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Abstract: In life testing and reliability studies, obtaining whole data always takes a long time and
lots of monetary and human resources. In this case, the experimenters prefer to gather data using
censoring schemes that make a balance between the length of the test, the desired sample size, and
the cost. Lately, an adaptive progressive type-II hybrid censoring scheme is suggested to enhance
the efficiency of the statistical inference. By utilizing this scheme, this paper seeks to investigate
classical and Bayesian estimations of the Dagum distribution. The maximum likelihood and Bayesian
estimation methods are considered to estimate the distribution parameters and some reliability
indices. The Bayesian estimation is developed under the assumption of independent gamma priors
and by employing symmetric and asymmetric loss functions. Due to the tough form of the joint
posterior distribution, the Markov chain Monte Carlo technique is implemented to gather samples
from the full conditional distributions and in turn obtain the Bayes estimates. The approximate
confidence intervals and the highest posterior density credible intervals are also obtained. The
effectiveness of the various suggested methods is compared through a simulated study. The optimal
progressive censoring plans are also shown, and number of optimality criteria are explored. To
demonstrate the applicability of the suggested point and interval estimators, two real data sets are
also examined. The outcomes of the simulation study and data analysis demonstrated that the
proposed scheme is adaptable and very helpful in ending the experiment when the experimenter’s
primary concern is the number of failures.

Keywords: Dagum distribution; adaptive progressive type-II hybrid censoring; likelihood estimation;
Bayesian estimation; optimum progressive censoring

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

The Dagum distribution offered by Dagum [1] has an essential role in modeling income
distributions that could be utilized instead of some popular models including log-normal
and Pareto models. Recently, authors have also considered the Dagum distribution in
the context of reliability and survival analysis due to its flexibility for modeling lifetime
data; see for example Domma et al. [2] and Emam and Sultan [3]. Presume that X is a
lifetime random variable of an experimental item follows the three-parameter Dagum
distribution, denoted by Dagum(ξ), where ξ = (α, β, θ)> is the vector of the unknown
parameters, with scale parameter θ and shape parameters α and β. Hence, the related
probability density function (PDF) and the cumulative distribution function (CDF) of X,
are given by

f (x; ξ) =
αβθ

xβ+1 (1 + θx−β)−(α+1), x > 0, α, β, θ > 0, (1)
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and
F(x; ξ) = (1 + θx−β)−α, x > 0, α, β, θ > 0, (2)

respectively. One can see that the Dagum distribution can be considered as a mixture
model in terms of inverse Weibull and generalized gamma models. Kleiber and Kotz [4]
and Kleiber [5] furnished a detailed appraisal of the core of the Dagum model as well as its
applications. Further, two reliability indices of the Dagum distribution can be considered
as unknown parameters, namely, reliability function (RF) R(·) and hazard rate function
(HRF) h(·) at distinct time t which can be provided, respectively, by

R(t; ξ) = 1− (1 + θt−β)−α, t > 0, α, β, θ > 0, (3)

and

h(t; ξ) =
αβθ(1 + θt−β)−(α+1)

tβ+1[1− (1 + θt−β)−α]
, t > 0, α, β, θ > 0. (4)

The HRF of the Dagum distribution is either decreasing, upside-down, or a bathtub
then upside-down bathtub. This appealing flexibility makes the HRF of the Dagum dis-
tribution meet appropriately even non-monotone HRF behaviors that are probable to be
seen in a variety of domains. Different studies using the Dagum distribution have been
achieved. Arif et al. [6] investigated the Bayesian estimation based on the Markov chain
Monte Carlo (MCMC) technique. Naqash et al. [7] studied the Bayesian estimation of the
scale parameter using different loss functions. Dey et al. [8] addressed different frequentist
estimation methods for the unknown parameters. Alotaibi et al. [9] studied the Bayesian
estimation using progressively type-I interval censored data. Kumari et al. [10] studied
the classical and Bayesian estimation of the stress strength reliability using progressively
type-II censored data.

Various censoring plans are known in the literature, which can be categorized into
single-stage and multistage censoring schemes. Single-stage censoring schemes include
type-I, type-II, and hybrid censoring. On the other hand, the most popular multistage
censoring scheme is the progressive type-II censoring in which n units are placed on a
test and m is a prefixed number of items to be failed with prefixed progressive censoring
plan R1, . . . , Rm. At the time of the ith failure Xi:m:n, Ri, i = 1, . . . , m− 1 surviving units are
randomly removed from the test. At the time of the last failure Xm:m:n, all the surviving
units are removed. For further information about the progressive type-II censoring scheme,
see Balakrishnan [11]. Kundu and Joarder [12] proposed a progressive type-I hybrid
censoring scheme that has the same schematic representation as the progressive type-II
censoring scheme but in this case, the test is stopped at T∗ = min(Xm:m:n, T), where T is a
prefixed time.

The main drawback of this scheme is that the desired sample size is random and
might turn out to be a very small number. As a consequence, the statistical deduction
methods will be inadequate. To overpower this weakness, a more flexible censoring plan is
proposed, namely an adaptive progressive type-II hybrid censoring (APT-II HC) scheme
by Ng et al. [13]. In the APT-II HC, the experiment time is allowed to run over the time T
and some values of Ri, i = 1, . . . , m− 1 conceivably revised during the test. If Xm:m:m < T,
the test stops at Xm:m:m and we will retain the standard progressive type-II censoring.
Otherwise, if XD:m:n < T < XD+1:m:n, where D + 1 < m and XD:m:n is the Dth failure time
occur before time T, then we will not remove any surviving units from the test by placing
RD+1, RD+2, · · ·, Rm−1 = 0, and at the time of the last failure Xm:m:n, all the remaining units
are removed, i.e., Rm = n−m−∑D

i=1 Ri. This adaption guarantees the ending of the test
when we gather the desired number of failures m, and the total test time will not be too
outlying from the ideal time T. Suppose that x1:m:n < · · · < xD:m:n < T < xD+1:m:n <
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. . . xm:m:n are an observed APT-II HC sample from a continuous population with PDF f (x)
and CDF F(x), then the likelihood function can be expressed as follows

L(ξ) = C
m

∏
i=1

f (xi:m:n)
D

∏
i=1

[1− F(xi:m:n)]
Ri [1− F(xm:m:n)]

Rm , (5)

where C is a constant that is independent of the parameters. Many works have been
performed based on the APT-II HC scheme. Hemmati and Khorram [14] addressed the
estimation of the competing risks model for the exponential distribution. Al Sobhi and
Soliman [15] investigated the estimation issues of the exponentiated Weibull distribution.
Nassar et al. [16] studied the classical and Bayesian estimation methods for the Weibull
distribution. Panahi and Moradi [17] considered some estimations method for the inverted
exponentiated Rayleigh distribution. Elshahhat and Nassar [18] studied the Bayesian esti-
mation for the Hjorth distribution. See also the work of Kohansal and Shoaee [19], Panahi
and Asadi [20], Ahmad et al. [21], Du and Gui [22], Ateya et al. [23], Alotaibi et al. [24,25],
and Nassar et al. [26]. Recently, Elshahhat and Nassar [27] extended the APT-II HC scheme
to binomial random removals.

We can motivate this study via (1) the significance of the APT-II HC scheme in increas-
ing the efficiency of the statistical inference by avoiding getting small observed sample
sizes. (2) The flexibility of the Dagum distribution in modeling different types of data
sets with different HRF shapes including decreasing, upside-down, or a bathtub then an
upside-down bathtub. As a result, we can list our objectives in this study as:

1. To explore the maximum likelihood estimators (MLEs) of the unknown parameters
including the reliability measures as well as the associated approximate confidence
intervals (ACIs).

