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Abstract: The multi-fingered dexterous robotic hand is increasingly used to achieve more complex
and sophisticated human-like manipulation tasks on various occasions. This paper proposes a hybrid
Surface Electromyography (SEMG) and Kinect-based human in-hand motion (HIM) capture system
architecture for recognizing complex motions of the humans by observing the state information
between an object and the human hand, then transferring the manipulation skills into bionic multi-
fingered robotic hand realizing dexterous in-hand manipulation. First, an Adaptive Directed Acyclic
Graph (ADAG) algorithm for recognizing HIMs is proposed and optimized based on the comparison
of multi-class support vector machines; second, ten representative complex in-hand motions are
demonstrated by ten subjects, and SEMG and Kinect signals are obtained based on a multi-modal
data acquisition platform; then, combined with the proposed algorithm framework, a series of data
preprocessing algorithms are realized. There is statistical symmetry in similar types of SEMG signals
and images, and asymmetry in different types of SEMG signals and images. A detailed analysis and
an in-depth discussion are given from the results of the ADAG recognizing HIMs, motion recognition
rates of different perceptrons, motion recognition rates of different subjects, motion recognition rates
of different multi-class SVM methods, and motion recognition rates of different machine learning
methods. The results of this experiment confirm the feasibility of the proposed method, with a
recognition rate of 95.10%.

Keywords: multi-fingered hand; human in-hand manipulation (HIM); surface electromyography
(SEMG); Kinect; adaptive directed acyclic graph (ADAG)

1. Introduction

As an intelligent machine that performs various tasks in place of human beings, robots
play an increasingly significant role in the production and life practices of human beings.
Various types of intelligent robots, such as surgical robots, inspection robots, and welding
robots, have been designed based on specific task requirements [1]. As the end effector for
various operations, the manipulator mainly includes three parts: hand, motion mechanism,
and control system. According to the physical properties of operated objects, including
color, size, weight, and texture, as well as the operating requirements, there are three major
types of manipulators: mechanical gripper, adsorption end-effector, and specialized tools
(brazing torch, nozzle, electric grinding head, etc.). Because of superior persistence and a
certain degree of dexterity, manipulators can not only improve working conditions, but
can also enhance the labor productivity and product quality of large-scale production,
thus bringing enormous economic benefits. However, conventional manipulators have
significant limitations when faced with complex operating environments and requirements,
and the main drawbacks are listed as follows:

e  There are lower gripping accuracy, poorer stability, and reliability in the absence of
geometric closure and force closure;
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e It is difficult to achieve precise orientation and operation, as well as the poor dy-
namic response;
e  Itcan't fulfill the tasks that require high grasping force with a lack of precise force control.

By observing and studying the dexterity of human hands, more and more researchers
have developed a strong interest in designing multi-fingered robotic hands that are sim-
ilar in structure and function to human hands for realizing complex manipulation and
control in various application environments [2,3]. Hence, how to transfer HIM skills to a
multi-fingered robotic hand is a research hotspot in the field of artificial intelligence (AI)
nowadays. The human hand, as the most flexible and complex structure of the human body;,
can finish about 90 percent of the operational tasks in human daily life. Humans can make
the corresponding reasonable motions performed with the hand and fingers according to
the different tasks. In addition, hand motions are also affected by the fact that different
operators have different manipulations for the same task. More and more researchers
have been attracted to hand manipulation skill analysis and, further, to apply them to
control bionic multi-fingered dexterous robotic hands [4-7]. Elliott et al. first proposed a
manipulation skills classification framework to describe four broad classes of hand motions
in detail [8]. Based on Elliott’s research on the classification of human hand motions, Exner
divided human hand movements into five categories [9]. Pont et al. further summarized
and analyzed previous human hand action classification methods and proposed a new
human hand action classification method including six classification modes [10].

More recently, Xue et al. proposed a generalized framework using multiple sensors
to study and analyze ten types of commonly used hand manipulations [11]. Bullock
et al. presented a hand motion manipulation classification method to create a descriptive
framework for classifying patterns of different dexterous manipulations involved in each
task [12]. From the description of human hand manipulation in the above-mentioned
related literature, it can be seen that the object operation is centered on the human hand,
and a series of operation sub-actions are generated through the explicit interaction between
the human hand and the object [13]. Before humans grasp an object reasonably, they
first select the number of fingers and grasping model reasonably according to the specific
requirements of the operation task and the physical characteristics of the object, and then
select the best contact point based on past experience to achieve stable manipulation [14].
However, the arm and hand joints provide the necessary position information and force
information for the stable operation of objects. Therefore, based on the summary of the
above human hand manipulation modes and the analysis of human hand actions and object
interactions, this paper designs ten typical human hand motions to represent the feature
information included in different actions.

