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Abstract: In this paper, the integrability of a nonlinear system developing endemic Malaria was
demonstrated using Prelle–Singer techniques. In addition, Lie symmetry techniques were employed
to identify additional independent variables that led to the modification of the nonlinear model and
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1. Introduction

Malaria is a parasitic disease spread by female Anopheles mosquito bites that is
induced by the Plasmodium parasite [1]. It is still one of the most common and deadly
human illnesses on the planet. Furthermore, clinical characteristics include the likelihood of
infection, severity, and relapse risk. P. falciparum has been identified as the most dangerous
of all the species to humans [2]. Malaria-infected areas are home to roughly 40% of the
world’s population. However, the majority of cases and deaths occur in Sub-Saharan Africa.
Every year, 300 to 500 million cases and 1.5 to 2.7 million deaths are estimated to occur over
the world. Africa is responsible for 80% of the cases and 90% of the deaths.

In a paper modeling the transmission dynamics of malaria endemic, researchers used
rescaling to achieve a cosmetic simplification in order to predict disease propagation [1].
As a result of this scaling, the original five-dimensional system of first-order ordinary
differential equations was reduced to the three first-order equations shown below

dsh
dt

= 1− βshih − αsh

dih
dt

= βshih − (α + γ)ih (1)

ε
div

dt
= θ(1− iv)ih − δiv

where sh, ih, and iv are rescaled variables that indicate the number of susceptible, infected
humans, and infected mosquitoes, respectively, at a given point in time. Nondimensional
parameters are described as follows

β =
βhNv

µh
, α =

αh
µh

, γ =
ρh + γh

µh
, ε =

αv

µh
, δ =

µv

µh
, θ =

βvNh
µv

(2)

with βh, the rate of human contact with mosquitoes; αh, the rate of human natural death
per capita; ρh, the human disease-induced death rate per capita; γh, the humans’ per
capita recovery rate; αv, the natural death rate of mosquitos per capita; βv, the frequency
of mosquito contact with humans; µh, the human population’s per capita birth rate; µv,
the mosquitoes’ per capita birth rate.
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Over the last 40 years, a variety of techniques, including numerical and stability tech-
niques, analytical techniques, approximation techniques, and others, have been utilized to
explore and solve nonlinear systems of differential equations. Another major technique, Lie
Theory of Symmetry Groups, was utilized to analyze nonlinear differential equations near
the end of the twentieth century. Marius Sophus Lie, a talented Norwegian mathematician
who lived near the end of the nineteenth century, established the Lie’s theory of symmetry
groups. Sophus Lie used symmetry groups theory to solve differential equations. He
combined all differential equation approaches and deduced that his Lie group theory could
account for them all. Lie groups are mathematical objects that represent the properties
of groups as defined by group theory. To produce Lie symmetries, the Lie group theory
employs appropriate transformations of independent and dependent variables.

The goal of this study, however, is to look at the integrability of a nonlinear system (1).
In addition, to employ the modified Prelle–Singer (PS) approach of Chandrasekar et al. [3]
to uncover transformations that lead to model linearization. Furthermore, the Lie symmetry
technique was used to determine the model’s explicit solutions.

This study is organised as follows. Section 2 introduces a heuristic background of
the concepts underlying the Prelle–Singer (PS) procedure and Lie symmetry analysis. In
Section 3, we used the PS procedure to solve the determining equations of the nonlinear
system. In Section 4, we used a Lie symmetry method on the reduced equations to obtain
explicit solutions. Section 5 contains the conclusion.

2. Theorems and Fundamental Concepts

This Section provides a comprehensive review of the Prelle–Singer (PS) procedure and
Lie symmetry analysis approaches to solving differential equations. The theory includes
the tools that will be used in the following sections of the paper. In [4,5], Matadi provided
a fundamental definition and theorems that can be found in the literature (see [6,7]).

