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1. Introduction

The theory of the bi-Hamiltonian structure was introduced in [1,2] in the late 1970s by
Magri, Gel’fand and Dorfman. For a (1 + 1)-dimensional evolution equation

ut = K(u), (1)

if it can be written as
ut = θ1

δH1

δu
= θ2

δH2

δu
,

where the two independent Hamiltonian operators θ1 and θ2 are compatible, then one can
generate infinitely many involutive conserved quantities {Hj} for Equation (1) by making
use of θ1 and θ2 [1]. The compatibility of θ1 and θ2 requires their linear combination that is
still a Hamiltonian operator. Later, it was proven in [3] by Fuchssteiner and Fokas that for
a hierarchy

utj = Kj(u) = LjK(u), j = 0, 1, · · · , (2)

with a recursion operator L, if L allows an implectic–symplectic factorization L = θ J, then
θ and θ Jθ being compatible is equivalent to L being hereditary (such notions can be found
in Section 2). Thus, the theory of multi-Hamiltonian structures of (1 + 1)-dimensional
integrable hierarchies with recursion operators is established.

Integrable couplings are considered as enlarged integrable systems. According to
the review paper [4], an integrable coupling associated with Equation (1) is a nontrivial
system of evolution equations that is still integrable and includes (1) as a subsystem, e.g.,
in the form {

ut = K(u),
vt = S(u, v).

(3)

One way to obtain such an integrable coupling is to consider the first-order perturbation
u→ u + εv + o(ε) in Equation (1). The resulting system reads{

ut = K(u),
vt = K′[v],

(4)
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where the second equation is the linearized form of the first equation and v is known as
a symmetry of the first equation. Early studies of integrable couplings by perturbations
were due to [5,6], which investigated their symmetries and Lax pairs. Later, the multi-
Hamiltonian structure of integrable couplings by perturbations was studied in [7,8]. For the
(1 + 1)-dimensional evolution Equation (1) that has a Lax pair, its integrable coupling (4) can
be obtained by enlarging either the original loop algebra or spectral problem [9,10]. There
are many examples of obtaining integrable couplings by these two approaches, e.g., [11–20].

If Equation (1) has a Hamiltonian structure

ut = K(u) = θ
δH
δu

, (5)

and if the Hamiltonian operator θ is independent of u, then, in light of Theorem 2.8 in [4],
its integrable coupling (4) allows a Hamiltonian structure

ût =

(
0 θ
θ 0

)
δĤ
δû

, û =

(
u
v

)
. (6)

In this paper, we will present two examples, namely the integrable coupling (4) of the
Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy and the Kaup–Newell (KN) hierarchy.
We will see that the Hamiltonian Ĥ is trivial in degeneration in the sense that Ĥ reduces to
zero (rather than H) when v = 0. We will provide a different class of Hamiltonian operators
for the integrable coupling (4) such that the new Hamiltonian reduces to H when v = 0.
Multi-Hamiltonian structures will be investigated along the lines of [3]. We will also prove
the involutive property of the new Hamiltonian Ĥ and H with respect to the two Poisson
brackets defined by the new and old Hamiltonian operators.

The paper is organized as follows. In Section 2, we recall some notions of Hamiltonian
structures. Then, in Section 3, we present different Hamiltonian structures for the integrable
couplings of the AKNS and KN hierarchies and investigate the involutive property of the
Hamiltonians. Finally, concluding remarks are given in Section 4.

2. Basic Notions

Let us briefly recall some basic notions of Hamiltonian structures of the (1 + 1)-
dimensional Equation (1), i.e.,

ut = K(u). (7)

One can refer to [3] for more details. In the (1 + 1)-dimensional case, (t, x) belongs to
R2. We suppose u = u(x, t) = (u1, u2, · · · , un)T , where all functions {uj

.
= uj(t, x)}

and their derivatives with respect to t and x are smooth enough and decrease rapidly
as |x| → ∞. By Vn, we denote a function space consisting of vector fields of the form
f (t, x, u) = ( f1, f2, · · · , fn)T , where each fi is a scalar function and C∞ differentiable with
respect to t and x. The scalar product in Vn is defined as

〈 f , g〉 =
∫ ∞

−∞

n

∑
j=1

f jgj dx, f , g ∈ Vn. (8)

For an operator Φ : Vn → Vn, its adjoint operator Φ∗ is defined through

〈 f , Φg〉 = 〈Φ∗ f , g〉.

Φ is self-adjoint (or symmetric) if Φ = Φ∗, and Φ is skew-symmetric if Φ = −Φ∗. For a
vector field f ∈ Vn, its Gâteaux derivative with respect to u along a given direction g is
defined as

f ′(u)[g] =
d f (t, x, u + εg)

d ε

∣∣∣
ε=0

, g ∈ Vn. (9)
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f ′ is also known as the linearized operator of f . If f depends on u(j), where u(j) = ∂
j
xu,

then f ′ can be written as

f ′ = ∑
j

∂ f
∂u(j)

∂
j
x.

Without causing confusion, we usually write f ′(u)[g] as f ′[g], by dropping u. For the
operator Φ(u) : Vn → Vn, its Gâteaux derivative can be defined in a similar way,

Φ′(u)[g] =
d Φ(u + εg)

d ε

∣∣∣
ε=0

, g ∈ Vn, (10)

and usually we write it as Φ′[g], which is still an operator. In the following, we list some
notions involved in the Hamiltonian structures of Equation (7). One can also refer to [3]
or [21].