Considering that human hand manipulation is a dynamic process that includes con-
tinuous sub-actions and is affected by personal habits, posture changes, etc., resulting in
different human actions, it will be a huge challenge to obtain the operation information of
human hand motions. Researchers have begun to analyze the dynamic process of human
hand manipulation from a biological perspective. Generally speaking, the brain first gener-
ates an electrical signal of human hand motion intention, and the nervous system transmits
an electrical signal and stimulates the corresponding muscle fibers. Then, a complex set
of skeletal muscles, tendons, and bones are used to bring forth various hand motions.
A variety of sensors are currently used to capture the physical characteristics of human
hand motions, involving finger force, angle, position, and other information. Surface elec-
tromyography (SEMG) can accurately collect the SEMG signals generated by muscle fiber
contraction and is widely used in human hand motion mechanics analysis, gait analysis,
clinical rehabilitation, and other fields. Therefore, a large number of research articles show
the research results of SEMG signal processing [15-17]. Because of the nonlinear and
chaotic behavior of SEMG signals [18], nonlinear time series analysis, including the Markov
Model (MM), Threshold Autoregressive Model (TAM), Lyapunov Spectrum (LS), and other
proposed algorithms, are the classical and popular methods used for feature extraction. In
order to better capture the spatial and image information of HIMs, the most widely used
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visual perception device with perfect image information is the Kinect sensor developed
by Microsoft nowadays [19]. It can acquire the depth image information of human hand
motions in unstructured environments, avoiding the error interference caused by physical
contact. Ju et al. designed a Kinect-based human hand gesture recognition framework
for ten types of nuanced human hand motion classification using the Finger-earth Movers
Distance (FMD) method [20]. Using the 2G-Kinect sensor, Sun et al. designed a 3D skeleton
gait data set, including 2D contour images of human hand movements and 3D coordinates
of skeleton joints [21]. In addition, some representative articles on vision-based human
hand motion recognition and technology applications have been published in a wide range
of international robotics journals and conferences.

Considering the complexity of human hand movements, a single sensor cannot acquire
multiple physical features; therefore, the lack of key features will lead to motion distortion
of HIM recognition. It is necessary to adopt the multi-modal data fusion method to make
up for the disadvantage that a single perceptron can only obtain uni-modal data. By
reviewing the state-of-the-art literature, there are few researchers have simultaneously
acquired SEMG signals and 3D depth information of human hands based on SEMG and
Kinect sensors. This paper proposes an HIM recognition framework based on two different
kinds of sensory information, which include a SEMG signal from a high SEMG capture
system attached on the forearm, and depth-sensing information from Kinect placed on the
physical desktop. In addition, a novel threshold-based human hand motion segmentation
algorithm is proposed; that is, the threshold value is calculated by sampling the maximum
and average absolute values of the SEMG signal to judge the starting point of different
human hand actions and realize motion segmentation.

The remainder of the paper is organized as follows. First, the detailed HIM identifica-
tion method is presented in Section 2, and the HIM capture system architecture, including
system principles, acquisition platforms, and motion capturing, is proposed in Section 3.
Then, the proposed multi-modal signal processing method is introduced in Section 4.
Section 5 mainly presents the experimental results analysis and discussion with different
comparison methods. The final Section summarizes the proposed HIM recognition method
and further research direction.

2. Human In-Hand Motion Identification Method
2.1. Multiclass Support Vector Machines

HIM recognition belongs to the category of multi-classification. It refers to obtaining
the original human hand behavior feature information and then obtaining a feature set
with better representation ability and separation degree through multimodal data analysis.
The common multiclass support vector machines (MSVM) are mainly divided into four
categories, as shown in Table 1 [22,23]. By comparing the merits and demerits of the four
methods, this paper propounds a novel MSVM method, namely adaptive directed acyclic
graph (ADAG), which can effectively avoid misclassification and rejection, and achieve
high-precision and accurate classification.

Table 1. Comparison of four MSVM methods.

Methods Training Time SVs Size Merits Demerits
One-versus-rest Short K Large Simple Effective Misclassification
One-versus-one Long K¥k —1)/2 Moderate High accuracy Inseparable problem

Direct MSVM Long No SVs Large Natural optimization Complex computation
Efficient to train
DAGSVM Long K¥k —1)/2 Large Avoid misclassification Error accumulation

No rejected classification
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2.2. Decision DAGSVM

It can be seen from Table 1 that although one-versus-rest and one-versus-one methods
have different training times, SVs, and sample sizes, both of them all have the problem of
inseparable regions. Assume that the linear classification model of the binary class is

Yij(x) = wip(x) + by 1

where w;j and ¢(x) represent a y-dimensional vector and a mapping function that maps
x into y-dimensional feature space respectively. Furthermore, b;; means a bias tern, and
Yij(x): —Yij(x). The inseparable region (brown part) is shown in Figure 1 with three
classes, and its pairwise formulation is given by:

Ri:{x‘Yij(x)>0,j:1,2,...,n,j7éi} )
A
X
Y (x) =0
Y (x)=0
s (%)
V(%) =0

0 X,

(¥}

Figure 1. Inseparable region.