2.1. The Prelle–Singer (PS) procedure

In [3], Chandrasekar et al. updated the original Prelle–Singer (PS) technique and used
it to solve autonomous and non-autonomous nonlinear systems of ordinary differential
equations (ODEs) in the following way:

Given a three-dimensional system of nonlinear first-order ordinary differential equa-
tions [3]

dx1

dt
=

M1(t, x1, x2, x3)

N1(t, x1, x2, x3)

dx2

dt
=

M2(t, x1, x2, x3)

N2(t, x1, x2, x3)
, (3)

dx3

dt
=

M3(t, x1, x2, x3)

N3(t, x1, x2, x3)
,

Given x1, x2, x3 with Mi’s and Ni’s, i = 1, 2, 3 analytic functions. Equation (3) admits
a first integral I(t, x1, x2, x3) = K, on the solutions, with K constant, resulting in a total
differential of

dI = Itdt + Ix1 dx1 + Ix2 dx2 + Ix3 dx3 = 0 (4)

Equation (3) can be written as follows:

M1

N1
dt− dx1 = 0,

M2

N2
dt− dx2 = 0, (5)

M3

N3
dt− dx3 = 0.
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By multiplying the first, second, and third equations in (5) by the functions P, L, and Q
we get

dI = (Pφ1 + Kφ2 + Qφ3)dt− Pdx1 − Ldx2 −Qdx3 = 0, (6)

where φi =
Mi
Ni

, i = 1, 2, 3. The following equations are obtained by Comparing Equations (6)
and (4)

It = (Pφ1 + Lφ2 + Qφ3),

Ix1 = −P,

Ix2 = −L (7)

Ix3 = −Q.

The resulting determining equations for the integrating factors P, L, and Q are derived
from the compatibility criteria between Equation (7)

Pt + φ1Px1 + φ2Px2 + φ3Px3 = −(Pφ1x1 + Lφ2x1 + Qφ3x1),

Lt + φ1Lx1 + φ2Lx2 + φ3Lx3 = −(Pφ1x2 + Lφ2x2 + Qφ3x2),

Qt + φ1Qx1 + φ2Qx2 + φ3Qx3 = −(Pφ1x3 + Lφ2x3 + Qφ3x3), (8)

Px2 = Lx1 ,

Px3 = Qx1 ,

Lx3 = Qx2 .

with the given condition

φ3x1

(
φ2t + φ2φ2x1x2 + φ3φ2x1x3 − φ2x3 φ3x1 − φ2x1 φ2x2

)
−φ2x1

(
φ3t + φ2φ3x1x2 + φ3φ3x1x3 − φ2x1 φ3x2 − φ3x1 φ3x3

)
= 0 (9)

Integrating Equation (7) produces the given integral of motion

I = r1 + r2 + r3 −
∫ [

Q +
d

dx3
(r1 + r2 + r3)

]
dx3, (10)

with

r1 =
∫ (

Pφ1 + Lφ2 + Qφ3
)
dt

r2 = −
∫ (

P +
dr1

dx1

)
dx1 (11)

r3 = −
∫ (

L +
d(r1 + r2)

dx2

)
dx2

2.2. Lie Symmetry Procedure

In accordance with the theory of Lie symmetry, the given three dimensional system of
first-order differential equation [5]

ẋ1 = f1(t, x1, x2, x3),

ẋ2 = f2(t, x1, x2, x3),

ẋ3 = f3(t, x1, x2, x3),
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admits the following Lie group of transformations of one-parameter (a) [5]

t̃ ≈ t + aT(t, x1, x2, x3),

x̃1 ≈ x1 + aX1(t, x1, x2, x3),

x̃2 ≈ x2 + aX2(t, x1, x2, x3),

x̃3 ≈ x3 + aX3(t, x1, x2, x3),

with infinitesimal Lie operators [5]

G = T
∂

∂t
+ X1

∂

∂x1
+ X2

∂

∂x2
+ X3

∂

∂x3
. (12)

The group transformations t̃, x̃1, x̃2 and x̃3 are obtained by solving the following Lie
equations [4,5]

dt̃
da

= T(t, x1, x2, x3),

dx̃1

da
= X1(t, x1, x2, x3),

dx̃2

da
= X2(t, x1, x2, x3),

dx̃3

da
= X3(t, x1, x2, x3),

with the initial conditions:

t̃ |a=0= t, x̃1 |a=0= x1, x̃2 |a=0= x2, x̃3 |a=0= x3.