2. To investigate the Bayes estimators and the highest posterior density (HPD) credible
intervals. The Bayes estimators are acquired by using the MCMC method and by
employing two loss functions, namely, squared error (SE) and general entropy (GE)
loss functions.

3. It is not possible to judge which procedure provides the best estimates theoretically.
Therefore, an extensive simulation study is implemented to study the behavior of the
different estimates and make the comparison achievable.

4. To construct a guideline for picking the most appropriate estimation procedure for
the Dagum distribution based on APT-II HC.

5. To determine the optimal progressive sampling plane for APT-II HC scheme in the
case of Dagum distribution.

6. Because the applicability of the proposed methods is an important issue. The proposed
methods are applied to investigate two real data sets.

The remainder of the paper is arranged as follows: The MLEs and ACIs are discussed
in Section 2. The Bayes estimators and HPD credible intervals are considered in Section 3.
Section 4 displays the outcomes of the simulation study. In Section 5, we provide various
methods for choosing the best censoring plan. Section 6 investigates two applications for
real data. Finally, Section 7 concludes the paper.

2. Frequentist Inference

Assume that x1:m:n < · · · < xD:m:n < T < xD+1:m:n < . . . xm:m:n are an APT-II HC
sample of size m with R1, . . . , RD, 0, . . . , 0, Rm taken from the Dagum distribution with PDF
and CDF given, respectively, by (1) and (2). In this case, one can derive the likelihood
function based on (1), (2), and (5), after ignoring the constant term, as follows

L(ξ) = (αβθ)m
m

∏
i=1

(1 + θx−β
i )−(α+1)

xβ+1
i

D

∏
i=1

[
1− (1 + θx−β

i )−α
]Ri
[
1− (1 + θx−β

m )−α
]Rm

, (6)
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where xi = xi:m:n for simplicity of notation. Practically, it is more convenient to work with
the log-likelihood function rather than the likelihood function itself. Therefore, by taking
the natural logarithm of the likelihood function in (6), the log-likelihood function can be
written as

`(ξ) ≡ log L(ξ) = m log(αβθ)− (α + 1)
m

∑
i=1

log(1 + θx−β
i )− (β + 1)

m

∑
i=1

log(xi)

+
D

∑
i=1

Ri log
[
1− (1 + θx−β

i )−α
]
+ Rm log

[
1− (1 + θx−β

m )−α
]
. (7)

Let α̂, β̂ and θ̂ denote MLEs of the unknown parameters α, β, and θ, respectively. These
estimators can be acquired by maximizing the objective function `(ξ) with respect to α, β,
and θ. An alternative approach to obtain the needed estimators is by solving the following
three normal equations simultaneously

∂`(ξ)

∂α
=

m
α
−

m

∑
i=1

log(vi) +
D

∑
i=1

Ri
log(vi)

vα
i (1− v−α

i )
+

Rm log(vm)

vα
m(1− v−α

m )
= 0, (8)

∂`(ξ)

∂β
=

m
β
+ θ(α + 1)

m

∑
i=1

log(xi)

xβ
i vi

−
m

∑
i=1

log(xi)− θα
D

∑
i=1

Ri log(xi)

xβ
i vα+1

i (1− vα
i )
− θαRm log(xm)

xβ
mvα+1

m (1− vα
m)

= 0 (9)

and
∂`(ξ)

∂θ
=

m
θ
− (α + 1)

m

∑
i=1

1

xβ
i vi

+ α
D

∑
i=1

Ri

xβ
i vα+1

i (1− vα
i )

+
αRm

xβ
mvα+1

m (1− vα
m)

= 0, (10)

where vi = (1 + θx−β
i ), i = 1 . . . , m. It is evident from the nonlinear equations in

(8)–(10) that the MLEs of the unknown parameters α, β and θ can not be obtained in
explicit expressions. To overcome this problem, some numerical techniques can be imple-
mented to obtain the MLEs in this case. Once the MLEs α̂, β̂, and θ̂ are obtained, we can
utilize the invariance property of the MLEs to estimate the RF and HRF at a distinct time t.
Employing the invariance property, the MLEs of the RF and HRF can be obtained using (3)
and (4) as follow

R̂(t) = 1− (1 + θ̂t−β̂)−α̂ and ĥ(t) =
α̂β̂θ̂(1 + θ̂t−β̂)−(α̂+1)

tβ̂+1[1− (1 + θ̂t−β̂)−α̂]
.

Aside from obtaining the point estimates of the unknown parameters α, β, and θ, it is
also of interest to obtain the confidence intervals for these parameters. Here, we utilize the
asymptotic properties of the MLEs to construct the ACIs of the unknown parameters as
well as the reliability measures. It is known that based on the theory of large samples the
asymptotic distribution of ξ̂, where ξ̂ is the MLE of ξ, is normal distribution with mean ξ
and variance–covariance matrix I−1(ξ). Due to the complicated expressions of the Fisher
information matrix, it is not easy to obtain such a variance–covariance matrix. In this
case, we can consider I−1(ξ̂) to estimate I−1(ξ), which can be acquired using the observed
Fisher information matrix and given by

I−1(ξ̂) =

 −Jαα −Jαβ −Jαθ

−Jβα −Jββ −Jβθ

−Jθα −Jθβ −Jθθ

−1

(α,β,θ)=(α̂,β̂,θ̂)

=

 v̂ar(α̂) ĉov(α̂, β̂) ĉov(α̂, θ̂)
v̂ar(β̂) ĉov(β̂, θ̂)

v̂ar(θ̂)

, (11)

where

Jαα = − m
α2 −

D

∑
i=1

Ri
log2(vi)

vα
i (1− v−α

i )2
− Rm

log2(vm)

vα
m(1− v−α

m )2
,
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Jββ = − m
β2 − θ(α + 1)

m

∑
i=1

log2(xi)

xβ
i v2

i

− θα
D

∑
i=1

Ri log(xi)φi − θαRm log(xm)φm,

Jθθ = −m
θ2 + (α + 1)

m

∑
i=1

1

x2β
i v2

i

− α
D

∑
i=1

Riψi − αRmψm,

Jαβ = θ
m

∑
i=1

log(xi)

xβ
i vi

− θ
D

∑
i=1

Ri log(xi)

xβ
i vα+1

i (1− v−α
i )

[
1 +

α log(vi)

1− v−α
i

]
− θRm log(xm)

xβ
mvα+1

m (1− v−α
m )

[
1 +

α log(vm)

1− v−α
m

]
,

Jαθ =
m

∑
i=1

1

xβ
i vi

+
D

∑
i=1

Ri

xβ
i vα+1

i (1− v−α
i )

[
1− α log(vi)

1− v−α
i

]
− Rm

xβ
mvα+1

m (1− v−α
m )

[
1− α log(vm)

1− v−α
m

]
and

Jβθ = (α + 1)
m

∑
i=1

log(xi)

xβ
i v2

i

− α
D

∑
i=1

Ri log(xi)

xβ
i

[
1

vα+1
i (1− v−α

i )
− θψi

]
− αRm log(xm)

xβ
m

[
1

vα+1
m (1− v−α

m )
− θψm

]
,

where φi =
log(xi)

{
αθ+[θ(α+1)−x−β

i ][vα
i −1]

}
x2β

i v2(α+1)
i (1−v−α

i )2
and ψi =

1+α−v−α
i

x2β
i vα+2

i (1−v−α
i )2

.