Suppose that any sample point x belongs to R;, then x will be classified into category
x-th, otherwise it will be classified into the category with the most votes. The formula of
the classification idea is: ;

Yi(x)= ) sign(Yy(x)) )
j=Lj#

Here, we use the symbolic function to determine the range of the input vector x, and
the formula of the symbolic function is

sign(x) = { 11 J;ioo 4

It is worth noting that when x = 0, sign(x) = 1. Through Formulas (3) and (4), the
classification expression of any sampling point x is

arg max Y;(x) ®)

=1,..n

Suppose x € R;, k # i, Y;(x) = n—1and Yi(x) < n— 1, then x will be classified
into i. It should be noted that if all Y;(x) # n — 1, plural is will appear in Formula (5),
and x is unclassifiable. Therefore, the brown part in Figure 1 is an indivisible area, that is
Y(x) =0(i=1,2,3).

The decision DAG is only one direction from top to bottom in the graph, and no
cycles appear. All nodes are arranged and distributed in an equilateral triangle; that is, the
number of nodes in the first layer is 1, the number of nodes in the second layer is 2, and so
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on. DAG-S5VM starts from the root node and judges the classification of the sample points
through the two-parameter function on the node until only one class is included in the list.
Hence, the inseparability, misclassification, and rejection of multi-classification problems
are resolved, as shown in Figure 2.

A
X
Y;(x)=0
Y.(x)=0
o
Y,(x)=0
0 xr

Figure 2. Directed acyclic graph classification.

2.3. DAGSVM Optimization

The DAGSVM method constructs the k-class SVM classification problem into k two-
class classifiers. The i-th SVM classification problem treats the i-th class as one class and
the rest as another class, thereby transforming the multi-classification problem into a local
binary classification problem. For a sample (x1,¥1),- - - , (x4, y») with n training data, where
x; € RP,y; € {1,--- ,k} is the class label of x;,i = 1,2, - - ,n. The i-th SVM needs to solve
the following optimization problem:

min 1 (wl) Twi + C]é sé- (wl) ! (6)

w,bi i 2

() p(x)) +0 > 1—el, y; =i

. - €.>0, j=1,---,n 7
(wl)Tgb(xi) +b <€ -1, else p= @
The decision function obtained from Formula (7) is:
T T
(@) @)+, (wh) gpx) + 0k 8)

suppose x belongs to the category with the largest output value of the decision function,
and its expression is

N ,
x = argif?éxk((w’) $(x)+ bl> ©)

When the training sample classes are large, the training samples of a certain class are
much less than the sum of the training samples of other classes. Due to the imbalance of
the training samples, there will be misclassification and rejection areas, which will affect
the final classification accuracy.

In order to solve the misclassification and rejection area problems of DAGSVM, this
paper proposes an Adaptive Directed Acyclic Graph (ADAGSVM) method to reduce the
dependence on the node order and the hierarchical depth of the directed acyclic graph, so
as to achieve correct classification of sample data. The ADAG method adopts a hierarchical
decision tree structure with an inverted triangular structure, and the training method is
the same as that of the decision-directed acyclic graph. When the ADAGSVM algorithm
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deals with a k classification problem, it needs k * (k —1)/2 binary classifier and k — 1
internal nodes. Figure 3 is a schematic diagram of the ADAG algorithm processing an
8-classification.

Dis(x) {1.8} DaAx)y 2.7} Dsigx) {3.6} Dus(x) {43}

1 2 3 4
== *————— - —— g ———— —————— |
: Dzs(x) {7.8} Adaptive layer Dss(x) {5.6} I
|
s e T e AN ]

5
: _______________________________________________ |
| » Dss(x) {6.8} |e Adaptive layer :
|
S S e !
v 0
8th class

Figure 3. The classification principle of ADAGSVM.

In Figure 3, the first layer contains 4 nodes and evaluates the two-parameter function
of each node from this layer and identifies the class of the samples in each node through
the output value of the two-parameter function; after each round, the sample The classes
are halved and the two-argument function for the next level node is selected based on
the parent’s preferred class; the classification process goes all the way down to the lowest
level node.

2.4. Model Optimization

When solving a linear inseparable problem, the sample values are mapped to a higher-
dimensional space or an infinite-dimensional space through a mapping function. If the
method of classification problem in the above linear separable case is used for a new
linearly separable sample, it is necessary to calculate the inner product of the samples.
Through a comparison of kernel functions and the characteristics of the ADAGSVM model,
the Gaussian kernel function is the optimal choice for model optimization in this paper.
Suppose x and E are the input space (Euclidean space or discrete set) and the feature space
(Hilbert space), respectively, and the mapping of x to E is:

H(x)=x —E (10)

where Vx,y € x, if Z(x,y) = ¢(x) - ¢(y), then Z(x,y) is called the kernel function.
@(x) - ¢(y) is the inner product of (x,y) mapped to E. However, in practical applica-
tions, since the mapping function is complex and the sample dimension is very high, it is
easy to cause a “dimension disaster”, so a kernel function is introduced here to convert the
inner product of high-dimensional vectors into low-dimensional vectors.

