∗)(y− x) + (2u∗ − v∗)(x) + 2ε)

=
1
2
(u∗(x + y) + v∗(y− 2x) + 2ε)

≤ 1
2
(‖u∗‖ · ‖x + y‖+ ‖v∗‖ · ‖2x− y‖) + ε

=
1
2
(‖x + y‖+ ‖2x− y‖) + ε

≤ 1
2

sup{min{‖x + y‖, ‖2x− y‖}}+ 1 + ε

≤ 1
2

H(X) + 1 + ε.

Since ε can be arbitrarily small, we prove the result as desired.

3. The Constant GL(X)

As was mentioned in the Introduction, the issues brought by the asymmetric struc-
ture are too tricky to tackle because many geometric properties of asymmetric geometric
constants remain uncertain. In this section, we will introduce a new constant based on
the constant H(X) with an asymmetric structure. We begin by introducing the following
key definition:
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GL(X) = sup{‖x + y‖2 + ‖2x− y‖2 : ‖x‖ = ‖y‖ = ‖x− y‖ = 1}.

The geometric background of GL(X) is shown in Figure 1: consider the unit sphere on

the Euclidean plane with ‖x‖ = ‖y‖ = ‖y− x‖ = 1. Assume that
→

AC = x,
→

AB = y, then
→

AE = x + y. Assume that
→

CB = y− x, then
→

DC = 2x− y. Apparently, triangle4ABC is
equilateral. Then, the hexagon with vertices ±x,±y,±(x− y) is an affine regular hexagon

inscribed to the unit sphere of the 2-dimensional normed space. Moreover,
→

AD = x− y,
→

CE = y,
→

DE = 2x. Since

2(‖x‖2 + ‖x− y‖2) = 2
(∥∥∥∥ (2x− y) + y

2

∥∥∥∥2

+

∥∥∥∥ (2x− y)− y
2

∥∥∥∥2)
= 2

(
2
∥∥∥∥2x− y

2

∥∥∥∥2
+ 2
∥∥∥y

2

∥∥∥2
)

= ‖2x− y‖2 + ‖y‖2,

therefore,
→

CD
2
+
→

AB
2
= 2(

→
AC

2
+
→
BC

2
)

holds, and then the quadrilateral �ACBD satisfies the parallelogram law. Similarly, we can
deduce that the quadrilateral �ABEC satisfies the parallelogram law as well. In general,
the quadrilateral �ACED can be described as half a regular hexagon.

Figure 1. Geometric explanation on the unit sphere.

Corollary 1. Let Banach space X be finite dimensional, if GL(X) = 8, then X is not strictly convex.

Example 1. Let X be `∞ endowed with the norm ‖x‖∞ = supn |xn| for (xn) ∈ `∞. Then,
GL(`∞) = 8.

Assume that x0 = (1, 1, 0, . . .), y0 = (1, 0, 0, . . . ) ∈ S(`∞), then x0 − y0 = (0, 1, 0, . . .) ∈
S(`∞). We can get

GL(`∞) ≥ ‖x0 + y0‖2 + ‖2x0 − y0‖2

= 22 + 22 = 8,

which implies that GL(`∞) = 8.

Example 2. Let X be R2 endowed with the `∞ − `1 norm

‖x‖ =
{
‖x‖∞ if x1x2 ≥ 0,
‖x‖1 if x1x2 ≤ 0.

Let x = (1, 1
2 ), y = ( 1

2 , 1), then x− y = ( 1
2 ,− 1

2 ).
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Example 3. Let X be `p, 1 < p < ∞, then GL(X) ≤ 2(2p − 1)
2
p for p ≥ 2 and GL(X) ≤ 2 · 3

2
p

for 1 ≤ p < 2.

Applying the Clarkson inequality that when p ≥ 2, x, y ∈ X, we have

2(‖x‖p + ‖y‖p) ≤ ‖x + y‖p + ‖x− y‖p

≤ (‖x‖+ ‖y‖)p + |‖x‖ − ‖y‖|p,

when 1 ≤ p < 2, x, y ∈ X, we have

2(‖x‖p + ‖y‖p) ≥ ‖x + y‖p + ‖x− y‖p

≥ (‖x‖+ ‖y‖)p + |‖x‖ − ‖y‖|p.