Definition 1. An operator J : Vn → Vn is symplectic if it is skew-symmetric with respect to the
scalar product (8) and satisfies the Jacobi identity

〈 f , J′[g]h〉+ 〈g, J′[h] f 〉+ 〈h, J′[ f ]g〉 = 0, ∀ f , g, h ∈ Vn. (11)

Definition 2. An operator θ : Vn → Vn is implectic (The word “implectic” was introduced in [3],
which means “inverse symplectic”.) if it is skew-symmetric with respect to the scalar product (8)
and satisfies the Jacobi identity

〈 f , θ′[θg]h〉+ 〈g, θ′[θh] f 〉+ 〈h, θ′[θ f ]g〉 = 0, ∀ f , g, h ∈ Vn. (12)

Definition 3. An operator L : Vn → Vn is hereditary if it satisfies the relation

L′[L f ]g− L′[Lg] f = L(L′[ f ]g− L′[g] f ), ∀ f , g ∈ Vn. (13)

Definition 4. For Equation (7), where K(u) ∈ Vn, we say that a function ω = ω(u) ∈ Vn is a
symmetry of (7) if for all solutions u of (7) such that

ωt = K′[ω]. (14)

Here, ωt means taking the total derivative with respect to t, e.g., if ω = 2tu + ux, we
have ωt =

∂ω
∂t + ∂ω

∂u ut +
∂ω
∂ux

uxt =
∂ω
∂t + ω′[ut] = 2u + 2tut + uxt.

Definition 5. An operator L : Vn → Vn is called a strong symmetry of Equation (7) if, for any
symmetry ω of (7), the function Lω is its symmetry too. This equivalently requires

Lt = [K′, L] .
= K′L− LK′.

Note here that Lt is the total derivative with respect to t, i.e., Lt =
∂L
∂t + L′[ut], and in

particular, when L does not contain t explicitly, we have ∂L
∂t = 0 and

L′[K] = [K′, L], (15)

where we have replaced ut with K since u satisfies Equation (7).

Definition 6. For a real-valued functional H(u), the vector function f ∈ Vn is called its (func-
tional) gradient if the following holds (H′[g] is defined along the lines of (10)),

〈 f , g〉 = H′[g], ∀g ∈ Vn,

and we denote f = δH
δu .
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If f ∈ Vn is a gradient of some functional, then the linearized operator f ′ is self-adjoint,
i.e., f ′ = f ′∗; on the other hand, once we have a gradient f , the corresponding functional H
can be recovered from f by

H =
∫ 1

0
〈 f (λu), u〉dλ. (16)

Now, we come to introduce the Hamiltonian structure. We say that Equation (7) is a
Hamiltonian system (or has a Hamiltonian structure) if it can be written in the form

ut = K(u) = θ
δH
δu

, (17)

where θ is an implectic operator (see Definition 2), which is also called a Hamiltonian
operator, and H is called the Hamiltonian (or Hamiltonian functional). If there are two
independent Hamiltonian operators such that

ut = K(u) = θ1
δH1

δu
= θ2

δH2

δu
, (18)

where θ1 and θ2 are compatible (i.e., the linear combination aθ1 + bθ2, a, b ∈ R, is still an
implectic operator), we say that the equation ut = K(u) has a bi-Hamiltonian structure [1].
With a Hamiltonian operator θ, one can define the Poisson bracket of two Hamiltonians,

{W, H}θ =
〈 δW

δu
, θ

δH
δu

〉
. (19)

For two independent Hamiltonians, they are involutive if their Poisson bracket is zero.
The Hamiltonian structure of Equation (7) can also be described using geometric

terminology; see [3,4,22,23] for more details. In this setting, the aforementioned function
u belongs to some manifold M, t is considered as a parameter and, consequently, K(u) in
Equation (7) is viewed as a tangent vector when u evolves on M along the parameter t.
Thus, symmetries and gradients are considered as vector fields in the tangent space S at
point u and cotangent space S∗, respectively. In this paper, we formally unite S and S∗ to
be Vn for convenience.

With respect to the Hamiltonian structures of the equations related to (7), we have the
following (refer to Theorem 2 and Theorem 3 in [21]).

Theorem 1. If L is a hereditary operator and a strong symmetry of Equation (7), and if L allows
an implectic–symplectic decomposition,

L = θ J, (20)

where θ and J are implectic and symplectic operators, respectively, and if Equation (7) has a
Hamiltonian structure (17), then the equation utj = LjK(u), for j = 0, 1, 2, · · · has a multi-
Hamiltonian structure

utj = LjK(u) = θ
δHj

δu
= θL∗

δHj−1

δu
= θ(L∗)2 δHj−2

δu
= · · · = θ(L∗)j δH0

δu
, (21)

where all {θ(L∗)i}, for i = 0, 1, · · · , j, are compatible Hamiltonian operators; H0 = H, Hi =
(L∗)i H0, all {Hi} are involutive in the sense

{Hi, Hk}θ(L∗)s = 0, i, k, s = 0, 1, · · · , j,

and any Hi is a conserved quantity of any equation in the hierarchy utj = LjK(u) for j = 0, 1, 2, · · · .

The above notions and results are also applicable to the coupled system{
ut = K(u),
vt = S(u, v).

(22)
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after we write it in the form ût = K̂(û), where û = (uT , vT)T .

3. New Hamiltonian Structures of Two Integrable Couplings

In this section, we introduce new Hamiltonian structures of the integrable couplings
of the AKNS hierarchy and the KN hierarchy and investigate the involutive property of
the Hamiltonians.