Presently, the 100(1− ε)% ACIs of α, β, and θ can be obtained as follows

α̂± zε/2

√
v̂ar(α̂), β̂± zε/2

√
v̂ar(β̂) and θ̂ ± zε/2

√
v̂ar(θ̂),

where v̂ar(α̂), v̂ar(β̂), and v̂ar(θ̂) are the values obtained from (11), respectively, and zε/2 is
the upper (ε/2)th percentile point of the standard normal distribution.

In addition to this, to construct the ACIs of the RF and HRF we need to obtain
the variance of their estimators R̂(t) and ĥ(t). One of the most popular ways to ap-
proximate these variances is to apply the so-called delta method; see Greene [28] for
more details. For example, to approximate the variance of R̂(t), the delta method stated
that, under some regularity conditions, the distribution of the statistics R̂(t) can be ap-
proximated by the normal distribution with mean R(t) and variance ∆R I−1(ξ)∆>R , where
∆R = (∂R(t)/∂α, ∂R(t)/∂β, ∂R(t)/∂θ) with the following elements

∂R(t)
∂α

=
log(1 + θt−β)

(1 + θt−β)α
,

∂R(t)
∂β

= − αθ log(t)
tβ(1 + θt−β)α+1 , and

∂R(t)
∂θ

=
α

tβ(1 + θt−β)α+1 .

Thus, one can obtain the approximate estimate of variance of R̂(t) as v̂ar(R̂) =
(∆R I−1(ξ̂)∆>R ), which is evaluated at the MLEs α̂, β̂, and θ̂. Similarly, we can acquire
the approximate estimate of variance of ĥ(t). Let ∆h = (∂h(t)/∂α, ∂h(t)/∂β, ∂h(t)/∂θ),
where

∂h(t)
∂α

= −
βθ
[
α log(1 + θt−β) + (1 + θt−β)−α − 1

]
tβ+1(1 + θt−β)α+1[1− (1 + θt−β)−α]2

,

∂h(t)
∂β

=

αθ

{
1− β log(t) + β log(t)−1

(1+θt−β)α +
βθ log(t)[1+α−(1+θt−β)−α]

tβ(1+θt−β)

}
tβ+1(1 + θt−β)α+1[1− (1 + θt−β)−α]2

and

∂h(t)
∂θ

= −
αβ

{
(1 + θt−β)−α − 1 +

θ[1+α−(1+θt−β)−α]
tβ(1+θt−β)

}
tβ+1(1 + θt−β)α+1[1− (1 + θt−β)−α]2

.

Hence, we can obtain the approximate estimate of variance of ĥ(t) as v̂ar(ĥ) =
(∆h I−1(ξ̂)∆>h ), which is evaluated at the MLEs of the unknown parameters. Using the
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mentioned results, the two-sided ACIs for R(x) and h(x) at the confidence level 100(1− ε)%
are expressed, respectively, as

R̂± z ε
2

√
v̂ar(R̂) and ĥ± z ε

2

√
v̂ar(ĥ).

3. Bayesian Inference

This section derives the Bayesian estimators for the unknown parameters α, β, and θ,
as well as the R(t) and h(t). In addition to the point estimates, the HPD credible intervals
are studied. In the statistical investigation, the Bayesian technique has influential benefits
over the maximum likelihood method because it delivers a natural path of combining
prior information about the unknown parameters with new data within a solid theoretical
framework.. The Bayesian technique is particularly usable in dependability studies and
numerous other disciplines where data availability is a key barrier. This analysis explores
the Bayesian estimation beneath the premise that the unknown parameters are indepen-
dent and have gamma distributions, i.e., α ∼ Gamma(a1, b1), β ∼ Gamma(a2, b2), and
θ ∼ Gamma(a3, b3). Based on these assumptions, the joint prior distribution of α, β, and θ
can be expressed as

π(ξ) ∝ αa1−1 βa2−1 θa3−1 e−(b1α+b2β+b3θ), (12)

where ak and bk, k = 1, 2, 3, are the hyper-parameters and are always greater than zero.
Combining the sample information provided by the likelihood function with the prior
knowledge about the unknown parameters presented through the joint prior distribution
and by applying the Bayes theorem, one can derive the posterior distribution of the un-
known parameters α, β, and θ. Therefore, from (6) and (12), the joint posterior distribution
of α, β and θ takes the form

g(ξ|x) = A−1αm+a1−1βm+a2−1θm+a3−1 exp

{
− α

[
m

∑
i=1

log(1 + θx−β
i ) + b1

]
−

m

∑
i=1

log(1 + θx−β
i )

− β

[
m

∑
i=1

log(xi) + b2

]
− b3θ

}
D

∏
i=1

[
1− (1 + θx−β

i )−α
]Ri
[
1− (1 + θx−β

m )−α
]Rm

, (13)

where x = (x1, . . . , xm) and A is the normalized constant. The loss function plays a
critical role in Bayesian estimation because it can be used to identify overestimation and
underestimation in the investigation. Here, we take into account the SE and GE loss
functions. The SE loss function is one of the most often used symmetric loss functions,
whereas the GE loss function is asymmetric. It is well known that the Bayes estimator
in the case of the SE loss function is the posterior mean where the overestimation and
underestimation are treated equally. Conversely, the GE loss function delivers diverse
importance for overestimation and underestimation. The GE loss function introduced by
Calabria and Pulcini [29] and defined as

G(δ̃, δ) ∝
(

δ̃

δ

)κ

− κ log
(

δ̃

δ

)
− 1,

where δ̃ is the estimator of δ and κ is a parameter that determines the degree of asymmetry.
The Bayes estimator of δ using GE loss function is given by

δ̃GE =
[
Eδ(δ

−κ)
]− 1

κ , (14)

provided that Eδ(δ
−κ) exists and is finite.

It can be seen that when κ = −1, the Bayes estimator in (14) coincides with the
Bayes estimator under the SE loss function. Now, let ζ(ξ) any function of the unknown
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parameters, then the Bayes estimators based on the SE and GE loss functions can be
obtained directly from (13), respectively, as follow

ζ̃SE(ξ) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
ζ(ξ) g(ξ|x) dα dβ dθ (15)

and

ζ̃GE(ξ) =

[∫ ∞

0

∫ ∞

0

∫ ∞

0
[ζ(ξ)]−κ g(ξ|x) dα dβ dθ

]− 1
κ

. (16)

Clearly, calculating the Bayes estimators using (15) and (16) analytically are unattain-
able. As a result, we advocate employing the MCMC technique to obtain the Bayes estimates
of α, β, and θ and the associated HPD credible intervals. To apply the MCMC technique,
we should first derive the full conditional distributions of α, β, and θ. The required full
conditional distributions can be given from (13) as follow

g(α|β, θ, x) ∝ αm+a1−1 exp

{
−α

[
m

∑
i=1

log(1 + θx−β
i ) + b1

]}

×
D

∏
i=1

[
1− (1 + θx−β

i )−α
]Ri
[
1− (1 + θx−β

m )−α
]Rm

, (17)

g(β|α, θ, x) ∝ βm+a2−1 exp

{
− (α + 1)

[
m

∑
i=1

log(1 + θx−β
i )

]
− β

[
m

∑
i=1

log(xi) + b2

]}

×
D

∏
i=1

[
1− (1 + θx−β

i )−α
]Ri
[
1− (1 + θx−β

m )−α
]Rm

(18)

and

g(θ|α, β, x) ∝ θm+a3−1 exp

{
− (α + 1)

[
m

∑
i=1

log(1 + θx−β
i )

]
− b3θ

}

×
D

∏
i=1

[
1− (1 + θx−β

i )−α
]Ri
[
1− (1 + θx−β

m )−α
]Rm

. (19)

Nevertheless, it is noticeable that the full conditional posterior distributions of α, β, and
θ cannot be tended analytically to famous distributions. Consequently, it is not probable
to generate samples straight by traditional techniques, whereas the plots of them indicate
that they are equivalent to normal distribution. So, we need to induce the unknown pa-
rameters by employing Metropolis-–Hasting (MH) sampling. To involve the MH sampling,
we assume the normal distribution as the proposal distribution to acquire the Bayesian
estimates and to obtain the HPD credible intervals. The MH sampling functions as follows
to generate samples from (17)–(19)

Step 1. Put l = 1.

