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Abstract: One of the most significant issues facing internet users nowadays is malware. Polymorphic
malware is a new type of malicious software that is more adaptable than previous generations of
viruses. Polymorphic malware constantly modifies its signature traits to avoid being identified by
traditional signature-based malware detection models. To identify malicious threats or malware, we
used a number of machine learning techniques. A high detection ratio indicated that the algorithm
with the best accuracy was selected for usage in the system. As an advantage, the confusion matrix
measured the number of false positives and false negatives, which provided additional information
regarding how well the system worked. In particular, it was demonstrated that detecting harmful
traffic on computer systems, and thereby improving the security of computer networks, was possible
using the findings of malware analysis and detection with machine learning algorithms to compute
the difference in correlation symmetry (Naive Byes, SVM, J48, RF, and with the proposed approach)
integrals. The results showed that when compared with other classifiers, DT (99%), CNN (98.76%),
and SVM (96.41%) performed well in terms of detection accuracy. DT, CNN, and SVM algorithms’
performances detecting malware on a small FPR (DT = 2.01%, CNN = 3.97%, and SVM = 4.63%,)
in a given dataset were compared. These results are significant, as malicious software is becoming
increasingly common and complex.

Keywords: technological innovation; malicious threats; CNN; SVM; DT; cybersecurity; cyberattack;
cyber warfare; cyber threats; suspicious activity

1. Introduction

Cyberattacks are currently the most pressing concern in the realm of modern technol-
ogy. The word implies exploiting a system’s flaws for malicious purposes, such as stealing
from it, changing it, or destroying it. Malware is an example of a cyberattack. Malware is
any program or set of instructions that is designed to harm a computer, user, business, or
computer system [1]. The term “malware” encompasses a wide range of threats, including
viruses, Trojan horses, ransomware, spyware, adware, rogue software, wipers, scareware,
and so on. Malicious software, by definition, is any piece of code that is run without the
user’s knowledge or consent [2].

In particular, this study demonstrated that detecting harmful traffic on computer
systems, and thereby improving the security of computer networks, was possible employ-
ing the findings of malware analysis and detection with machine learning algorithms to
compute the difference in correlation symmetry (Naive Byes, SVM, J48, RF, and with the
proposed approach) integrals.

Malware detection modules are responsible for analysing data they have collected
and been trained with to determine whether or not a specific piece of software or network
connection constitutes a security concern [3,4]. As an illustration, consider a machine
learning system that can explicitly express the principles that underlie the patterns it has
observed [5]. Algorithms that have been trained by machine learning systems can improve
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their ability to predict using feedback regarding how well they performed on previous
tasks and using that information to make changes [6].

Worldwide, cybercriminals pose a serious threat to businesses, universities, govern-
ments, and individuals through the use of malicious software and the theft of confidential
data [7]. Every day, thousands of fraudsters employ harmful software in an attempt to gain
access to networks, steal data, or transfer money. As a result, keeping sensitive information
safe has become an urgent concern in the scientific world. This study aimed to provide
a comprehensive framework for discovering malicious programs and protecting private
information from hackers by employing data mining and machine learning classification
approaches. In this paper, we analyse signature-based and anomaly-based features to de-
velop a robust and effective approach to malware classification and detection. Experiments
have proven that the recommended technique is preferable to alternatives [7].

Modern malware has become increasingly common and complex, posing a major
threat to the security of modern websites [8]. Figure 1 depicts types of cyberattacks in
the digital world or cyberspace. Malware is software created with the express purpose of
causing harm to a computer or network, for example, by monitoring its users or stealing
their money. Malware attacks are becoming increasingly common and now even affect
IoT devices, medical gear, and environmental and industrial control systems. Modern
spyware is notoriously hard to detect, as it constantly updates its code and behaviour.
The proliferation of malware has rendered traditional signature-based defenses ineffective.
Instead, it is necessary to take a broader range of defensive actions [9].
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Both static and dynamic learning methods may be used to identify behavioural simi-
larities between members of the same family of malware [10]. Unlike static analysis, which
examines dangerous files’ contents without actually running them, dynamic analysis takes
their behaviour into account by tracking data flows, recording function calls, and adding
monitoring code to dynamic binaries [11]. Machine learning algorithms may leverage such
static and behavioural artefacts to describe the ever-evolving structure of contemporary
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malware, allowing them to identify increasingly complex malware assaults that could
otherwise avoid detection using signature-based techniques. As machine learning-based
solutions do not rely on signatures, they are more successful against newly released mal-
ware. Deep learning algorithms that can perform feature engineering on their own can be
used to obtain and represent features more accurately [12].