3.1. The AKNS

The AKNS hierarchy is associated with the well-known AKNS spectral problem [24]

ϕx = Mϕ, M(u) =
(
−η q
r η

)
, (23)

where u = (q, r)T , q = q(t, x), r = r(t, x) are potentials; η is a spectrum parameter;
ϕ = (φ1, φ2)

T is the eigenfunction. (23) is a generalization of the Zakharov–Shabat spectral
problem for the nonlinear Schrödinger equation [25]. The AKNS hierarchy is written as
(see [26,27])

utn = Kn(u) = LnK0(u), (n = 0, 1, 2, · · · ), K0 = (−q, r)T , (24)

where L is the recursion operator defined as

L = σ∂− 2σu∂−1uTγ, (25)

where ∂ = ∂x, ∂−1 denotes the inverse of ∂x, i.e., an integration operator, satisfying
∂−1∂ = ∂∂−1 = 1,

σ =

(
−1 0
0 1

)
, γ =

(
0 1
1 0

)
. (26)

The first three equations in the AKNS hierarchy are

ut0 = K0 = σu, (27a)

ut1 = K1 = ux, (27b)

ut2 = K2 =

(
−qxx + 2q2r
rxx − 2r2q

)
. (27c)

The recursion operator L is a hereditary operator and a strong symmetry of Equation (27a)
(see [27,28]). It allows an implectic–symplectic factorization [27],

L = θ J, θ = σγ, J = γ∂− 2γu∂−1uTγ. (28)

Each equation in the AKNS hierarchy (24) has a multi-Hamiltonian structure as in (21), i.e.,

utj = Kj(u) = θ
δHj

δu
= θL∗

δHj−1

δu
= θ(L∗)2 δHj−2

δu
= · · · = θ(L∗)j δH0

δu
, (29)

where the first Hamiltonian operator is θ = σγ and the first few gradients are

f0 = (r, q)T = γu,

f1 = L∗ f0 = (rx,−qx)
T = −σγux,

f2 = L∗ f1 =

(
rxx − 2r2q
qxx − 2q2r

)
.
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One can compute Hamiltonians using Formula (16), the first few of which are

H0 =
∫ +∞

−∞
qr dx, (30a)

H1 =
1
2

∫ +∞

−∞
(rxq− qxr) dx, (30b)

H2 =
1
2

∫ +∞

−∞
(rxxq + qxxr− 2q2r2) dx. (30c)

For the AKNS hierarchy (24), its integrable coupling obtained by perturbation, i.e.,{
utj = Kj(u),
vtj = K′j(u)[v],

(31)

is related to the enlarged 4× 4 spectral problem [10]

ϕ̂x = M̂ϕ̂, M̂(û) =
(

M(u) M′(u)[v]
0 M(u)

)
, (32)

where

M′(u)[v] =
(

0 p
s 0

)
, v =

(
p
s

)
, û =

(
u
v

)
. (33)

Note that the spectral problem is gauge-equivalent to the form

ψ̂x = M̂ψ̂, M̂ =

(
−η I2 Q

R η I2

)
, (34)

where Ik is the k× k unit matrix, and Q and R are triangular Toeplitz matrices

Q =

(
q p
0 q

)
, R =

(
r s
0 r

)
. (35)

Since Q and R commute, the integrable coupling (31) can also be alternatively and more
easily obtained from (24) by replacing q and r with the above Q and R. After some
calculation (see Appendix A), the integrable coupling (31) is written as

ûtj = K̂(û) = L̂jK̂0(û), j = 0, 1, 2, · · · , (36)

where
K̂0(û) = (−q, r,−p, s)T , (37)

and

L̂ =

(
L 0

L
′
[v] L

)
, (38)

with L
′
[v] = −2σu∂−1vTγ − 2σv∂−1uTγ, which is the Gâteaux derivative of L(u) with

respect to u in the direction v. Direct verification (see Appendix B) shows that L̂ is hereditary
and is a strong symmetry for ût0 = K̂0(û). The first three equations in (36) are

ût0 = K̂0 =

(
σu
σv

)
, (39a)

ût1 = K̂1 = ûx, (39b)

ût2 = K̂2 =


−qxx + 2q2r
rxx − 2qr2

−pxx + 4pqr + 2sq2

sxx − 4rsq− 2r2 p

. (39c)
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Now, we introduce

θ1 =

(
0 θ
θ 0

)
, (40)

where θ = σγ is the first Hamiltonian operator of the AKNS hierarchy. Since θ is indepen-
dent of u, in light of Theorem 2.8 of [4] (see Appendix C), the integrable coupling (36) has a
Hamiltonian structure

ûtj = K̂j(û) = θ1
δĤ(1)

j

δû
. (41)

In addition, it can be verified that L̂ allows an implectic–symplectic factorization (see
Appendix D),

L̂ = θ1 J1, J1 =

(
−2γu∂−1vTγ− 2γv∂−1uTγ γ∂− 2γu∂−1uTγ

γ∂− 2γu∂−1uTγ 0

)
, (42)

and, consequently, Equation (36) has a multi-Hamiltonian structure

ûtj = K̂j(û) = θ1
δĤ(1)

j

δû
= θ1 L̂∗

δĤ(1)
j−1

δû
= · · · = θ1(L̂∗)j δĤ(1)

0
δû

, (43)

where
δĤ(1)

0
δû

= f̂ (1)0 =

(
γv
γu

)
. (44)

The first few Hamiltonians are

Ĥ(1)
0 =

∫ +∞

−∞
(sq + pr) dx, (45a)

Ĥ(1)
1 =

1
2

∫ +∞

−∞
(sxq− qxs + rx p− pxr) dx, (45b)

Ĥ(1)
2 =

1
2

∫ +∞

−∞
(sxxq + qxxs + rxx p + pxxr− 4q2sr− 4r2 pq)dx, (45c)

from which one can see that these Hamiltonians do not reduce to (30) but vanish when
v = 0. In this sense, they are trivial in the degeneration of v = 0. Such a triviality extends
to all Hamiltonians defined by (43).