Step 2. Set
(

α(0), β(0), θ(0)
)
= (α̂, β̂, θ̂).

Step 3. Generate α(l) from the full conditional posterior distribution (17) using normal
distribution, i.e., N

(
α(l−1), v̂ar(α(l−1))

)
, and by applying the MH steps.

Step 4. Repeat step 3 to generate β(l) and θ(l) from (18) and (19), respectively.

Step 5. Use the generated sample to compute R(l)(t) and h(l)(t) from (3) and (4), respectively.

Step 6. Set l = l + 1.
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Step 7. Redo steps 3–6, B times to obtain[
α(1), β(1), θ(1), R(1)(t), h(1)(t)

]
, . . . ,

[
α(B), β(B), θ(B), R(B)(t), h(B)(t)

]
.

To assure convergence and to withdraw the affection of the choice of starting values,
the first Q generated variates are scrapped. In this case, we have α(l), β(l), θ(l), R(l)(t), and
h(l)(t), l = Q + 1, . . . , B. Based on large B, the generated sample forms an approximate
posterior sample which can be employed to obtain the Bayes estimates and the HPD
credible intervals. Now, let ξ be the unknown parameter to be estimated. Then, the Bayes
estimate of ξ based on the SE loss function can be obtained as

ξ̃SE =
1

B−Q

B

∑
l=Q+1

ξ(l).

Similarly, the Bayes estimate of ξ based on the GE loss function can be computed
as follows

ξ̃GE =

{
1

B−Q

B

∑
l=Q+1

[ξ(l)]−κ

}− 1
κ

.

On the other hand, to compute the HPD credible intervals of α, β, θ, R(t) and h(t), say
ξ, we order ξ(l), as ξ(Q+1) < ξ(Q+2) < · · · < ξ(B). Then, the 100(1− ε)% two-sided HPD
credible interval of ξ becomes

[
ξ(l
∗), ξ(l

∗+(1−ε)(M−Q))
]
, where l∗ = Q + 1, Q + 2, . . . , B is

specified such that

ξ(l
∗+[(1−ε)(B−Q)]) − ξ(l

∗) = min
16l6ε(B−Q)

[
ξ(l+[(1−ε)(B−Q)]) − ξ(l))

]
,

where [ε] denotes the largest integer less than or equal to ε. It is noteworthy to mention here
that the results of Arif et al. [6] can be obtained as a special case of the results derived in this
paper when R1 = R2 = · · · = Rm = 0, with T → ∞, which is the complete sample case.

4. Monte Carlo Simulation

In this section, Monte Carlo simulations are performed to know the performance of
the proposed estimators developed in the previous sections of the parameters, reliability,
and hazard functions based on an APT-II HC scheme. First, we describe the simulation
design. Then, some discussions regarding the simulation outcomes are reported.

4.1. Simulation Design

This subsection is devoted to how to conduct the proposed numerical study. First,
we simulate 1000 APT-II HC samples from Dagum(0.4, 0.2, 0.1) based on various choices
of T (threshold time), n (total sample size), m (effective sample size) and R (progressive
censoring). Taking t = 0.5, the actual values of the reliability characteristics R(t) and h(t)
are 0.043 and 0.371, respectively. Using T(=0.1, 0.5), n(=50,100) and m is specified as a
percentage of n as m

n (=50, 80)%, the proposed numerical experiments are performed. In
addition, for each n and m, different removal patterns of the progressive type-II censoring
mechanism, where R = (5, 0, 0, 0, 5) is symbolized by R =(5.0*3.5) , are used as

Scheme-1 : R = (n−m, 0∗(m− 1)),

Scheme-2 :
{

R = (0∗(m
2 − 1), n−m, 0∗(m

2 )); if m is even,
R = (0∗(m−1

2 ), n−m, 0∗(m−1
2 )); if m is odd,

Scheme-3 : R = (0∗(m− 1), n−m).
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To simulate APT-II HC samples of size m from a given sample of size n with given
progressive censoring Ri, i = 1, 2, ..., m, do the following steps:

Step 1. Generate a conventional progressive type-II sample (Xi, Ri), i = 1, 2, . . . , m, as

(a) Generate w1, w2, . . . , wm from uniform U(0, 1) distribution.

(b) Put pi = w

(
i+∑m

j=m−i+1 Rj

)−1

i , for i = 1, 2, . . . , m.
(c) Set ui = 1− pm pm−1 · · · pm−i+1 for i = 1, 2, . . . , m. Hence, ui, i = 1, 2, . . . , m

is a simulated progressive type-II sample of size m from the uniform U(0, 1)
distribution.

(d) Set Xi = F−1(ui; ξ), i = 1, 2, . . . , m, the progressive type-II from Dagum(α, β, θ)
is generated.

Step 2. Determine D and discard Xi for i = D + 2, . . . , m.

Step 3. Using truncated distribution f (x)[1− F(xD+1)]
−1, generate the first-order statistics

XD+2, . . . , Xm of size n− D−∑D
j=1 Rj − 1.

In frequentist investigation, from the 1000 APT-II HC samples, the MLEs (along their
95% ACIs) of α, β, θ, R(t), and h(t) are computed. In Bayesian analysis, to evaluate the
effects of the priors, two informative sets of hyper-parameters are used; namely Prior-1:
(a1, a2, a3) = (2, 1, 0.5), and bi = 5, i = 1, 2, 3; Prior-2: (a1, a2, a3) = (4, 2, 1) and bi = 10,
i = 1, 2, 3. All hyper-parameter values associated with each unknown parameter are chosen
in such a way that the prior average is equal to the expected value of the corresponding
unknown parameter; see Kundu (2008). It is important to mention here that the frequen-
tist methods may be better than the Bayes method because the latter is computationally
more expensive if there is no prior information about the parameters of interest. A large
12,000 MCMC variates via MH sampler are generated and then the first 2000 variates are
removed as burn-in period. Next, based on 10,000 MCMC variates, the average Bayes esti-
mates of α, β, θ, R(t), and h(t) using the SE and GE (for υ(= −2,+2)) loss functions as well
as the associated 95% HPD intervals are computed. The point estimates of the unknown
parameters α, β, θ, R(t), and h(t) (say ξ for short), are compared using root-mean-squared
errors (RMSEs) and mean relative absolute biases (MRABs) given, respectively, as

RMSE(ξ�) =

√√√√ 1
N
N
∑
i=1

(
ξ�(i) − ξ

)2 and MRAB(ξ�) =
1
N
N
∑
i=1

1
ξ

∣∣∣ξ�(i) − ξ
∣∣∣,

where N is the number of replications and ξ�(i) is the estimate of ξ at the jth sample.
In addition, the performance of the interval estimates is compared using their average
confidence lengths (ACLs) and coverage percentages (CPs) delivered, respectively, by

ACL(1−ε)%(ξ) =
1
N
N
∑
i=1

(
Uξ�(i) −Lξ�(i)

)
and CP(1−ε)%(ξ) =

1
N
N
∑
i=1

1(L
ξ�(i)

;U
ξ�(i)

)(ξ),
where 1(·) is the indicator function and L(·) and U (·) denote the lower and upper inter-
val bounds, respectively.