The first extension of Lie operators above is defined as follows [5]

G[1] = G + X[t]
1

∂

∂ẋ1
+ X[t]

2
∂

∂ẋ2
+ X[t]

3
∂

∂ẋ3
, (13)

where

X[t]
1 = Dt(X1)− ẋ1Dt(T),

X[t]
2 = Dt(X2)− ẋ2Dt(T),

X[t]
3 = Dt(X3)− ẋ3Dt(T),

with Dt representing the total differential operator describe as follows

Dt =
∂

∂t
+ ẋ1

∂

∂x1
+ ẋ2

∂

∂x2
+ ẋ3

∂

∂x3
+ ẍ1

∂

∂ẋ1
+ ẍ2

∂

∂ẋ2
+ ẍ3

∂

∂ẋ3
+ ...

The infinitesimals transformation obtained will be used to solve the following equa-
tion [5]

Trt + X1rx1 + X2rx2 ++X3rx3 = 0,

Tut + X1ux1 + X2ux2 ++X3ux3 = 0, (14)

Tvt + X1vx1 + X2vx2 ++X3vx3 = 0,

Twt + X1wx1 + X2wx2 ++X3wx3 = 1.

Equation (14) will provide a set of new independent variable, r, and dependent
variables, u, v and w, which can be used to transform the nonlinear system (1) to a linear
system. The following section explore the existence of integrals to the nonlinear system (1).
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3. Application of (PS) Procedure to Nonlinear System (1)

Considering the three-dimensional Equation (1)

dsh
dt

= 1− βshih − αsh = φ1

dih
dt

= βshih − (α + γ)ih = φ2 (15)

ε
div
dt

= θ(1− iv)ih − δiv = φ3

Case 1: Ish = 0 and It, Iih , Iiv 6= 0

The substitution of Equation (15) into (9) gives

− αδβ2i2h = 0. (16)

From Equation (16) we have, δ = 0 or β = 0 or α = 0. The determining equation for Q
in (9) becomes

Qt − αshQsh − (α + γ)ihQih + θ(1− iv)ih = θih, (17)

in which we have taken Qsh = 0 (since Ish = 0). A simple solution for (17) is Q = −ivih
with γ = θ. Using the restriction δ = β = α = 0 and γ = θ, the solution of the determining
equation for P, L is given by P = ih, L = 0. Hence, from Equation (11), we obtain

r1 = iht− θ(1− iv)ivi2ht

r2 = −ihsh (18)

r3 = −(ih + θ(1− iv)ivi2h)t

therefore, the integral of motion is given by

I = −ihsh −
1
2

i2vih (19)

Case 2: Iih = 0, It, Ish , Iiv 6= 0 and Iiv = 0, It, Ish , Iih 6= 0

According to [3], the determining equations and conditions is obtained by introducing
the following transformation

P = SQ and L = UQ, (20)

with

U = −
φ3sh

φ2sh

and S = − (φ3 + φ2U)

φ1
(21)

4. Lie Symmetry Analysis of the System (1)
4.1. Lie Symmetry of one Dimensional Second-Order Differential Equation

From the first equation of the nonlinear system (1), we obtain

ih = − ṡh
βsh

+
1

βsh
− α

β
, (22)

differentiating Equation (22) with respect to t, we obtain

i̇h = − s̈h
βsh

+
ṡ2

h
βs2

h
− ṡh

βs2
h

, (23)

the substitution of Equation (23) into the second equation of the nonlinear system (1) gives