Proposition 1. The Hamiltonian Ĥ(1)
j vanishes when v = 0.

Proof. According to Theorem 2.8 in [4], Ĥ(1)
j = Hj(u)′[v], where Hj(u) is the Hamil-

tonian given in (30). It then immediately follows that Ĥ(1)
j = 0 when v = 0 because

Hj(u)′[0] = 0.

In what follows, we introduce a new Hamiltonian operator for the integrable cou-
pling (36) and the corresponding Hamiltonians will reduce to those of the AKNS equations
when v = 0. Let us consider

θ2 =

(
0 θ
θ c0θ

)
, (46)

where θ = σγ and c0 is a nonzero constant. Noting that

θ2 = θ1

(
I2 c0 I2
0 I2

)
,
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where I2 stands for the 2× 2 identity matrix, we introduce

J2 =

(
I2 0
−c0 I2 I2

)
J1 =

(
J21 γ∂− 2γu∂−1uTγ

γ∂− 2γu∂−1uTγ 0

)
, (47)

where J21 = −2γu∂−1vTγ− 2γv∂−1uTγ + c0(2γu∂−1uTγ− γ∂). Thus, we obtain another
factorization

L̂ = θ2 J2, (48)

Both θ2 and J2 are skew-symmetric. θ2 is obviously implectic since it is independent of
û. In addition, for J2, we can verify that it is symplectic along the lines of Appendix D.
Thus, L̂ allows another implectic–symplectic factorization. The first Equation (39a) has a
Hamiltonian structure

ût0 = K̂0 = θ2
δĤ(2)

0
δû

(49)

with
δĤ(2)

0
δû

= f̂ (2)0 = (s− c0r, p− c0q, r, q)T . (50)

Thus, in light of Theorem 1, the integrable coupling (36) has a new multi-Hamiltonian
structure ( For Equation (7) with Hamiltonian structure (17), the operator θ2 is also a
Hamiltonian operator of the integrable coupling of the so-called “nonstandard perturbation
system”, where the initial equation is ut = K(u) + c0εK(u) instead of (7). See Section 3.2
of [4])

ûtj = K̂j(û) = θ2
δĤ(2)

j

δû
= θ2 L̂∗

δĤ(2)
j−1

δû
= · · · = θ2(L̂∗)j δĤ(2)

0
δû

. (51)

Note that the Hamiltonian operator (46) with c0 = −1 was also introduced in [15]. However,
in this paper, we will focus more on the related multi-Hamiltonian structures and the invo-
lutive property of Hamiltonians. Using Formula (16), we can compute the Hamiltonians,
of which the first few indicate relations

Ĥ(2)
i = Ĥ(1)

i − c0Hi, i = 0, 1, 2, (52)

and they do reduce to the Hamiltonians (30) when v = 0 and c0 = −1. Let us prove a more
general result in the following.

Proposition 2. The Hamiltonian Ĥ(2)
j defined in (51) can be expressed as

Ĥ(2)
j = Ĥ(1)

j − c0Hj, i = 0, 1, 2, · · · , (53)

where Hj is the Hamiltonian defined in (29). This indicates that Ĥ(2)
j reduces to Hj when v = 0

and c0 = −1.

Proof. Denote
δĤ(2)

j
δû = f (2)j (û). Noting that

θ2 = θ1S, S =

(
I2 c0 I2
0 I2

)
, (54)

from which we have
f (1)j = S f (2)j . (55)
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Then, using the Formula (16), we have

Ĥ(2)
j =

∫ 1

0
〈 f (2)j (λû), û〉dλ =

∫ 1

0
〈S−1 f (1)j (λû), û〉dλ

=
∫ 1

0
〈 f (1)j (λû), (S−1)T û〉dλ =

∫ 1

0
〈 f (1)j (λû), (I4 − c0

(
0 0
I2 0

)
)û〉dλ

=
∫ ∞

−∞

∫ 1

0
(uT , vT) f (1)j (λû)dλdx− c0

∫ ∞

−∞

∫ 1

0
(0, uT) f (1)j (λû)dλdx

= Ĥ(1)
j − c0

∫ ∞

−∞

∫ 1

0
(0, uT) f (1)j (λû)dλdx.

We are now going to prove that∫ ∞

−∞

∫ 1

0
(0, uT) f (1)j (λû)dλdx = Hj.

In fact, noting that f (1)j (û) = (L̂∗)j f (1)0 (û), where f (1)0 (û) is given as (44), and (L̂∗)j has the
following form

(L̂∗(û))j =

(
(L∗(u))j B(û)

0 (L∗(u))j

)
, (56)

it then follows that ∫ ∞

−∞

∫ 1

0
(0, uT) f (1)j (λû)dλdx

=
∫ ∞

−∞

∫ 1

0
(0, uT)(L̂∗(λû))j

(
λγv
λγu

)
dλdx

=
∫ ∞

−∞

∫ 1

0
λuT(L∗(λu))jγu dλdx

=Hj.

Thus, we obtain the expression (53), and in light of Proposition 1, one finds that Ĥ(2)
j

reduces to Hj when v = 0. The proof is completed.