The penalty parameter C is a compromise between obtaining a wide boundary spacing
and a small number of edge singularities for constraining the Lagrangian multipliers. The
experiments of a large number of researchers have proved that the method to find the
best penalty parameter C is still to try to verify it in an exponential way in one of the
following areas:

C=252"% .2 (11)

To obtain the ideal core radius 7, it is necessary to formulate reasonable model evalua-
tion criteria. The common cross-validation method is leave-one-out. The main idea of the
leave-one-out classification method is to treat a certain category sample in multiple cate-
gories as a category, and the remaining samples as another category. The results obtained
by this method are relatively reliable, but the number of models to be established is equal
to the number of samples, which increases the calculation cost.
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This paper proposes a novel grid search method to acquire the best parameters (C, ).
Since there will be different (C,y) corresponding to the highest precision, the group of
(C, v) with the smallest penalty parameter is considered as the optimal choice, and then
within the range of the group of parameters, through the step-by-step method to find a
more ideal parameters (C, ). For example, the optimal (C,y) of motion 2 is (1,0.0237).
After obtaining the optimal penalty parameters, the whole training set needs to be trained
again to obtain the final classifier. In addition, in order to avoid the problem of overfitting,
we used the five-fold cross-validation method to test the data set. From the test results, the
average accuracy obtained is good.

3. In-Hand Manipulation Capture System Architecture
3.1. System Principle

This paper proposes a hybrid SEMG- and Kinect-based HIM recognition system for
robotic human-like manipulation, as shown in Figure 4. The system includes three parts:
motion capturing, multi-modal data processing, and motion recognition. First, the multi-
modal data acquisition platform obtains 10 kinds of complex human motion information;
then, the sample features are acquired through image segmentation, feature extraction, and
other methods; finally, the different complex HIMs are recognized based on the proposed
ADAG algorithm.

~ . )
E 7 2,
_ Human in-hand motions
~
q Multimodal human in-hand motion capturing system J
s ™
I 3D image signal I
l Multimodal signal collection I
SEMG signal l
Multi-modal perception signals ’ e prelprocessmg |
I Feature extraction ]
[ ADAG classification model ]
Signal processing
- J

[ Human in-hand motion identification ]

Figure 4. Framework of the HIM recognition system.

3.2. Multi-Modal Data Acquisition Platform

The human hand motion capture platform includes SEMG and Kinect, which can
effectively obtain raw data and a sample feature database for identification by tracking
human movements. First, according to the complex human hand movements defined
by the predefined module of complex human hand movements, the time domain signal
acquisition module obtains the sample data Fsgpsc of the time domain signals and stores
the complex human movement feature samples in the feature sample data F. The 3D image
information acquisition module obtains the sample data F;,.+ of 3D image information
and stores it in the feature sample data F of complex human hand movements.
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3.2.1. Surface Electromyography

The electromyography instrument uses a surface electromyography signal capture
system and Trigno wireless sensor. EMG signal capture of human hand movements is
realized through 16 EMG sensors and 48 accelerometers. The external dimensions of the
SEMG are 37 mm x 26 mm X 15 mm; the signal resolution and sampling rate are 16 bits
and 4000 Hz, respectively; the maximum transmission distance is 40 m; and the maximum
charging capacity can maintain continuous operation for 7 h. Each perception unit has a
built-in three-axis acceleration sensor for judging the normal force direction; 4 silver bar
contacts are applied for SEMG signal capture. In order to correctly use the SEMG device,
the arrow mark on top of the device should be parallel to the rotation direction of the
muscle fibers below. The sensor should be correctly placed in the center of the muscle
abdomen and away from the tendon and its edge to reduce noise interference, such as
crosstalk and redundancy.

3.2.2. Kinect Sensor

Kinect is mainly composed of three parts, namely RGB color camera, infrared trans-
mitter, and infrared CMOS camera. The image acquisition frequency of Kinect is set to
30 frames per second, with the red center point as the coordinate center, and a square area
of 200 x 200 pixels is saved as a sample image. 1000 sequences of SEMG EMG signals and
2000 color and depth images of Kinect were collected as a sample database.

Kinect can acquire 3 color components (red, green, and blue) of the object simul-
taneously by 3 different lines and acquire the color signal of the object through image
superimposition and color change captured by an independent CCD sensor, in addition to
acquiring the object synchronously depth image. The effective detection range of Kinect
is about 0.5 m ~ 8 m. Through the complete Kinect for Windows SDK 1.8 development
tools provided by Microsoft, you can easily use C++ and other programming languages to
control the Kinect and realize the collection of human gestures.