Then, we can deduce that when p ≥ 2, x, y, x− y ∈ SX ,

‖x + y‖p ≤ (‖x‖+ ‖y‖)p + |‖x‖ − ‖y‖|p − ‖x− y‖p

= 2p − 1,

‖2x− y‖p ≤ (‖x‖+ ‖x− y‖)p + |‖x‖ − ‖x− y‖|p − ‖x− (x− y)‖p

= 2p − 1,

when 1 ≤ p < 2, x, y, x− y ∈ SX ,

‖x + y‖p ≤ 2(‖x‖p + ‖y‖p)− ‖x− y‖p

≤ 2(‖x‖2 + ‖y‖2)− ‖x− y‖2

= 3,

‖2x− y‖p ≤ 2(‖x‖p + ‖x− y‖p)− ‖x− (x− y)‖p

≤ 2(‖x‖2 + ‖x− y‖2)− ‖x− (x− y)‖2

= 3,

as desired.

Proposition 1. If X is an inner product space, then GL(X) = 6.

Proof. For any x, y, x− y ∈ S(X), we have

‖x + y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x− y‖2 = 3,

‖2x− y‖2 = 2(‖x‖2 + ‖x− y‖2)− ‖x− (x− y)‖2 = 3,

which implies that GL(X) = 6.

Theorem 3. For any Banach space X, we have 9
2 ≤ GL(X) ≤ 8.

Proof. Since
‖x + y‖+ ‖2x− y‖ ≥ ‖x + y + 2x− y‖

= ‖3x‖
= 3,

hence

‖2x− y‖ ≥ 3− ‖x + y‖.
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Then, we can deduce that

‖x + y‖2 + ‖2x− y‖2 ≥ ‖x + y‖2 + (3− ‖x + y‖)2

= 2‖x + y‖2 + 9− 6‖x + y‖

= 2
[(
‖x + y‖ − 3

2

)2
+

9
4

]
≥ 9

2
.

On the other hand, by ‖2x− y‖ ≤ ‖x‖+ ‖x− y‖ = 2, it is implied that GL(X) ≤ 8,
as desired.

Proposition 2. For any Banach space X, we have

4(1− δX(1))2 ≥ GL(X)− 4.

Proof. First, note that

δX(t) = inf
{

1− 1
2
‖x + y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
= inf

{
1− 1

2
‖x + y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
.

Then, we can deduce that

δX(‖x− y‖) ≤ 1− ‖x + y‖
2

for any ‖x‖ = ‖y‖ = ‖x− y‖ = 1.
Applying the triangle inequality, we have the following inequality estimate:

(1− δX(‖x− y‖))2 + 4 ≥ ‖x + y‖2

4
+ 1 + 3

=
1
4
(‖x + y‖2 + ‖x‖2 + ‖x− y‖2 + 2‖x‖‖x− y‖) + 3

≥ 1
4
(‖x + y‖2 + ‖2x− y‖2) + 3

for any ‖x‖ = ‖y‖ = ‖x− y‖ = 1, and hence

(1− δX(‖x− y‖))2 + 4 ≥ 1
4
(‖x + y‖2 + ‖2x− y‖2) + 3

for any ‖x‖ = ‖y‖ = ‖x− y‖ = 1. This means that

4(1− δX(1))2 ≥ GL(X)− 4,

as desired.

Proposition 3. For any Banach space X, we have

H(X)2 ≤ 1
2

GL(X).
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Proof. Consider points x and y in space X, we have the following estimates

min{‖x + y‖2, ‖2x− y‖2} ≤ (‖x + y‖+ ‖2x− y‖)2

4

≤ ‖x + y‖2 + ‖2x− y‖2

2
,

as desired.

Theorem 4. Let X be a Banach space, we have (i)⇒(ii)⇒(iii).

(i) GL(X) < 8.
(ii) H(X) < 2.
(iii) X is uniformly non-square.

Proof. (i)⇒ (ii). Applying Proposition 3.
(ii)⇒ (iii). Using the result in ([12], p. 243, Theorem 2.10), if H(X) < 2, then X is

uniformly non-square.

Corollary 2. If X is not super-reflexive, then GL(X) = 8.

4. The Constant GL(X, p) and CL(X)

Next, we will introduce two generalizations of constants and consider their related
properties.