Now, for each coupled equation in the hierarchy (36), it has two simple Hamiltonian
operators, θ1 and θ2. This means that we have more Hamiltonian structures in the integrable
coupling case. Using these two Hamiltonian operators, we can define Poisson brackets
{·, ·}θk for k = 1, 2 and investigate the involutive property of Hamiltonians {H(1)

i } and

{H(2)
j } with respect to these two Poisson brackets.

Theorem 2. The Hamiltonians {H(1)
i } and {H(2)

j } are involutive with respect to Poisson brackets
{·, ·}θk for k = 1, 2, i.e.,

{H(l)
i , H(s)

j }θk = 0, l, s, k ∈ {1, 2}, i, j = 0, 1, 2, · · · . (57)

Moreover,
{Hi, H(s)

j }θk = 0, s, k ∈ {1, 2}, i, j = 0, 1, 2, · · · . (58)

Proof. The cases of l = s = 1 and l = s = 2 can be understood in light of Section 2. We
prove other cases in the following. Note that

θ2 = θ1S, S =

(
I2 c0 I2
0 I2

)
, (59)
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from which we have
f (1)j = S f (2)j . (60)

In addition, we also note that θ2 L̂∗ = L̂θ2, S and L̂∗ commute, and θ2S is skew-symmetric,
i.e.,

θ2S = −(θ2S)T .

Making use of these relations, we have

{H(2)
i , H(1)

j }θ2 =〈 f (2)i , θ2 f (1)j 〉 = 〈 f
(2)
i , θ2S f (2)j 〉 = −〈θ2S f (2)i , f (2)j 〉

=− 〈θ2 f (1)i , f (2)j 〉 = 〈 f
(1)
i , θ2 f (2)j 〉 = {H(1)

i , H(2)
j }θ2 .

If i = j, then we have {H(1)
i , H(2)

j }θ2 = 0. If i 6= j, e.g., i > j, we further have

{H(2)
i , H(1)

j }θ2 =〈 f (1)i , θ2 f (2)j 〉 = 〈(L̂∗)i f (1)0 , θ2(L̂∗)j f (2)0 〉 = 〈(L̂∗)j f (1)0 , L̂i−jθ2(L̂∗)j f (2)0 〉

=〈(L̂∗)j f (1)0 , θ2(L̂∗)i f (2)0 〉 = 〈 f
(1)
j , θ2 f (2)i 〉 = {H(1)

j , H(2)
i }θ2 = 0.

Since {·, ·}θ2 reduces to {·, ·}θ1 when c0 = 0, we immediately have {H(2)
i , H(1)

j }θ1 = 0.
Relation (58) is the consequence of (57) and Proposition 2. Thus we complete the proof.

3.2. The KN

Let us look at the KN hierarchy, which is related to the KN spectral problem [29,30]

ϕx = Mϕ, M =

(
−η2 qη
rη η2

)
. (61)

This spectral problem is gauge-equivalent to the one for the massive Thirring model found
by Mikhailov [31]. For the details of the gauge transformation, one may refer to Appendix A
of [32]. The KN soliton hierarchy is written as (see, e.g., [27])

utn = Kn(u) = Ln−1K1(u), (n = 1, 2, · · · ), K1 = ux, u = (q, r)T , (62)

where L is the recursion operator defined as

L = ∂σ− ∂u∂−1uTγ, (63)

in which σ and γ are defined as before. The first three equations in the hierarchy are

ut1 = K1 = ux, (64a)

ut2 = K2 =

(
−qx − q2r
rx − qr2

)
x
, (64b)

ut3 = K3 =

(
qxx + 3qrqx +

3
2 q3r2

rxx − 3qrrx +
3
2 q2r3

)
x
. (64c)

One can verify that the recursion operator L is hereditary, a strong symmetry for the first
Equation (64a), and allows an implectic–symplectic factorization,

L = θ J, θ = ∂γ, J = γσ− γu∂−1uTγ. (65)

Thus, the KN hierarchy (62) has the multi-Hamiltonian structure

utj = Kj(u) = θ
δHj

δu
= θL∗

δHj−1

δu
= θ(L∗)2 δHj−2

δu
= · · · = θ(L∗)j−1 δH1

δu
, (66)
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where the first Hamiltonian operator is θ = ∂γ and the first few gradients are

f0 = (r, q)T = γu,

f1 = L∗ f0 =

(
rx − r2q
−qx − q2r

)
,

f2 = L∗ f1 =

(
rxx − 3qrrx +

3
2 q2r3

qxx + 3rqqx +
3
2 r2q3

)
.

The corresponding Hamiltons are

H1 =
∫ +∞

−∞
qr dx, (67a)

H2 =
1
2

∫ +∞

−∞
(qrx − qxr− (qr)2) dx, (67b)

H3 =
1
2

∫ +∞

−∞
(qrxx + qxxr− 3

2
q2rrx +

3
2

qr2qx + (qr)3) dx. (67c)

Note that the Hamiltonian operator θ = ∂γ is again independent of u; therefore, the
integrable couplings of the KN hierarchy by perturbation can have Hamiltonian structures
and properties similar to the case of the AKNS. In the following, we only list these results
for the integrable couplings of the KN hierarchy. Note that all the following results can be
proven. Since the proofs are long and the processes are similar to those for the AKNS given
in Section 3.1 and Appendices A, B and D, we do not present the details of these proofs.