ṡ2
h − βṡh − s̈hsh − βs2

h + βṡhs2
h + αβs3

h + (α + γ)sh − (α + γ)ṡhsh + α(α + γ)s2
h (24)
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Lie group analysis to (24) is performed using SYM packages [4–6], yielding the follow-
ing cases

Case 1: β = 0 and α + γ = 0

The determining equations for the classical symmetries of the nonlinear Equation (24)
are

∂ξ

∂sh
+ sh

∂2ξ

∂s2
h

= 0

∂η

∂t
+ sh

∂2η

∂t2 = 0

η + sh
(
2

∂η

∂t
− ∂ξ

∂t
− 2sh

∂2ξ

∂t∂sh

)
= 0 (25)

−η + sh
( ∂η

∂sh
− 2

∂ξ

sh
− sh

∂2η

∂s2
h
+ 2sh

∂2ξ

∂t∂sh

)
= 0

The coefficients of the infinitesimal generator are obtained by solving the overdeter-
mining Equation (25)

ξ(sh, t) = c1 + c2t (26)

η(sh, t) = c2sh, (27)

as a result, the two-dimensional Lie algebra is given by

G1 = ∂t (28)

G2 = t∂t + sh∂sh , (29)

This case reduces Equation (24) to

ṡ2
h − s̈hsh = 0 (30)

Equation (38) can be linearized using the transformation

S =
1
sh

(31)

Hence, we obtain
d2S
dt2 = 0 (32)

The solution to Equation is
S(t) = ct + d (33)

where c, d are constant of integration. Substituting Equation (33) into transformation (31)
results in the number of susceptible humans

sh(t) =
1

ct + d
(34)

Equation (34) is substituted into Equation (22) to obtain the number of infected persons,
ih.

ih =
At + B

β(ct + d)
(35)

with A = −αc, B = 1− c− αd. The substitution of Equations (34) and (35) into the last
equation in (1) gives

div
dt

+

(
Et + F
Kt + L

)
iv =

Ht + G
Kt + L

(36)
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with G = F + Lδ, H = E + Kδ, E = θA, F = θB, L = βd, K = βc Hence, the number of
infected mosquitoes is given by

iv = c1 exp
[

Et
K
− (FK− EL) ln (L + Kt)

K2

]
+

1
K2 exp

[
− F + Et

K
− (FK− EL) ln (L + Kt)

K2

]
(37)

×(L + Kt)
(FK−EL)

K2

(
− L + Kt

K2

) (FK−EL)
K2

Case 2: β 6= 0 and α + γ 6= 0

The determining equations for the classical symmetries of the nonlinear Equation (24)
are given by

∂ξ

∂sh
+ sh

∂2ξ

∂s2
h

= 0

η − sh

[
∂η

∂sh
+ 2(βsh − 1)

∂ξ

∂sh

]
− sh

[
∂2η

∂s2
h
− 2

∂2ξ

∂t∂sh

]
= 0

−η + 3s2
h

[
(β− (α + γ)sh)

]
∂ξ

∂sh
− 2

∂η

∂t
+

∂ξ

∂t
− βsh

∂ξ

∂t
= 0

−η(α + γ)sh + sh

[
− β + (α + γ)sh

]
∂η

∂sh
+

∂η

∂t
− βsh

∂η

∂t
= 0 (38)

βsh
∂η

∂t
+ 2βsh

∂ξ

∂t
− 2(α + γ)s2

h
∂ξ

∂t
+ sh

∂2η

∂t2 = 0

from the above overdetermining equation yields the coefficients of the infinitesimal generator

ξ(sh, t) =
exp (

√
α + γ)t

α + γ
c1 + c2 (39)

η(sh, t) = exp (
√

α + γ)tc1sh, (40)

As a result, we have the two-dimensional Lie algebra shown below

G1 =
[

exp (
√

α + γ)t + exp (
√

α + γ)tsh
]
∂t (41)

G2 = ∂sh , (42)

Solving the nonlinear Equation (24) for case 1, we obtain the number of susceptible
humans

sh(t) =
−1 + A exp (At + B)