All calculations implemented are performed using R 4.1.2 software by using two
packages, namely (a) ‘coda’ (by Plummer et al. [30]) and (b) ‘maxLik’ (by Henningsen and
Toomet [31]). These packages were also recommended by Elshahhat and Elemary [32].
Graphically, all simulation results of α, β, θ, R(t), and h(t) are displayed with heatmap plots
in Figures 1–5, respectively, while all simulation outputs are provided as Supplementary
Materials. In each heatmap, the ‘x-lab’ displays the proposed point (or interval) estimation
methods while the ‘y-lab’ represents the given settings T, n, m, and R, which are denoted
by ‘T-(n, m)-Scheme’. For instance; based on Prior-1 set (say P1), we have used the notation
“SE-P1” for the Bayes estimates from the SE loss; the notations “GE1-P1” and “GE2-P1” for
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the Bayes estimates from the GE loss based on κ = −2 and κ = +2, respectively; “HPD-P1”
denotes to HPD intervals. The color vector beside the heatmap represents the calculated
values of the RMSEs, MRABs, ACLs, or CPs for each unknown parameter in each setting
from lowest to highest value from yellow to red.
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Figure 1. Heatmap for the estimation results of α.
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Figure 2. Heatmap for the estimation results of β.
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Figure 3. Heatmap for the estimation results of θ.
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Figure 4. Heatmap for the estimation results of R(t).
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Figure 5. Heatmap for the estimation results of h(t).

4.2. Simulation Discussions

Various appraisals of the performance of the proposed point and interval estimation
methods are discussed in this subsection. From Figures 1–5, the following observations can
be made:

• All calculated estimates have displayed satisfactory behavior in terms of minimum
RMSEs, MRABs, and ACLs values, as well as in terms of highest CPs.

• As n increases, the offered estimates are pretty satisfactory. Identical behavior is
observed when ∑m

i=1 Ri (or n−m) lowers.
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• As T increases, the RMSEs and MRABs for the MLEs of α, R(t), and h(t) decrease,
while they increase for β and θ. Moreover, as T increases, the RMSEs and MRABs of
the Bayes estimates of α, β, and h(t) increase, while they decrease for θ and R(t).

• As T increases, the ACLs of the ACIs of α, θ, and R(t) decrease while they increase for
β and h(t). Further, when T increases, the ACLs of the HPD interval estimates of α, β,
and h(t) increase while they decrease for θ and R(t). The opposite behavior is also
observed in the case of the CPs for the ACI and HPD credible interval estimates of all
unknown parameters.

• Since the Bayes estimates are expressed using the gamma density prior, the Bayes
(point/interval) estimates using MH procedure perform better than the classical
estimates in terms of the smallest RMSEs, MRABs, and ACLs as well as the highest CPs.

• It is also observed that the Bayes estimates based on Prior-2 are superior to Prior-1 for
all unknown parameters. This is expected due to the fact that the variance of Prior-2 is
smaller than Prior-1.

• It is noted that the CPs of the HPD intervals are almost closely (or greater) to the
specified nominal level than the ACIs.

• It can be seen that the RMSEs, MRABs, ACLs, and CPs of α, β, θ, R(t), and h(t) are
even good based on Scheme-1 than other schemes.

• It is known that the expected duration of an experiment based on Scheme-1 is greater
than that of any other, thus the APT-II HC sample gathered under this scheme supplied
more additional information about the unknown parameters than those obtained
based on any other censoring scheme.

• Overall, the Bayes procedure via MH algorithm is advised to estimate the unknown
parameters of Dagum distribution and its reliability characteristics under the APT-II
HC plan.

5. Optimal Progressive Censoring Plan

Choosing the optimal censoring plans has earned a lot of awareness in the statistical
literature. For specified n and m, probable censoring schemes refer to all Ri, i = 1, . . . , m
mixtures such that m + ∑m

i=1 Ri = n and picking the most suitable sample technique entails
locating the progressive censoring scheme that delivers the most knowledge regarding the
unknown parameters among all possible progressive censoring plans. For more details
about optimal censoring plans, one can refer to Ng et al. [33] and Pradhan and Kundu [34].
In this study, we consider four optimality criteria that were widely used in the literature.
Practically and as we mentioned before that we need to select the censoring scheme that
provides us with the most information about the parameters. Table 1 furnishes some
typically employed optimal criteria to aid us in choosing the most suitable progressive
censoring scheme.

Table 1. Some optimal censoring plan criteria.

Criterion Method

I Maximize trace(I3×3(ξ̂))

II Minimize trace(I−1
3×3(ξ̂))

III Minimize det(I−1
3×3(ξ̂))

IV Minimize v̂ar(log(χ̂q)), 0 < q < 1

One can see from Table 1 that the criteria I, II, and III are looking for the progressive
censoring scheme that maximize the observed Fisher information matrix, minimize the
determinant of I−1

3×3(ξ̂), and minimize the trace of I−1
3×3(ξ̂), respectively. On the other hand,

the criterion IV tries to minimize the variance of logarithmic MLE of the qth quantile,
denoted by v̂ar(log(χ̂q)), where
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log(χ̂q) = −
1
β̂

log

[
q−

1
α̂ − 1
θ̂

]
, 0 < q < 1,

where the delta method can be used to approximate the variance of log(χ̂q). To pick the
optimal progressive censoring plan, one should select the progressive censoring plan that
gives the maximum value of criterion I and the smallest values of criteria II, III, and IV.

6. Real-Life Applications

To demonstrate how one can apply the proposed methodologies to a real-life situa-
tion, two applications using real-life data sets from chemistry and engineering areas are
discussed in this section.

6.1. Coating Weights of Iron Sheets

In this application, from chemistry field, we shall provide a statistical analysis for the
real coating weights of iron sheets obtained from the Aluminium Africa Limited (ALAF)
industry, Tanzania, during January-March, 2018. To improve the quality of steel roofing,
the coating process is one of the most processes used in this industry. Therefore, the ALAF
industry uses the manufacturing technology of aluminum–zinc in the coating process. This
data set consists of 72 observations on coating weight (in gm/m2) by chemical method on
top-center side from the ALAF industry; see Table 2. This data set was first discussed by
Rao and Mbwambo [35] and also analyzed by Fan and Gui [36] recently.

Table 2. Coating weight data of iron sheets from ALAF industry.

28.7 29.4 30.4 31.6 31.8 32.7 32.9 33.2 33.2 33.6 33.7 34.0 34.2 34.5 35.6
36.2 36.7 36.8 36.8 37.3 37.8 38.5 38.9 38.9 39.1 39.9 40.1 40.2 40.3 40.5
40.6 40.7 41.2 41.2 41.3 42.3 42.3 42.6 42.8 42.8 42.8 42.8 43.1 44.2 44.9
45.2 45.3 45.4 45.8 46.3 47.1 47.2 47.2 48.2 48.3 48.4 48.5 49.8 50.1 52.6
52.8 54.2 54.5 55.4 55.8 56.8 58.2 58.4 58.7 58.9 59.2 61.2

To check whether the Dagum distribution is appropriate statistical distribution to fit
the coating weight data set or not, the MLEs of the Dagum parameters α, β, and θ are
calculated to carry out the Kolmogorov–Smirnov (K-S) distance and associated P-value.
The values of α̂, β̂, and θ̂ (with their standard errors (St.Es)) are 3163.52 (3.0251), 4.85561
(0.0329), and 16,655.9 (1.1860), respectively. The K-S (P-value) is 0.109 (0.364). This result
indicates that the Dagum distribution is a proper lifetime model to fit the coating weight
data. Moreover, using the complete coating weight data set, the estimated/empirical RF of
the Dagum distribution is displayed in Figure 6.