The KN hierarchy (62) gives rise to integrable couplings (cf. [33]){
utj = Kj(u),
vtj = K′j(u)[v],

(68)

where u = (q, r)T , v = (p, s)T , which can be derived from an enlarged 4× 4 spectral prob-
lem (32) where M(u) is taken as in (61). It can also be obtained from the KN hierarchy (62)
by replacing q and r with the triangular Toeplitz matrices Q and R as given in (35). The
integrable coupling (68) can be written as

ûtj = K̂j(û) = L̂j−1K̂1(û), (69)

where û = (uT , vT)T ,
K̂1(û) = ûx, (70)

and

L̂ =

(
L 0

L
′
[v] L

)
, (71)

with L defined in (63) and L
′
[v] = −∂u∂−1vTγ − ∂v∂−1uTγ. The first two equations

in (69) are

ût1 = K̂1 = ûx, (72a)

ût2 =


−qx − q2r
rx − qr2

−px − sq2 − 2pqr
sx − pr2 − 2sqr


x

. (72b)

The recursion operator L̂ is hereditary, a strong symmetry of the first Equation (72a),
and allows an implectic–symplectic factorization,
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L̂ = θ1 J1, θ1 =

(
0 ∂γ

∂γ 0

)
, J1 =

(
−γu∂−1vTγ− γv∂−1uTγ γσ− γu∂−1uTγ

γσ− γu∂−1uTγ 0

)
. (73)

As a result, the integrable coupling (69) has multi-Hamiltonian structure

ûtj = K̂j(û) = θ1
δĤ(1)

j

δû
= θ1 L̂∗

δĤ(1)
j−1

δû
= · · · = θ1(L̂∗)j−1 δĤ(1)

1
δû

, (74)

where the simplest gradient reads

δĤ(1)
1

δû
= f̂ (1)1 =

(
γv
γu

)
. (75)

The first few Hamiltonians are

Ĥ(1)
1 =

∫ +∞

−∞
(sq + rp) dx, (76a)

Ĥ(1)
2 =

1
2

∫ +∞

−∞
(sxq− qxs + rx p− pxr− 2q2rs− 2qr2 p) dx, (76b)

Ĥ(1)
3 =

1
2

∫ +∞

−∞
(sxxq + qxxs + pxxr + rxx p− 6pqrrx +

3
2
(pqr2)x

+ 6sqqxr− 3
2
(srq2)x + 3pq2r3 + 3sq3r2)dx. (76c)

Similar to the AKNS case, these Hamiltonians are trivial in the degeneration of v = 0 in the
sense that they reduce to zero when v = 0. A general statement is the following.

Proposition 3. The Hamiltonians {Ĥ(1)
j } defined in (74) vanish when v = 0.

The recursion operator L̂ (71) allows another implectic–symplectic factorization,

L̂ = θ2 J2, (77)

where

θ2 =

(
0 ∂γ

∂γ c0∂γ

)
= θ1S,

J2 = S−1 J1 =

(
J21 γσ− γu∂−1uTγ

γσ− γu∂−1uTγ 0

)
,

S is the matrix given in (54), and J21 = −γu∂−1vTγ − γv∂−1uTγ + c0(γu∂−1uTγ − γσ).
This fact leads to a second multi-Hamiltonian structure of the integrable coupling (69):

ûtj = K̂j(û) = θ2
δĤ(2)

j

δû
= θ2 L̂∗

δĤ(2)
j−1

δû
= · · · = θ2(L̂∗)j−1 δĤ(2)

1
δû

, (78)

where the simplest gradient is

δĤ(2)
1

δû
= f̂ (2)1 = (s− c0r, p− c0q, r, q)T . (79)

The first three Hamiltonians corresponding to θ2 are

Ĥ(2)
i = Ĥ(1)

i − c0Hi, i = 1, 2, 3, (80)
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which can reduce to the Hamiltonians (67) when v = 0 and c0 = −1. A general result is
described as follows.

Proposition 4. The Hamiltonian Ĥ(2)
j defined in (78) can be expressed as

Ĥ(2)
j = Ĥ(1)

j − c0Hj, i = 1, 2, · · · , (81)

where Hj is the Hamiltonian defined in (66). Ĥ(2)
j reduces to Hj when v = 0 and c0 = −1.

Thus, the coupled equations in the hierarchy (69) have the two simplest Hamiltonian
operators, θ1 and θ2, from which we can define two Poisson brackets {·, ·}θk for k = 1, 2. The

involutive property of the Hamiltonians {H(1)
i } and {H(2)

j } is described as the following.

Theorem 3. The Hamiltonians {H(1)
i } and {H(2)

j } of the KN integrable couplings are involutive
with respect to the Poisson brackets {·, ·}θk for k = 1, 2, i.e.,

{H(l)
i , H(s)

j }θk = 0, l, s, k ∈ {1, 2}, i, j = 1, 2, · · · . (82)

In addition, the Hamiltonians {Hi} of the KN hierarchy (66) are involutive with H(s)
j , i.e.,

{Hi, H(s)
j }θk = 0, s, k ∈ {1, 2}, i, j = 1, 2, · · · . (83)

4. Concluding Remarks

In this paper, we have provided more Hamiltonian structures for two integrable
couplings. For the AKNS and KN hierarchies, of which the first Hamiltonian operators (de-
noted by θ) are independent of u, their integrable couplings by the first-order perturbation

allow Hamiltonian operators with the form (40), i.e., θ1 =
( 0 θ

θ 0

)
(cf. Theorem 2.8 in [4]).