A
, (43)

with A and B constants of integration. The number of infected humans, ih is calculated by
substituting Equation (43) into Equation (22)

ih =
A(A− αβ) exp (At + B) + A− αβ

β
[
A exp (AT + B)− 1

] (44)

The substitution of (43) and (44) gives the first-order nonlinear first-order ordinary
differential equation

ε
div
dt

+ iv

(
Fk(t) + G
Dk(t)− β

)
=

Lk(t) + N
Dk(t)− β

(45)
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with

k(t) = exp (At + B)

F = L−M

G = N − P

L = θC

M = δD

N = θB

P = δB

The solution to Equation (45) is a hypergeometric function, and the numerical solution
can be found in [8].

4.2. Lie Symmetry of Three Dimensional System of First-Order Differential Equation

Equations (12) and (13) are applied to the Non-dimensional model Equation (1),
yielding the following:

G
(

1− βshih − αsh

)
= −βSI1 − αS,

G
(

βshih − (α + γ)ih

)
= βSI1 − (α + γ)I1, (46)

G
(

θ(1− iv)ih − δiv

)
= −θ I1 I2 − δI2.

The extended infinitesimal transformation is obtained by using Equation (13)

−βSI1 − αS = S[t] + s
′
hS[sh ] + i

′
hS[ih ] + i

′
vS[iv ]

− s
′
h(T

[t] + s
′
hT

[sh ] + i
′
hT

[ih ] + i
′
vT [iv ]),

βSI1 − (α + γ)I1 = I[t]1 + s
′
h I[sh ]

1 + i
′
h I[ih ]1 + i

′
v I[iv ]1

− i
′
h(T

[t] + s
′
hT

[sh ] + i
′
hT

[ih ] + i
′
vT [iv ]),

−θ I1 I2 − δI2 = I[t]2 + u
′
1 I[u1]

2 + u
′
2 I[ih ]2 + i

′
v I[iv ]2

− i
′
v(T [t] + s

′
hT

[sh ] + i
′
hT

[ih ] + i
′
vT [iv ]).

(47)

with
s
′
h =

dsh
dt

; i
′
h =

du2

dt
; i
′
v =

du3

dt
.
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Substituting Equation (1) into (47) yields

−βSI1 − αS = S[τ] +
(

1− βshih − αsh

)(
S[sh ] − T [t]

)
+
(

βshih − (α + γ)ih

)
S[ih ]

+
(

θ(1− iv)ih − δiv

)
S[iv ]

−
(

1− βshih − αsh

)2
T [sh ]

−
(

1− βshih − αsh

)(
βshih − (α + γ)ih

)
T [ih ]

−
(

1− βshih − αsh

)(
θ(1− iv)ih − δiv

)
T [iv ],

βSI1 − (α + γ)I1 = T[t]
1 +

(
1− βshih − αsh

)
I[sh ]
1

+
(

βshih − (α + γ)ih

)(
I[ih ]1 − T [t]

)
+
(

θ(1− iv)ih − δiv

)
I[iv ]1

−
(

1− βshih − αsh

)(
βshih − (α + γ)ih

)
T [sh ]

−
(

βshih − (α + γ)ih

)2
T [iv ]

−
(

βshih − (α + γ)ih

)(
θ(1− iv)ih − δiv

)
T [iv ],

−θ I1 I2 − δI2 = U[t]
3 +

(
1− βshih − αsh

)
I[sh ]
2

+
(

βshih − (α + γ)ih

)
I[ih ]2

+
(

θ(1− iv)ih − δiv

)(
I[iv ]2 − T [t]

)
−
(

1− βshih − αsh

)(
θ(1− iv)ih − δiv

)
T [sh ]

−
(

βshih − (α + γ)ih

)(
θ(1− iv)ih − δiv

)
T [ih ]

+
(

θ(1− iv)ih − δiv

)2
T [iv ]. (48)