From the original data set, three different APT-II HC samples are generated with
m = 20 and reported in Table 3. Based on the generated samples, the MLEs and Bayes
estimates with their St.Es of α, β, θ, R(t), and h(t) (at distinct time t = 50) are computed
and presented in Table 4. Additionally, the two bounds of 95% ACI/HPD intervals with
their interval lengths (ILs) of the unknown parameters are also calculated and provided
in Table 5. In order to develop the Bayes estimates, we assume that the hyper-parameters
ai and bi for i = 1, 2, 3 of α, β, θ, R(t), and h(t) are not available. Therefore, to run our
computations, the hyper-parameter values are selected to be 0.001. To run the MCMC algo-
rithm, the classical estimates of α, β, and θ are taken to be the initial guesses. Tables 4 and 5
indicated that the proposed Bayes estimates perform better than the frequentist estimates
in terms of lowest St.Es, as well as, the HPD interval estimates also perform satisfactorily
compared to the ACI estimates in terms of shortest ILs.
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Table 3. Three APT-II HC samples from coating weight data.

Sample Scheme T(D) Rm Data

S1 (52, 0∗19) 65(20) 0 28.7 48.2 48.3 48.4 48.5 49.8 50.1 52.6 52.8 54.2
54.5 55.4 55.8 56.8 58.2 58.4 58.7 58.9 59.2 61.2

S2 (0∗7, 10∗5, 2, 0∗7) 45(11) 12 28.7 29.4 30.4 31.6 31.8 32.7 32.9 33.2 36.8 40.5
42.8 47.2 47.2 48.2 48.3 48.4 48.5 49.8 50.1 52.6

S3 (0∗19, 52) 35(14) 52 28.7 29.4 30.4 31.6 31.8 32.7 32.9 33.2 33.2 33.6
33.7 34.0 34.2 34.5 35.6 36.2 36.7 36.8 36.8 37.3

Table 4. Point estimates (St.Es) of α, β, θ, R(t), and h(t) from coating weight data.

Si Par. MLE SE GE

κ→ −3 −0.03 +3

S1 α 1252.3 (0.86 × 10+1) 1252.2 (3.90 × 10−4) 1252.2 (6.29 × 10−2) 1252.3 (6.29 × 10−2) 1252.26 (6.29 × 10−2)
β 3.9852 (5.82 × 10−2) 3.9653 (2.29 × 10−4) 3.9658 (1.93 × 10−2) 3.9650 (2.01 × 10−2) 3.96423 (2.09 × 10−2)
θ 3972.5 (0.19 × 10+1) 3972.4 (4.93 × 10−4) 3972.4 (6.44 × 10−2) 3972.4 (6.44 × 10−2) 3972.38 (6.43 × 10−2)

R(50) 0.5697 (8.25 × 10−2) 0.5985 (3.24 × 10−4) 0.6055 (3.57 × 10−2) 0.6054 (2.53 × 10−2) 0.58368 (1.40 × 10−2)
h(50) 0.0507 (6.29 × 10−3) 0.0484 (2.55 × 10−5) 0.0489 (1.84 × 10−3) 0.0481 (2.64 × 10−3) 0.04724 (3.51 × 10−3)

S2 α 367.75 (0.88 × 10+1) 367.69 (4.00 × 10−4) 367.68 (6.22 × 10−2) 367.69 (6.22 × 10−2) 367.69 (6.23 × 10−2)
β 2.8438 (3.63 × 10−2) 2.8333 (1.62 × 10−4) 2.8336 (1.02 × 10−2) 2.8331 (1.07 × 10−2) 2.8325 (1.13 × 10−2)
θ 165.34 (0.11 × 10+1) 165.28 (4.02 × 10−4) 165.27 (6.36 × 10−2) 165.27 (6.37 × 10−2) 165.27 (6.37 × 10−2)

R(50) 0.5194 (5.11 × 10−2) 0.6065 (2.30 × 10−4) 0.6099 (1.86 × 10−2) 0.6048 (1.34 × 10−2) 0.5993 (7.85 × 10−3)
h(50) 0.0351 (2.97 × 10−3) 0.0342 (1.36 × 10−5) 0.0344 (7.16 × 10−4) 0.0341 (1.04 × 10−3) 0.0338 (1.37 × 10−3)

S3 α 7887.5 (0.12 × 10+1) 7887.4 (4.03 × 10−4) 7887.4 (6.55 × 10−2) 7887.4 (6.54 × 10−2) 7887.4 (6.55 × 10−2)
β 4.5696 (6.69 × 10−2) 4.5453 (2.45 × 10−4) 4.5458 (2.37 × 10−2) 4.5450 (2.45 × 10−2) 4.5442 (2.53 × 10−2)
θ 1060.1 (0.17 × 10+1) 1060.1 (3.93 × 10−4) 1060.1 (6.32 × 10−2) 1060.1 (6.31 × 10−2) 1060.1 (6.31 × 10−2)

R(50) 0.1342 (3.27 × 10−2) 0.1486 (1.30 × 10−4) 0.1532 (1.89 × 10−2) 0.1464 (1.22 × 10−2) 0.1394 (5.22 × 10−3)
h(50) 0.0850 (2.89 × 10−3) 0.0838 (1.11 × 10−5) 0.0838 (1.12 × 10−3) 0.0837 (1.20 × 10−3) 0.0836 (1.29 × 10−3)

Table 5. Interval estimates [ILs] of α, β, θ, R(t), and h(t) from coating weight data.

Si Par. ACI HPD

S1 α 1252.3 (0.86 × 10+1) 1252.2 (3.90 × 10−4)
β 3.9852 (5.82 × 10−2) 3.9653 (2.29 × 10−4)
θ 3972.5 (0.19 × 10+1) 3972.4 (4.93 × 10−4)

R(50) 0.5697 (8.25 × 10−2) 0.5985 (3.24 × 10−4)
h(50) 0.0507 (6.29 × 10−3) 0.0484 (2.55 × 10−5)

S2 α 367.75 (0.88 × 10+1) 367.69 (4.00 × 10−4)
β 2.8438 (3.63 × 10−2) 2.8333 (1.62 × 10−4)
θ 165.34 (0.11 × 10+1) 165.28 (4.02 × 10−4)

R(50) 0.5194 (5.11 × 10−2) 0.6065 (2.30 × 10−4)
h(50) 0.0351 (2.97 × 10−3) 0.0342 (1.36 × 10−5)

S3 α 7887.5 (0.12 × 10+1) 7887.4 (4.03 × 10−4)
β 4.5696 (6.69 × 10−2) 4.5453 (2.45 × 10−4)
θ 1060.1 (0.17 × 10+1) 1060.1 (3.93 × 10−4)

R(50) 0.1342 (3.27 × 10−2) 0.1486 (1.30 × 10−4)
h(50) 0.0850 (2.89 × 10−3) 0.0838 (1.11 × 10−5)

To show that the simulated MCMC samples are converged well, based on S1 as an
example, the trace plots based on 40,000 chain values of α, β, θ, R(t), and h(t) are shown in
Figure 7. Each trace plot represents the arithmetic sample mean (with solid (—) horizontal
line) and two bounds of 95% HPD intervals (with dashed (- - -) horizontal line). It shows that
the proposed MCMC algorithm converges well and the burn-in period has an appropriate
size to ignore the effect of the starting guesses. Furthermore, based on S1 as an example,
the approximated marginal density functions with their frequencies using Gaussian kernel
of α, β, θ, R(t), and h(t) are displayed in Figure 8. It indicates that the simulated marginal
posterior estimates of all the unknown parameters are fairly symmetrical. Furthermore,
based on S1 as an example, some general statistics for the MCMC outputs of α, β, θ,
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R(t), and h(t) after burn-in, namely: mean, mode, mode, quartiles (Q1, Q2, Q3), standard
deviation (St.D), and skewness (Skew.) are also computed and presented in Table 6. Other
MCMC plots based on samples S2 and S3 of α, β, θ, R(t), and h(t) are plotted and reported
in the Supplementary File for brevity. From Table 3, based on the four optimum criteria
declared in Section 5, the problem of selecting the best (optimal) progressive censoring plan
is discussed. The results of the different criteria are displayed in Table 7. It provides that
the censoring scheme used in sample S1 is the optimum plan based on the given criteria II,
the censoring scheme used in sample S2 is the optimum plan based on criterion I and III,
and the censoring scheme used in sample S3 is the optimum plan based on criterion IV.
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Figure 6. Plot of estimated/empirical Dagum reliability function from coating weight data.