We have shown that the corresponding Hamiltonians {Ĥ(1)
j } are trivial in the degeneration

of v = 0 (see Proposition 1 and 3). We have introduced new Hamiltonian operators of the

form (46), i.e., θ2 =
( 0 θ

θ c0θ

)
, and proven that the corresponding Hamiltonians {Ĥ(2)

j }

allow nontrivial degeneration (see Proposition 2 and 4). The involved Hamiltonians are
involutive with respect to the two Poisson brackets.

As remarks, first, in this paper, for the sake of comparison with the known Hamiltonian
operator θ1, we have introduced parameter c0 in θ2, cf. (40) and (46). In fact, one can also
examine that, for the two integrable couplings investigated in this paper, both

θ1 =

(
0 θ
θ c1θ

)
, θ2 =

(
0 θ
θ c2θ

)
(84)

with distinct parameters c1 and c2 can be Hamiltonian operators, and their corresponding
Hamiltonians (still denoted as {Ĥ(1)

i } and {Ĥ(2)
j }), together with the Hamiltonians {Hi}

of the original equations, are involutive with respect to the Poisson brackets {·, ·}θk for the
above θ1 and θ2. Second, we believe that these results for the AKNS and KN hierarchies
imply a more general theory for integrable couplings by perturbations. In other words, for a
generic hierarchy utj = Kj(u) = LjK(u), if the initial Equation (7) and the recursion operator
L satisfy the assumption in Theorem 1, then it is possible to come up with certain settings
such that its integrable couplings together with the recursion operator L̂ with the form (38)
can inherit the assumption of Theorem 1. Moreover, when the Hamiltonian operator
θ is independent of u, it is possible to obtain general proof that the recursion operator
L̂ allows implectic–symplectic decomposition L̂ = θ2 J2, where θ2 takes the form (46) for
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arbitrary c0. This general theory should also hold for the integrable couplings by high-order
perturbations. We will explore such a general theory in a future investigation.
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Appendix A. Derivation of (36)

We start from the enlarged matrix spectral problem (32). We rewrite it as

ϕ̂x = M̂ϕ̂, M̂(û) =
(

M0 M1
0 M0

)
, (A1a)

where

M0 = M(u) =
(
−η q
r η

)
, M1 = M′(u)[v] =

(
0 p
s 0

)
.

The associated time part is

ϕ̂t = N̂ ϕ̂, N̂ =

(
N0 N1
0 N0

)
, (A1b)

where

N0 =

(
A B
C −A

)
, N1 =

(
E F
G −E

)
.

Here, u = (q, r)T , v = (p, s)T , û = (uT , vT)T , ϕ̂ = (φ1, φ2, φ3, φ3)
T is the eigenfunction. The

compatibility condition (ϕ̂x)t = (ϕ̂x)t gives rise to the zero curvature equation

M̂t − N̂x + [M̂, N̂] = 0,

which is { M0,t − N0,x + [M0, N0] = 0, (A2a)

M1,t − N1,x + [M0, N1] + [M1, N0] = 0. (A2b)

Note that the first Equation (A2a) is nothing but the zero curvature equation associated
with the original AKNS spectral problem (23), which gives rise to the AKNS hierarchy (24),
while the second one, (A2b), has a solution

N1 = N′0(u)[v]. (A3)

In fact, taking the Gâteaux derivative of Equation (A2a) with respect to u in direction v im-
mediately yields (A2b) with the above setting (A3). Since the zero curvature Equation (A2a)
gives rise to the AKNS hierarchy (24), which can be alternatively written as

utj+1 = Lutj , (A4)

its Gâteaux derivative with respect to u in direction v yields

vtj+1 = L′(u)[v]utj + Lvtj . (A5)
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Thus, we have (
utj+1

utj+1

)
=

(
L(u) 0

L′(u)[v] L(u)

)(
utj

utj

)
, (A6)

which yields the hierarchy (36).
One can also derive the hierarchy (36) in a direct way, cf. [34,35].

Appendix B. Property of L̂ (38)

In the following, we prove that the operator L̂ given in (38) is hereditary and a strong
symmetry for Equation (39a).

Suppose that the vector fields F1, F2, G1, G2 ∈ V2 and denote F = (FT
1 , FT

2 )
T , G =

(GT
1 , GT

2 )
T . It is easy to obtain

L̂F =

(
F̃1
F̃2

)
, L̂G =

(
G̃1
G̃2

)
(A7)

where
F̃1 = σF1,x − 2σu∂−1uTγF1,

F̃2 = −2σu∂−1vTγF1 − 2σv∂−1uTγF1 + σF2,x − 2σu∂−1uTγF2,

and G̃1 and G̃2 are given by the formulae by replacing {F1, F2} with {G1, G2}. Meanwhile,
direct calculation yields

L̂′[L̂F]G− L̂′[L̂G]F =

(
A1
A2

)
, (A8)

and, on the other hand, we have

L̂(L̂′[F]G− L̂′[G]F) =
(

B1
B2

)
, (A9)

where

A1 =− 2σF̃1∂−1uTγG1 − 2σu∂−1(F̃1)
TγG1 + 2σG̃1∂−1uTγF1 + 2σu∂−1(G̃1)

TγF1,

B1 =(σ∂− 2σu∂−1uTγ)(−2σF1∂−1uTγG1 + 2σG1∂−1uTγF1),

A2 =− 2σF̃1∂−1vTγG1 − 2σu∂−1(F̃2)
TγG1 − 2σF̃2∂−1uTγG1 − 2σv∂−1(F̃1)

TγG1

− 2σF̃1∂−1uTγG2 − 2σu∂−1(F̃1)
TγG2 + 2σG̃1∂−1vTγF1 + 2σu∂−1(G̃2)

TγF1

+ 2σG̃2∂−1uTγF1 + 2σv∂−1(G̃1)
TγF1 + 2σG̃1∂−1uTγF2 + 2σu∂−1(G̃1)

TγF2,

B2 =(−2σu∂−1vTγ− 2σv∂−1uTγ)(−2σF1∂−1uTγG1 + 2σG1∂−1uTγF1)

+ (σ∂− 2σu∂−1uTγ)(−2σF1∂−1vTγG1 − 2σF2∂−1uTγG1 − 2σF1∂−1uTγG2

+ 2σG1∂−1vTγF1 + 2σG2∂−1uTγF1 + 2σG1∂−1uTγF2).