3.3. Motion Capturing

In order to ensure the authenticity and objectivity of complex HIM manipulation,
10 healthy adults were invited as subjects to capture human hand motions. The subjects
included 8 men and 2 women, with an average age of 23.7 years, an average height of
171.5 cm, and an average weight of 64.9 kg. None of them had any history of neuromuscular
disease, and their right hands were healthy. All subjects received strict operation training
before the action capture, mainly including the selection of correct gestures, the location of
contact points, and the duration of actions. The subjects had to complete 10 movements,
each of which was repeated 10 times, with 5 s of relaxation time between each motion.
All subjects signed the Informed Consent Form and obtained ethical approval from the
Academic Committee. In this paper, 10 representative HIMs were designed, and the correct
manipulation demonstration is shown in Figure 5.

Figure 5. Demonstration of ten customized HIMs.
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4. Multi-Modal Signal Processing Method
4.1. Motion Segmentation

How to find the starting and end points of each motion from the signal stream is the
main goal of segmentation. The SEMG signals will be segmented synchronously with the
Kinect data. There are two states of SEMG signals: transient and steady. The muscle goes
from a state of nature to a voluntary contraction level in the beginning. In this transient
state, there will be obvious signal fluctuation and error. Hence, the steady-state signal is
applied to acquire the best result of data segmentation.

This paper proposes a threshold-based motion segmentation algorithm that obtains
the threshold of action segmentation by sampling the maximum and average values of
SEMG signals. The definition of threshold T is:

3 & 30 ¢
T = Zigl |xi| maxi{xi} > Ti§1|xi| (12)
max;{x;}/3 else

where x; and L represent the input value and length of the SEMG signal, respectively,
and the sampling time is 3 s. By sampling the SEMG signal, the allowable range of the
threshold T is between 30 ~ 100 uV. When T = 30 uV, it can meet the requirements of
motion segmentation.

When the SEMG device collects the HIM data, the original information after entering
the steady state can be regarded as the real effective motion signal, which is defined as:

¢ 2
Fp(tD) = % )» LZf; ] (13)

-1+

where f;(i) (i is the sampling start time) is the i-th sampling value of the j-th channel of the
selected EMG signal (j is the number of sampling channels, 1, 2, ..., 16), [ is the sampling
length. If x; € [0, L], the wave criterion is:

{ (max{x;} —x,) <T (14)

X; > Xo, 1 €J0—5,0+5]
where x, is the position of the peak point, and the threshold T is
T = (max{x;} —min{x;}) x 0.5 (15)

An active segment starts at the p-th point if F,(p + s, 1) at its s-th consecutive point, is
larger than T. The values of | and s in this experiment are 200 and 50, respectively, which
effectively ensure the motion segmentation of SEMG signals. Kinect will continuously track
the HIMs during the collection of useful SEMG signals. 3D scene information is selected
from continuously projected infrared structured light as Kinect data for the selected HIMs.

4.2. Feature Extraction

Feature weighting or feature selection plays a key role in extracting useful information
from HIM data, including SEMG signals and 3D scene information. It is a set of vectors
obtained by reducing the dimensions of the original data. The eigenvector does not affect
the representation of the original data and can effectively reduce the amount of calculation,
thus reducing the computing time. Next, a detailed presentation of feature extraction from
the SEMG signal and Kinect data will be introduced.

4.2.1. Feature Extraction from the SEMG Signal

Selecting representative signal features can more effectively implement pattern classi-
fication. Dennis Tkach et al. summarized and defined 11 time-domain feature expressions
that can effectively represent the original data and studied their effects and stability during
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SEMG signal changes [24]. Time frequency features are widely used to characterize changes
in muscle contractility due to their advantages of low computational complexity and strong
stability. The feature vector of each SEMG signal we selected includes six types of single
feature: mean absolute value (MAV), waveform length (WL), root mean square (RMS),
average amplitude change (AAC), zero crossing (ZC) and slop sign change (SSC). The
related mathematical equations are presented in Table 2, and the extracted features are
collected into Fsgp -

Table 2. Mathematical equations of six features.

Classified Features Equation
MAV N%F?i 11l
WL Y xi — x|
RMS [ LYyN - x2
N &i=1"%i
AAC AN — x|
N N-T&i=1 I+l i
zC Zi?ll [Jlf(xi X xit1) N xip1 — xi| > ¢
SSC Yy fl(xi = xi1) x (x; — xi1)]
N: the length of the segment 1L, ifx>e
x;: the i-th sample flx) = { O’ otherwise
¢: a threshold !