In general, solving nonlinear system (48) is challenging. As a result, it is required
to use special solutions [5]. In the case of T = T (t), S = S(sh), I1 = I1(ih), I2 = I2(iv),
the non-linear Equations (48) are simplified as(

1− βshih − αsh

)(
S[sh ] − T [t]

)
= −βSI1 − αS, (49)(

βshih − (α + γ)ih

)(
I[ih ]1 − T [t]

)
= βSI1 − (α + γ)I1, (50)(

θ(1− iv)ih − δiv

)(
T[iv ]

2 − T [t]
)
= −θ I1 I2 − δI2. (51)

The following second-order partial differential equation is obtained by considering
the partial derivative of Equation (51) with regard to τ [5]

T [tt] = 0,

solving Equation (52), we obtain
T (t) = lt + m, (52)
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with l and m being the integration constants. Substituting Equation (52) into (49)–(51) yields(
1− βshih − αsh

)(
S[sh ] − l

)
= −βSI1 − αS, (53)(

βshih − (α + γ)ih

)(
I[ih ]1 − l

)
= βSI1 − (α + γ)I1, (54)(

θ(1− iv)ih − δiv
)(

I[iv ]2 − l
)

= −θ I1 I2 − δI2. (55)

After twice partially differentiating Equation (54) with respect to ih, we obtain

I[ihih ]
1 = 0.

Hence,
I1(ih) = pih + q. (56)

Substituting Equation (56) into (53), we obtain(
1− βshih − αsh

)(
S[sh ] − l

)
= −βS(pih + q)− αS. (57)

As Equation (57) is dependent on the values of sh and ih, we obtain

sh : −(βih + α)
∂S
∂sh

= −βlih − αl,

ih : sh
( ∂S

∂sh
− l
)
= Sp,

− :
∂S
∂sh
− l = βSq− αS.

Hence,

S = c1 exp [(βq− α)sh] +
l

−βq + α
. (58)

From (55), we obtain

Ih :
∂I2

∂iv
= l.

Hence,
I2 = liv + c2. (59)

As a result, the infinitesimal transformations are as follows:

S(sh) = c1 exp [(βq− α)sh] +
l

−βq + α
,

I1(ih) = pih + q, (60)

I2(iv) = liv + c2.

It is worth noting that these infinitesimal transformations are not unique. There is,
however, an infinite number of infinitesimal transformations [5]. As a result, Equation (12)
becomes

G =
(
lt + m

) ∂

∂t
+
(
c1 exp [(βq− α)sh] +

l
−βq + α

) ∂

∂sh
+
(

pih + q
) ∂

∂ih
+
(
liv + c2

) ∂

∂iv
.
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Hence, the following Lie generators are found

G1 = t
∂

∂t
+

1
α

∂

∂sh
+ iv

∂

∂iv
,

G2 =
∂

∂t
,

G3 = ih
∂

∂ih
,

G4 =
1

(α− β)

∂

∂sh
,

G5 = exp [−αsh]
∂

∂sh
,

G6 =
∂

∂iv
.

By setting the constant of integration to l = 1, m = 1, p = 1, q = 1, c1 = 1, c2 = 1.
Equation (60) becomes

S =
1

α− β
+ exp [β− α],

I1 = 1 + ih,

I2 = 1 + iv,

T = 1 + t.

Hence, Equation (14) becomes

(1 + t)rt +
( 1

α− β
+ exp [β− α]

)
rsh + (1 + ih)rih + (1 + iv)riv = 0,

(1 + t)s[t]h +
( 1

α− β
+ exp [β− α]

)
S[sh ] + (1 + ih)S[ih ] + (1 + iv)S[iv ] = 0,

(1 + t)i[t]h +
( 1

α− β
+ exp [β− α]

)
I[sh ]
1 + (1 + ih)I[ih ]1 + (1 + iv)I[iv ]1 = 0,

(1 + t)i[t]v +
( 1

α− β
+ exp [β− α]

)
I[sh ]
2 + (1 + ih)I[iv ]2 + (1 + iv)I[iv ]2 = 1.