Substituting F̃j, G̃j (j = 1, 2) into the above, and by direct computation, one can find
A1 = B1 and A2 = B2. This means that the recursion operator L̂ satisfies

L̂′[L̂F]G− L̂′[L̂G]F = L̂(L̂′[F]G− L̂′[G]F), (A10)

i.e., L̂ is a hereditary operator.
To check L̂ as the strong symmetry of Equation (39a), we need to verify

L̂′[K̂0] = [K̂′0, L̂]. (A11)

Direct computation yields

L̂′[K̂0] =

(
C11 C12
C21 C22

)
, (A12)
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where

C11 =− 2σ(σu)∂−1uTγ− 2σu∂−1(σu)Tγ, C12 = 0,

C21 =− 2σ(σu)∂−1vTγ− 2σu∂−1(σv)Tγ− 2σ(σv)∂−1uTγ− 2σv∂−1(σu)Tγ, C22 = C11,

and

K̂′0 L̂− L̂K̂′0 =

(
D11 D12
D21 D22

)
, (A13)

where

D11 =− 2σ2u∂−1uTγ + 2σu∂−1uTγσ, D12 = 0,

D21 =− 2v∂−1uTγ− 2u∂−1vTγ + 2σv∂−1uTγσ + 2σu∂−1vTγσ, D22 = D11.

It is easy to find that (A11) holds, i.e., L̂ is a strong symmetry of Equation (39a).

Appendix C. Theorem 2.8 in [4]

In the following, we present Theorem 2.8 in [4], subject to the notations of this paper.

Theorem A1. For Equation (7), the perturbation

u→ ũ = η0 + εη1 + ε2η2 + · · ·+ εNηN + o(εN), η0 = u, ηj ∈ Vn

yields an integrable coupling

ût = K̂(û) =


K(ũ)
d
dε K(ũ)
...
1

N!
dN

dεN K(ũ)


ε=0

, (A14)

where û = (uT , ηT
1 , · · · , ηT

N)
T . If Equation (7) admits a Hamiltonian structure (17), then the

system (A14) has a Hamiltonian formulation

ût = K̂(û) = θ̂
δĤ(û)

δû
, (A15)

where

θ̂ =



0 0 · · · 0 θ(ũ)
0 0 · · · θ(ũ) 1

1!
dθ(ũ)

dε
...

... . . . . . .
...

0 θ(ũ) . . . 1
(N−2)!

dN−2θ(ũ)
dεN−2

1
(N−1)!

dN−1θ(ũ)
dεN−1

θ(ũ) 1
1!

dθ(ũ)
dε · · · 1

(N−1)!
dN−1θ(ũ)

dεN−1
1

N!
dN θ(ũ)

dεN


ε=0

(A16)

and

Ĥ(û) =
1

N!
dN H(ũ)

dεN

∣∣∣∣
ε=0

. (A17)

If Equation (7) admits a bi-Hamiltonian structure (18), then the system (A14) has a bi-Hamiltonian
formulation

ût = θ̂1
δĤ1(û)

δû
= θ̂2

δĤ2(û)
δû

, (A18)

where θ̂j and Ĥj are generated from θj and Hj along the Formulas (A16) and (A17), respectively.
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Appendix D. The Implectic–Symplectic Factorization (42)

Recalling (42), we have

θ1 =

(
0 θ
θ 0

)
, θ = σγ (A19)

and

J1 =

(
−2γu∂−1vTγ− 2γv∂−1uTγ γ∂− 2γu∂−1uTγ

γ∂− 2γu∂−1uTγ 0

)
. (A20)

Both θ1 and J1 are skew-symmetric operators. Since θ1 is independent of û, we have θ′1 = 0
and therefore it automatically satisfies the Jacobi identity (11). θ1 is implectic according to
Definition 2.

Next, we prove that J1 satisfies (12), i.e.,

〈F, J′1[G]H〉+ 〈G, J′1[H]F〉+ 〈H, J′1[F]G〉 = 0, (A21)

where F, G ∈ V4 are defined as in Appendix B and H ∈ V4 is defined along the same lines.
Direct computation yields

〈F, J′1[G]H〉
=2〈γv∂−1GT

1 γF1, H1〉+ 2〈γu∂−1GT
2 γF1, H1〉+ 2〈γu∂−1GT

1 γF1, H2〉
− 2〈F1, γu∂−1GT

2 γH1〉 − 2〈F1, γv∂−1GT
1 γH1〉 − 2〈F1, γu∂−1GT

1 γH2〉
+ 2〈γu∂−1GT

1 γF2, H1〉 − 2〈F2, γu∂−1GT
1 γH1〉.

Note that J′1[G] = J′1(û)[G]. Similarly, we can have expressions for (G, J′1[H]F) and
(H, J′1[F]G), and finally we arrive at the Jacobi identity (A21). Thus, J1 is a symplectic
operator according to Definition 1.
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