4.2.2. Feature Extraction from the Kinect Signal

RGB images are closely related to brightness, and when the brightness changes, the
three color components will change accordingly, and they are not independent of each
other. Therefore, the Ycbcr color space is used to realize the image conversion of the
binary color space, and the smoothing process is carried out so that the segmentation
of the hand area and the background is more obvious, and the edge is smoother. In the
Ycber color space, Y, cb, and cr represent the luminance component, blue chrominance
component, and red chrominance component, respectively. Different from the relationship
between RGB color components, the luminance information and chrominance information
in Ycber are independent of each other, and the chrominance information is not affected by
luminance, which has stronger stability and independence, and is more suitable for image
segmentation. Therefore, choose the Ycbcr color space as a hand action region color feature.
The conversion formula for changing the color space from RGB to Ycber is:

Y = 0.257 x R+ 0.564 x G + 0.098 x B + 16
cb = —0.148 x R — 0.291 x G + 0.439 x B + 128 (16)
cr = 0.439 x R — 0.368 x G — 0.071 x B + 128

Considering the characteristics of the human hand, only the cr component is used as
an aid here. Based on the skin color of the yellow race, after consulting data and multiple
test results, it is found that the effect obtained is better when the cr component is between
125 and 188. Compared with simple human hand motions, the manipulation requirements
of complex HIMs are higher, and multimodal information is more difficult to obtain. The
positions and angles of the involved fingers and palms change continuously, and the
acquired images of the hand region cannot be directly extracted for features. For this
purpose, palm region segmentation needs to be performed from it. palm region M(s, t) is:

S = {Xt|P(s,t) < V+T)} (17)
[ 1ifXy€F
M(s, t) = { 0 otherwise (18)

where S is the hand sample set; X;; is the 3D point obtained by the back-projection of the
depth sample at the position (s, t); V is the minimum depth value on the threshold depth
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image; F is the sample feature set; T is the empirical threshold of the distance between the
hand position and the Kinect (T = 50 cm is taken in this paper).

Using the feature that the palm area M(s, t) has the highest point density, find a
suitable starting point G for the circle fitting to obtain the center point C of the palm area.
This paper sets G = Gg, G, is the point with the largest gray value on M(s, t), and there may
be multiple Gq. To find a good starting point G, threshold M(s, t) with a binary template
MT(s,t), and its calculation formula is:

1 if M(s,t) > Ty X Mmax
0 otherwise

MT(s,t) = { (19)

where mmax = max,(M(s, t)) is the maximum calculated density, and T, € [0,1] is the
corresponding threshold (T, = 0.95 is taken in this experiment, for example, T, X Mmax
corresponds to 95% of the maximum density). Select the reference point closest to the
starting point of the hand detection process as the starting point Ggtart of the circle fitting
algorithm.

According to the characteristics of the complex movements of human hands, the
image features of the complex movements of human hands include distance features
and curvature features. The distance feature represents the distance between the hand
segmentation image and the center point of the palm region, which is described as follows:

H(8,) = dx; 20
(6) = max dx (20)
max H (6)
A(6gj)
foi= =1 —— (21)

where H (6,) is the reference histogram; A (6,) is the angular sector 6, of the hand corre-
sponding to the direction; dx; is the distance feature. Assuming that the dataset has M
motions to be identified, the feature set F" includes the distance value of each edge point
x; € O (O represents the boundary contour of the motion area) to the center C in each
motion g € {1,---, M}. The eigenvalue félj associated with the edge point x; in action
g corresponds to the maximum value of the aligned histogram. Lpax is the maximum
distance from the edge point to the center C to ensure that all eigenvalues fg] € F!" are
distributed within [0, 1].

The curvature feature is a series of feature values obtained based on the curvature of
the edge of the hand-segmented image. Consider a set of U circular dies B, (x;) with radius
"max centered on each edge sample D, taking hand edge point x; € O and binary template
MT (s,t) as input. This paper used 15 circular molds with radii ranging from 0.5 cm to 3
cm. Assuming that V(x;, 1) is the curvature at x;, the ratio of the number of samples falling
into O in die By (x;) to the size of B, (x;) is:

v B, (o) M (%))
V(xj,u) = i IBu?((xi)I

(22)

where | B, (x;)| represents the base B, (x;), M (x;) = M(pj, q;) represents the two-dimensional
coordinate point (pj, g;) corresponding to x;, and V (x;, u) needs to calculate the sample
point of each x; € O, and its value range is between [0, 1] (for example, V(x;, 1) = 0.5
corresponds to a straight edge). The [0, 1] interval is quantified into N equal-sized by, - - -, by,
and the corresponding value V(x;, u) of the set A of the hand edge points x; € O falls on
the mold b on u is expressed as:

Apu = {xi

(b—1) b
< Vi(xj,u) < M} (23)
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For each radius u and corresponding b, choose f; , as its curvature feature, and the
cardinality of the set V' (x;, u) normalized by the hand edge contour length |O| is:

Ap
= T 24
fb,u |O| ( )

The normalized curvature features are well distributed in the interval [0, 1], and by
sorting the gradually increasing u = 1,2,---,Uand b = 1,2,- - -, N, all the curvature
features f;  in the U * N feature vector set F* are collected as pixels with the coordinate
(b, u) in the grayscale image value of. The finally obtained distance feature and curvature
feature are stored in the sample feature database Fgj,.. as the sample data F of the 3D
image information.