(61)

The solution of Equation (61) is given by

r =
t

g(shihiv)
,

sh = ln t +
t

g(shihiv)
,

ih =
t

g(shihiv)
,

iv =
t

g(shihiv)
.
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The special case is given by

r =
t

(shihiv)
,

sh = ln t +
t

(shihiv)
,

ih =
t

(shihiv)
,

iv =
t

(shihiv)
.

5. Conclusions

Understanding physical models requires the analysis of nonlinear differential equa-
tions. According to Ove [9], finding a closed form solution of a nonlinear differential
requires a thorough comprehension of the phenomena being described. The Prelle–Singer
(PS) and Lie symmetry techniques are utilized in this research to show the linear inte-
grability of a mathematical model of endemic malaria and to identify explicit solutions.
The results showed that for parameter values β 6= α + γ and α + γ 6= 0, the reduced
second-order differential equation allows for system linearization and provides the ex-
plicit solutions.

Funding: This study was financially supported by the research office of the University of Zululand.

Acknowledgments: The research office at the University of Zululand provided financial support for
this study. The author wishes to thank the reviewers for their insightful comments and suggestions,
which helped to improve the manuscript significantly.

Conflicts of Interest: The author declares no conflict of interest concerning the publication of this paper.

References
1. Gebremeskel, A.A.; Krogstad, E.H. Mathematical Modelling of Endemic Malaria Transmission. Am. J. Appl. Math. 2015, 3, 36–46.

[CrossRef]
2. Oke, S.I.; Ojo, M.M.; Adeniyi, M.O.; Matadi, M.B. Mathematical modeling of malaria disease with control strategy. Commun.

Math. Biol. Neurosci. 2020, 2020, 43. [CrossRef]
3. Chandrasekar, V.K.; Senthilwelan, M.; Lakshmanan, M. On the complete integrability and linearization of nonlinear ordinary

differential equations. III. Coupled first-order equations. Proc. R. Soc. 2009, 465, 585–608. [CrossRef]
4. Matadi, M.B. On the integrability of the SIRD epidemic model. Commun. Math. Biol. Neurosci. 2020, 2020, 47. [CrossRef]
5. Matadi, M.B. Application of Lie Symmetry to a Mathematical Model that Describes a Cancer Sub-Network. Symmetry 2022, 14,

400. [CrossRef]
6. Nucci, M.C.; Tamizhmani, K.M. Lagrangians for Biological Models. J. Nonlinear Math. Phys. 2012, 19, 330–352. [CrossRef]
7. Trubatch, S.L.; Franco, A. Canonical procedures for populations dynamics. J. Theor. Biol. 1974, 48, 299–324. [CrossRef]
8. Matadi, M.B. Invariant solutions and conservation laws for a pre-cancerous cell population model. J. Interdiscip. Math. 2020, 23,

1121–1140. [CrossRef]
9. Ove, L. Painlevé Analysis and Transformations Nonlinear Partial Differential Equations. Ph.D. Thesis, Department of Mathematics

Lulea University of Technology, Luleå, Sweden, 2001.

http://doi.org/10.11648/j.ajam.20150302.12
http://dx.doi.org/10.28919/cmbn/4513
http://dx.doi.org/10.1098/rspa.2008.0239
http://dx.doi.org/10.28919/cmbn/4611
http://dx.doi.org/10.3390/sym14020400
http://dx.doi.org/10.1142/S1402925112500210
http://dx.doi.org/10.1016/S0022-5193(74)80003-2
http://dx.doi.org/10.1080/09720502.2020.1737381

	Introduction
	Theorems and Fundamental Concepts
	The Prelle–Singer (PS) procedure
	Lie Symmetry Procedure

	Application of (PS) Procedure to Nonlinear System (1)
	Lie Symmetry Analysis of the System (1)
	Lie Symmetry of one Dimensional Second-Order Differential Equation
	Lie Symmetry of Three Dimensional System of First-Order Differential Equation

	Conclusions
	References