Table 6. General MCMC statistics of α, β, θ, R(t), and h(t) from coating weight data.

Si Par. Mean Mode Q1 Q2 Q3 St.D Skew.

S1 α 1252.261 1252.068 1252.209 1252.260 1252.313 0.078036 0.0244751
β 3.965291 3.907221 3.933091 3.963511 3.995504 0.045946 0.1275803
θ 3972.392 3972.312 3972.338 3972.391 3972.445 0.078888 0.0201716

R(50) 0.598523 0.681286 0.555022 0.600587 0.644260 0.064847 −0.0823151
h(50) 0.048374 0.041782 0.044874 0.048364 0.051859 0.005102 −0.0849275

S2 α 367.6869 367.4750 367.6337 367.6883 367.7404 0.080099 −0.0316677
β 2.833264 2.812148 2.811808 2.855040 2.855040 0.032354 0.1253853
θ 165.2781 165.1830 165.2245 165.2788 165.3317 0.080479 −0.0474391

R(50) 0.606512 0.636220 0.575109 0.608162 0.637130 0.046027 −0.0984429
h(50) 0.034195 0.032474 0.032423 0.034146 0.036066 0.002712 −0.0080582

S3 α 7887.434 7887.308 7887.379 7887.434 7887.489 0.080521 0.0109896
β 4.545287 4.553952 4.512051 4.543179 4.577726 0.049014 0.1251338
θ 1060.076 1060.059 1060.024 1060.075 1060.129 0.078500 0.0402300

R(50) 0.148638 0.130289 0.130289 0.147680 0.165139 0.026099 0.3562451
h(50) 0.083788 0.084280 0.082341 0.083795 0.085312 0.002221 −0.1591992
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Table 7. Optimal progressive censoring mechanisms from coating weight data.

Sample Criteria

I II III IV

q→ 0.3 0.6 0.9

S1 295.8274 78.24976 0.931561 6.509199 11.16921 29.74584
S2 783.6007 78.78461 0.114358 4.650042 9.907341 38.79528
S3 223.3804 422.2169 88.67801 2.526266 4.086085 9.771803
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Figure 7. Trace plots of α, β, θ, R(t), and h(t) using S1 from coating weight data.

6.2. Electronic Components

In this application, we use a real-life data set from the engineering field taken from
Lawless [37]. This data set describes the failure times (in minutes) for a sample of fif-
teen electronic components in an accelerated life test as: 1.4, 5.1, 6.3, 10.8, 12.1, 18.5,
19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2. The MLEs of the unknown parameters are
α̂ = 0.5657(0.2563), β̂ = 2.1834(0.4787), and θ̂ = 1882.5(3839.5). In addition, the K-S
(p-value) is 0.107 (0.988). This result shows that the Dagum distribution fits the electronic
components data set quite well. Furthermore, based on the electronic components data,
the estimated/empirical RF of the Dagum distribution is displayed in Figure 9.
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Figure 8. Histograms of α, β, θ, R(t), and h(t) using S1 from coating weight data.
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Figure 9. Plot of estimated/empirical Dagum reliability function from electronic components data.

From the entire electronic components data set, by employing various censoring schemes,
three APT-II HC samples with m = 10 are generated and provided in Table 8. The different
estimates of α, β, θ, R(t), and h(t) are calculated and reported in Tables 9 and 10, respectively.
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The estimates of R(t) and h(t) are evaluated at distinct time point t = 20. Again, by run-
ning the MCMC algorithm 50,000 times and discarding the first 10,000 estimates as burn-in,
the Bayes estimates are obtained using the SE and GE (for κ(= −3,−0.03,+3)) loss functions.

It can be seen, from Tables 9 and 10, that in terms of the lowest St.Es, the symmetric (or
asymmetric) Bayes estimates of all unknown parameters perform better than the frequentist
estimates. Moreover, in terms of the shortest interval width, the HPD interval estimates
perform better than the ACIs.

Utilizing the simulated 40,000 MCMC variates of α, β, θ, R(t), and h(t), their trace and
histograms plots based on APT-II HC samples obtained from the electronic components
data are plotted and displayed in Figures 10 and 11, respectively. Figure 10 proves that the
MCMC technique converges very well. In addition, Figure 11 shows that the distributions
of the MCMC estimates of all unknown parameters are almost symmetric. Briefly, based
on the simulated 40,000 MCMC variates of α, β, θ, R(t), and h(t) from S1 (as an example),
some vital statistics called are calculated and listed in Table 11. In addition, the trace and
histogram plots of the same unknown parameters based on samples S2 and S3 are also
displayed in the Supplementary File.

In addition, using the optimum criteria reported in Section 5, the optimal progressive
censoring mechanism is discussed. From the generated APT-II HC samples in Table 8, all
optimum criteria are evaluated and presented in Table 12. It shows that the progressive
type-II censoring plan used in S2 is the optimum censoring than other competing schemes
based on criteria I, II, and III while the progressive type-II censoring plan used in S3 is the
optimum censoring than others based on criterion IV for all specific percentile points.

Table 8. Three APT-II HC samples from electronic components data.

Sample Scheme T(D) Rm Data

S1 (5, 0∗9) 25(4) 0 1.4 19.7 22.2 23 30.6 37.3 46.3 53.9 59.8 66.2
S2 (0∗2, 1∗5, 0∗3) 20(5) 2 1.4 5.1 6.3 12.1 19.7 23 30.6 37.3 46.3 53.9
S3 (0∗9, 5) 15(5) 5 1.4 5.1 6.3 10.8 12.1 18.5 19.7 22.2 23 30.6

Table 9. Point estimates (St.Es) of α, β, θ, R(t), and h(t) from electronic components data.