Finect = {Fh,FC} (25)

To improve the classification accuracy of complex HIMs, this paper uses the con-
structed multi-modal data acquisition platform for complex human hand movements to
obtain sample data of time-domain signals and 3D image information of complex human
movements to form a feature sample library of complex human movements.

F = {Fsemc, Fxinect } (26)

5. Experimental Results
5.1. Human In-Hand Motion Recognition Results

The ten HIM recognition results based on hybrid sensors are illustrated in Figure 6,
with an average recognition rate of 95.10%, reflecting a good recognition effect. The black
part in the figure is the average recognition rate of each motion, and the other part is the
error rate between different motions. It can be seen that the recognition rates of different
motions are different. The recognition rate of motion 9 is 99%, while that of motion 4 and
action 10 is only 93%. Although motions 1, 3, and 8 represent different motions, the final
recognition rate is the same, which is 95%. Although the recognition effect of motion 2 and
motion 6 is good, reaching the same 94%, there is still an error rate of 4% between them.
The main reason may be the high similarity between the number of moving fingers and
noise interference in the acquisition process. Overall, the hybrid sensor-based HIM system
reveals excellent performance.
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Figure 6. Confusion matrix for the ten motions using ADAG.
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The main reasons for good performance are as follows: (1) Motion segmentation
algorithm based on threshold ensures the segmentation of different HIMs information;
(2) Multimodal data effectively guarantees the characteristics of human hand motions; and
(3) A novel ADAG algorithm ensures accurate classification of the ten HIMs. However, it is
also worth noting that the processing time required to classify the ten movement classes
for the ten persons was 19.6 s on a Lenovo computer with an Intel(R) Core (TM) i7-4790
processor, 3.60 GHz, and 16 GB RAM with MATLAB 2018b. The processing time included
the time needed to perform the motion segmentation, feature extraction, and classification
of the combined data once the system had been trained.

By using different sensor-based features, the variations in the recognition rate are rather
large for the same motion. In Figure 7, the recognition rate of the in-hand manipulations
based on SEMG is 93.69%. Compared with Figure 6, the average recognition rate is
decreased, but the recognition rate of all motions has maintained a level of over 90%.
Motions 2 and 6 have the lowest recognition rate of only 92%, and their maximum error
classification reaches 6%, while motions 7 and 9 have the highest recognition rate, reaching
96%. Although SEMG-based human hand gesture recognition has different degrees of
misclassification, the overall recognition rate is high, which verifies the effectiveness of the
feature extraction method and the machine learning algorithm.
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Figure 7. SEMG-based confusion matrix using ADAG.

Figure 8 indicates the confusion matrix of different motions based on Kinect. It can
be clearly seen from the figure that the average recognition rate is lower, at only 89.96%.
In addition, misclassification between different motions is more serious. Motion 2 has the
lowest recognition rate due to its error rate of 13%. In addition, the recognition rates of
motions 3, 5, 6, and 8 are all below 90%; the rest of the recognition rates are about 91%.
For Kinect-based motion recognition, most researchers have adopted simple gestures or
postures as the sample data for hand motion recognition in their published articles. Because
the distinction of these gestures or gestures is obvious, the corresponding image features
are easier to distinguish, and the experimental results fully verify this view. However, in
this paper, complex dynamic in-hand manipulations are used as the sample set, and the
original features are less easy to acquire. Moreover, occlusion may occur due to perspective
projection. Hence, these problems may be the main reasons for the Kinect-based low
recognition rate.
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Figure 8. Kinect-based confusion matrix using ADAG.

The comparative experimental results and their variances using different sensors
are shown in Figure 9. By using different sensor-based features, the variations in the
recognition rate are rather large for the same motion. The Kinect-based method has the
lowest average recognition rate of 89.96%, while the SEMG-based average recognition rate
is 93.69%. For Kinect-based motion recognition, most researchers have adopted simple
gestures or postures as the sample data for hand motion recognition in their published
articles. However, in this paper, we use the complex dynamic in-hand manipulations as the
sample set; the original features are less easy to acquire. Moreover, occlusion may occur due
to perspective projection. Hence, these problems may be the main reasons for the Kinect-
based low recognition rate. Compared with the recognition results obtained by utilizing
uni-modal sensors, hybrid sensors have the highest recognition accuracy. However, the
computation time is increased due to the increase in the extracted key feature information.
Taken as a whole, the recognition rate distribution is relatively smooth based on different
sensor types.
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Figure 9. Comparative experimental results using ADAG.
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5.2. Comparison Results of Different Subjects