Given any Banach space X and a number p ∈ [1, ∞), another geometric constant
GL(X, p) is defined by

GL(X, p) = sup{‖x + y‖p + ‖2x− y‖p : ‖x‖ = ‖y‖ = ‖x− y‖ = 1}.

Proposition 4. For any Banach space X, we have 21−p · 3p ≤ GL(X, p) ≤ 2p+1.

Proof. By the convexity of the function f (u) = up on [0, ∞), we have the following
inequality:

‖x + y‖p + ‖2x− y‖p

2
≥
(
‖x + y‖+ ‖2x− y‖

2

)p

.

Then, we can deduce that

‖x + y‖p + ‖2x− y‖p

2
≥
(
‖x + y‖+ ‖2x− y‖

2

)p

≥
(
‖x + y + 2x− y‖

2

)p

= 2−p · 3p,

hence
‖x + y‖p + ‖2x− y‖p ≥ 21−p · 3p.

On the other hand, according to the triangle inequality, we can have the following
estimates

‖x + y‖p + ‖2x− y‖p ≤ (‖x‖+ ‖y‖)p + (‖x‖+ ‖x− y‖)p

= 2p+1.

This completes the proof.
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Theorem 5. For any 1 < p < ∞ and any Banach space X, the following inequality holds:

H(X) ≤ 2−
1
p p
√

GL(X, p).

Proof. Indeed, if 1 < p < ∞, then for any x, y, x− y ∈ S(X), we have

2(min{‖x + y‖, ‖2x− y‖})p ≤ ‖x + y‖p + ‖2x− y‖p,

which implies that

min{‖x + y‖, ‖2x− y‖} ≤ 2−
1
p p
√

GL(X, p),

and the proof is completed.

Combining our new constant GL(X) with the constant CZ(X), we define the CL(X)
constant as follows:

CL(X) = sup{‖x + y‖ · ‖2x− y‖ : ‖x‖ = ‖y‖ = ‖x− y‖ = 1}.

Proposition 5. Let X be a Banach space, then

CL(X) ≤ 1
2

GL(X).

Proof. Consider points x and y in space X, we have the following estimates

2‖x + y‖ · ‖2x− y‖ ≤ ‖x + y‖2 + ‖2x− y‖2,

as desired.

Example 4. Let X be `∞ endowed with the norm ‖x‖∞ = supn |xn| for (xn) ∈ `∞. Then,
CL(`∞) = 4.

Assume that x = (1, 1, 0, . . .), y = (1, 0, 0, . . . ) ∈ S(`∞), then x − y = (0, 1, 0, . . .) ∈
S(`∞). Then, CL(`∞) ≥ ‖x + y‖ · ‖2x− y‖ = 2 · 2 = 4. Since CL(`∞) ≤ 1

2 GL(`∞) = 4, so
CL(`∞) = 4.

Proposition 6. For any Banach space X, we have

CL(X) ≥ 1
2
(9− GL(X)).

Proof. Since
‖x + y‖+ ‖2x− y‖ ≥ ‖x + y + 2x− y‖

= ‖3x‖
= 3,

hence
‖2x− y‖2 + ‖x + y‖2 + 2‖2x− y‖‖x + y‖ ≥ 9.

Then, we can deduce that

‖x + y‖‖2x− y‖ ≥ 1
2
(9− GL(X)),

which implies that CL(X) ≥ 1
2 (9− GL(X)), as desired.



Symmetry 2022, 14, 72 8 of 8

5. Conclusions

In light of the geometric constant H(X) proposed by Gao, we explore the geometric
properties of it in depth by discussing the strict convexity of it, together with representing
the relationship between it and its dual. Meanwhile, we introduce a new geometric constant
GL(X), which is based on the equilateral triangle in the unit sphere. With the relation-
ships among GL(X) and some other basic geometric constants through some inequalities,
we manage to describe several geometric properties, such as strict convexity, uniformly
non-square properties, etc. Furthermore, we continue to study the generalized forms of it,
GL(X, p) and CL(X) explicitly, via exploration of their relations with the aforementioned
geometric constants, such as H(X) and GL(X). Nevertheless, there are still plenty of prob-
lems that remain to be discovered. How can H(X) and GL(X) be employed to characterize
more geometric properties? Are there any more relationships among GL(X) and some other
geometric constants awaiting more discussion? In the future, we will continue to explore
the geometric properties of these two constants, and hopefully obtain better results.
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