Si Par. MLE SE GE

κ→ −3 −0.03 +3

S1 α 0.6295 (2.22 × 10−1) 0.5344 (4.29 × 10−4) 0.5478 (8.17 × 10−2) 0.5275 (1.02 × 10−1) 0.5042 (1.25 × 10−1)
β 2.2722 (1.81 × 10−1) 2.1870 (4.15 × 10−4) 2.1901 (8.20 × 10−2) 2.1854 (8.67 × 10−2) 2.1807 (9.15 × 10−2)
θ 4610.6 (0.11 × 10+2) 4610.5 (4.89 × 10−4) 4610.4 (9.74 × 10−2) 4610.5 (9.74 × 10−2) 4610.5 (9.73 × 10−2)

R(20) 0.6797 (1.13 × 10−1) 0.6546 (3.37 × 10−4) 0.6614 (1.83 × 10−2) 0.6511 (2.86 × 10−2) 0.6393 (4.04 × 10−2)
h(20) 0.0282 (9.95 × 10−3) 0.0264 (2.58 × 10−5) 0.0274 (7.49 × 10−4) 0.0259 (2.23 × 10−3) 0.0244 (3.75 × 10−3)

S2 α 0.5528 (1.71 × 10−1) 0.4689 (3.93 × 10−4) 0.4818 (7.10 × 10−2) 0.4624 (9.01 × 10−2) 0.4414 (1.11 × 10−1)
β 1.9586 (1.92 × 10−1) 1.8670 (4.38 × 10−4) 1.8711 (8.75 × 10−2) 1.8650 (9.36 × 10−2) 1.8587 (9.99 × 10−2)
θ 1613.8 (0.84 × 10+1) 1613.7 (5.27 × 10−4) 1613.7 (1.04 × 10−1) 1613.7 (1.04 × 10−1) 1613.7 (1.04 × 10−1)

R(20) 0.6129 (1.05 × 10−1) 0.5924 (3.39 × 10−4) 0.6000 (1.29 × 10−2) 0.5886 (2.43 × 10−2) 0.5755 (3.74 × 10−2)
h(20) 0.0281 (1.02 × 10−2) 0.0256 (2.42 × 10−5) 0.0265 (1.56 × 10−3) 0.0251 (2.91 × 10−3) 0.0237 (4.30 × 10−3)

S3 α 0.6112 (1.94 × 10−1) 0.5231 (4.05 × 10−4) 0.5353 (7.59 × 10−2) 0.5168 (9.44 × 10−2) 0.4959 (1.15 × 10−1)
β 2.0253 (2.07 × 10−1) 1.9327 (4.29 × 10−4) 1.9365 (8.88 × 10−2) 1.9308 (9.45 × 10−2) 1.9250 (1.00 × 10−1)
θ 1042.9 (0.11 × 10+2) 1042.7 (5.22 × 10−4) 1042.8 (1.03 × 10−1) 1042.8 (1.03 × 10−1) 1042.8 (1.03 × 10−1)

R(20) 0.5281 (1.10 × 10−1) 0.5228 (3.36 × 10−4) 0.5313 (3.21 × 10−3) 0.5186 (9.53 × 10−3) 0.5046 (2.35 × 10−2)
h(20) 0.0391 (1.44 × 10−2) 0.0349 (3.11 × 10−5) 0.0360 (3.09 × 10−3) 0.0344 (4.72 × 10−3) 0.0327 (6.41 × 10−3)
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Table 10. Interval estimates [ILs] of α, β, θ, R(t), and h(t) from electronic components data.

Si Par. ACI HPD

S1 α (0.19442, 1.06465) [0.8702] (0.37625, 0.70950) [0.3333]
β (1.91708, 2.62725) [0.7102] (2.03085, 2.34927) [0.3184]
θ (4587.33, 4633.86) [46.524] (4610.31, 4610.69) [0.3792]

R(20) (0.45801, 0.90134) [0.4433] (0.51581, 0.77537) [0.2596]
h(20) (0.00866, 0.04770) [0.0390] (0.01653, 0.03615) [0.0196]

S2 α (0.21862, 0.88699) [0.6684] (0.32547, 0.62131) [0.2958]
β (1.58223, 2.33503) [0.7528] (1.69247, 2.03307) [0.3406]
θ (1597.35, 1630.24) [32.885] (1613.46, 1613.88) [0.4166]

R(20) (0.40652, 0.81928) [0.4128] (0.45554, 0.72107) [0.2655]
h(20) (0.00814, 0.04796) [0.0398] (0.01667, 0.03514) [0.0185]

S3 α (0.23019, 0.99228) [0.7621] (0.36245, 0.67443) [0.3120]
β (1.61933, 2.43135) [0.8120] (1.77332, 2.10441) [0.3311]
θ (1019.61, 1066.12) [46.509] (1042.57, 1042.97) [0.3992]

R(20) (0.31206, 0.74414) [0.4321] (0.38452, 0.64753) [0.2630]
h(20) (0.01096, 0.06728) [0.0563] (0.02360, 0.04768) [0.0241]

Table 11. Vital MCMC statistics of α, β, θ, R(t), and h(t) from electronic components data.

Si Par. Mean Mode Q1 Q2 Q3 St.D Skew.

S1 α 0.534376 0.377818 0.476551 0.534183 0.534183 0.085719 0.029283
β 2.186972 2.089641 2.129470 2.184992 2.242985 0.083015 0.070771
θ 4610.496 4610.396 4610.428 4610.496 4610.562 0.097799 0.083025

R(20) 0.654609 0.578008 0.610999 0.657592 0.704351 0.067400 −0.318981
h(20) 0.026437 0.025883 0.022767 0.026031 0.029745 0.005158 0.410748

S2 α 0.468871 0.351668 0.413957 0.467575 0.520369 0.078599 0.168398
β 1.867038 1.731206 1.810875 1.867141 1.926307 0.087674 −0.025261
θ 1613.691 1613.458 1613.627 1613.695 1613.761 0.105405 −0.171534

R(20) 0.592439 0.555406 0.549464 0.594472 0.639593 0.067723 −0.163227
h(20) 0.025580 0.021936 0.022190 0.025155 0.028747 0.004841 0.400102

S3 α 0.523056 0.439083 0.467178 0.522073 0.576318 0.080907 0.078726
β 1.932677 1.945098 1.876070 1.931637 1.990185 0.085892 0.059419
θ 1042.765 1042.471 1042.693 1042.769 1042.837 0.104342 −0.095635

R(20) 0.522836 0.460191 0.477698 0.522569 0.568159 0.067118 −0.000699
h(20) 0.034938 0.037790 0.030653 0.034713 0.038802 0.006223 0.369621

Table 12. Optimal progressive censoring mechanisms from electronic components data.

Sample Criteria

I II III IV

q→ 0.3 0.6 0.9

S1 69.09318 140.9431 0.167297 33.07438 92.52722 700.5803
S2 84.60432 70.44392 0.054867 26.06951 113.1988 1389.363
S3 75.13989 140.8521 0.151209 13.96922 56.30787 658.1227
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Figure 10. Trace plots of α, β, θ, R(t), and h(t) using S1 from electronic components data.
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Figure 11. Histograms of α, β, θ, R(t), and h(t) using S1 from electronic components data.
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7. Conclusions

In this study, based on an adaptive progressive type-II hybrid censoring scheme, we
have attained the maximum likelihood and Bayes estimators of the unknown parameters,
reliability, and hazard rate functions of the Dagum distribution. The Markov chain Monte
Carlo approach is used to obtain the Bayes estimators based on squared error and general
entropy loss functions. For the unknown parameters, reliability, and hazard rate functions,
the approximative confidence intervals are obtained based on the asymptotic normality
of the maximum likelihood estimators. In addition, the highest posterior density credible
intervals are acquired. The optimal progressive censoring plans are shown and some
optimality criteria are explored. A simulation study is used to examine the effectiveness
of the various point and intervals estimators while taking various sample sizes and cen-
soring strategies into account. The results of the simulation showed that the Bayesian
approach offers estimates that are more accurate than the maximum likelihood approach.
To demonstrate how the suggested estimators perform in real-world situations, we exam-
ined two actual data sets for coating weights of iron sheets and electronic components.
The analysis showed that the Dagum distribution is a good choice to model these data
and the Bayesian estimation method is advised to estimate the unknown parameters in
the presence of adaptive progressively type-II hybrid censored Dagum data. For further
research, the estimation of the reliability characteristics of the proposed model can be
investigated by utilizing another estimation methods including the maximum product of
spacing estimation method which may be a good alternative to the maximum likelihood
method. Further, the methods developed in this paper can be extended to include the
competing risks model or accelerated life tests.
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