Different subjects have different finger forces, SEMG signals, acceleration, etc., when
completing the same motion due to their own operating habits and individual differences.
Therefore, it is necessary to analyze the effects of different subjects completing the same
motion on the recognition results of HIMs. The HIM recognition matrix based on different
subjects is shown in Figure 10, which more intuitively reflects the recognition results of
different subjects. It can be shown that different subjects have different recognition results
for all HIMs. The average recognition rate of each motion reflects the overall recognition
situation, while the variance represents the dispersion of different subjects for the same
action result. Although there are obvious differences, the average recognition rates are as
high as 92% due to the reduction of training samples and correct manipulation. Subject_1
has the highest recognition rate of over 98%, while the recognition rates of Subject_6 and
Subject_8 are only 92.4%. The influence of different subjects on the final human motion
recognition results cannot be ignored. In the process of data collection, more attention
should be paid to the standardized training of the subjects in the manipulation.
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Figure 10. Recognition rates with different subjects.

5.3. Comparison Results of Different Multiclass SVM-Based Methods

In order to better verify the effect of the ADAG-SVM algorithm, the experimental
results were compared with the three types of multi-class SVM methods mentioned in
Table 1. Figure 11 shows the HIM recognition results obtained using four multi-class
SVM algorithms. The average recognition rates based on DAG, One-Versus-One, and
One-Versus-Rest are 91.52%, 94.74%, and 90.61%, respectively, which are lower than those
based on the ADAG algorithm (95.10%). The similar recognition rates of One-Versus-One
and ADAG are attributed to their similar basic classification principles. They both include
k(k —1)/2 classifiers and verify all possible two-class classifiers. The One-Versus-One
algorithm determines the classification of unclassified samples by voting, which has the
shortcomings of false classification and refusal classification. ADAGSVM uses a decision
tree structure to classify different samples, effectively avoiding the shortcomings of the
One-Versus-One algorithm. It can be seen that the DAG and One-Versus-One algorithms
have similar recognition rates for motion 3. Specifically, the One-Versus-One algorithm
has the highest recognition rate for motion 4, while the One-Versus-Rest algorithm has
the lowest recognition rates for motions 1, 3, 4, 8, 9, and 10. Overall, the ADAG algorithm
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has obvious advantages over other multi-class SVM methods, and its recognition accuracy
becomes more and more obvious with the number of sample classes increasing.
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Figure 11. Recognition rates with different multi-class SVM methods.

5.4. Comparison Results of Different Machine Learning Methods

To verify that the adopted ADAG algorithm based on multi-modal sensing has more
obvious advantages in human hand motion recognition than other machine learning algo-
rithms, the K-Nearest Neighbor algorithm (KNN) and the fuzzy C-means algorithm (FCM)
are selected. The KNN classifier is a machine learning algorithm that compares each feature
of new data with the features used by data pairs in samples and uses distance to measure the
similarity between samples. It is very suitable for sample sets that are insensitive to outliers
and have no data input assumptions. As an unsupervised learning technique, the FCM
algorithm has been successfully applied to feature analysis, clustering, and classifier design.
Before the experiment, the parameters of the two machine learning algorithms should be set
to ensure the best classification performance. The KNN algorithm takes the value k = 5. The
FCM algorithm takes the number of clusters N, the maximum number of cycles, M, and the
minimum termination cycle difference, D, as (10, 100, 1 x 107°).

Figure 12 shows the single recognition results for different motions. Using different
machine learning algorithms to perform multiple experiments on all motions has different
recognition results. The average value reflects the overall recognition situation, and the
variance represents the degree of dispersion of the recognition results for the same motion.
The average recognition rate of human hand movements based on FCM is 90.16%, and the
average recognition rate based on KNN is 91.57%, which is a significant gap compared
with ADAG. It can be seen from the discrete degree of FCM-based recognition results that
the recognition rate of different motions fluctuates greatly. Overall, the NN algorithm
has obvious advantages over the other two algorithms in terms of the recognition rate of
human motions.
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Figure 12. Recognition rates of different machine learning methods.

6. Conclusions

A hybrid SEMG- and Kinect-based HIM recognition system is proposed in this paper
for robotic human-like manipulation. The system mainly consists of three parts: motion
capturing, multi-modal data processing, and motion recognition. For motion capturing and
data acquisition, 10 healthy adults were invited as subjects to capture HIM information,
including SEMG signals and 3D scene information. For multi-modal data processing, a
novel threshold-based segmentation algorithm is proposed to guarantee the validity of the
raw SEMG dataset and reduce the number of repeats caused by failed motion. Six types of
time-domain features from SEMG signals and distance features and hand edge features
from Kinect data are extracted for HIM classification. For motion recognition, an ADAG
algorithm for recognizing HIMs is proposed and optimized, and the influence of different
sensors and different subjects on recognition rates is analyzed. From the experimental
results, the ADAG method is compared with different sensing devices, different multi-
class SVM methods, and different recognition algorithms to verify its superiority. Further
research should focus on transferring the manipulation skill into prosthetic hands for
human-like manipulation.
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