Figure 2 illustrates the Martin (2018) Cyber Kill Chain used for cyberattack protection
and as for security measure to protect networks. In February of 2020, AWS was the target
of a large-scale distributed denial of service attack [13]. The organisation withstood a DDoS
attack of 2.3 Tbps, which resulted in a packet forwarding rate of 293.1 Mpps and a request
rate of 694,201. Some have claimed it to be the largest known DDoS attack. In July of
2020, three hackers gained access to Twitter and took over a number of prominent users’
accounts. President Obama, Amazon’s Jeff Bezos, and Tesla’s Elon Musk are just a few of
the notables whose accounts were hacked. Bitcoin scams uploaded from the stolen accounts
generated over $100,000 in profits. Two weeks after these events, the US Justice Department
filed charges against three individuals, the youngest of whom was 17 at the time. It was
disclosed in 2018 that a cyberattack at Marriott’s Starwood Hotels had exposed the personal
information of more than 500 million customers [14]. According to data collected by NHS
England, the 2017 WannaCry ransomware attack affected more than 300,000 systems in 150
countries and cost billions to fix [15].
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As part of its ongoing attempt to destabilize its neighbours, Russia launched a cyber-
attack on Ukrainian electricity infrastructure in 2017 [16]. This attack showcased Russia’s
capacity for large-scale cyber warfare for the first time. Despite the fact that it was carried
out a full year after Russia’s seizure of Crimea, which is widely regarded as the formal
beginning of Russia’s conflict with the Ukraine, this complex attack was the first successful
cyberattack on a power infrastructure [17]. The Russian cyber military unit Sandworm
launched an attack on the command centre; the command centre’s vulnerability allowed
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the hackers to seize control of the substation’s computer systems, bringing it down. Shortly
after, attacks on other substations occurred. It is estimated that between 200,000 and
300,000 people will have ultimately been hurt by the attack [18].

2. Literature Review

The proliferation of computers, smartphones, and other Internet-enabled gadgets
leaves the world vulnerable to cyber assaults. A plethora of malware detection methods
have arisen in response to the explosion in malware activity. When trying to identify
malicious code, researchers use a variety of big data tools and machine learning techniques.
Traditional machine learning-based malware detection approaches have a considerable
processing time, but may effectively identify newly emerging malware. Feature engineering
may become obsolete due to the prevalence of modern machine learning algorithms, such as
deep learning. In this study, we examined a variety of malware detection and classification
techniques. Researchers have created ways to use machine learning and deep learning to
check samples for malicious intent [19].

Armaan (2021) illustrated and tested the accuracy of various models. Without data,
no application built for a digital platform can perform its function [20]. There are several
cyber risks, so it is essential that precautions be taken to safeguard data. Although feature
selection is difficult when developing a model of any sort, machine learning is a cutting-
edge approach that paves the way for precise prediction. The approach needs a workaround
that is adaptable enough to handle non-standard data. To effectively manage and prevent
future assaults, we must analyse malware and create new rules and patterns in the form of
creation of malware type as shown in Table 1 [21]. To find patterns, IT security professionals
may use malware analysis tools. The availability of technologies that analyse malware
samples and determine their level of malignancy significantly benefit the cybersecurity
sector. These tools help monitor security alerts and prevent malware attacks. If malware
is dangerous, we must eliminate it before it transmits its infection any further. Malware
analysis is becoming increasingly popular as it helps businesses lessen the effects of the
growing number of malware threats and the increasing complexity of the ways malware
can be used to attack [22].

Table 1. Dataset file types.

File Type No. of Files

Malware

Backdoor 3654

Rootkit 2834

Virus 921

Trojan 2563

Exploit 652

Work 921

Others 3138

Cleanware 2711

Total 17,394

Chowdhury (2018) proposed a viable malware detection approach that uses a machine
learning classification technique. We explored whether or not adjusting a few parameters
might increase the accuracy with which malware is classified [23]. N-gram and API call
capabilities were incorporated into our approach. Experimental evaluation confirmed the
efficacy and dependability of our proposed technique. Future work will focus on merging
a large number of features to increase detection precision while decreasing false positives.
Performance results for competing approaches are shown in Table 2; our Chowdhury [23]
approach was clearly superior.
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Table 2. Classifiers results comparisons.

Methods Accuracy (%) TPR (%) FPR (%)

KNN 95.02 96.17 3.42

CNN 98.76 99.22 3.97

Naïve Byes 89.71 90 13

Random Forest 92.01 95.9 6.5

SVM 96.41 98 4.63

DT 99 99.07 2.01

At this time, the proliferation of malicious software poses a significant threat to
global stability. In the 1990s, as the number of interconnected computers exploded, so
did the prevalence of malicious software [23], which eventually led to the widespread
distribution of malware. Multiple protective measures have been created in response to this
phenomenon. Unfortunately, current safeguards cannot keep up with modern threats that
malware authors have created to thwart security programs. In recent years, researchers’
focus on malware detection research has shifted toward ML algorithm strategies. In this
research paper, we present a protective mechanism that evaluates three ML algorithm
approaches to malware detection and chooses the most appropriate one. According to
statistics, the decision tree approach has the maximum detection accuracy (99.01%) and the
lowest false positive rate (FPR; 0.021%) on a small dataset.

Malware continues to develop and propagate at an alarming rate. Nur (2019) compared
three ML classifiers to analyse and quantify the detection accuracy of the ML classifier that
used static analysis to extract features based on PE information. As a group, we trained
machine learning algorithms to recognise dangerous versus benign information [24]. The
DT machine learning method attained 99% accuracy, as illustrated in Table 2 making it the
most successful classifier we examined. This experiment demonstrated the potential of
static analysis based on PE information and chosen key data features to achieve the highest
detection accuracy and the most accurate depiction of malware.

Malicious programs and their threats, or “malware,” became increasingly common
and sophisticated as the Internet developed. Their rapid dispersion over the Internet has
provided malware authors with access to a wide variety of malware generation tools [25].
Every day, the reach and sophistication of malware grows. This study focused on analysing
and measuring classifier performance to better understand how machine learning works.
Latent analysis extracted features from the recovered PE file and library information; six
classifiers based on ML techniques were evaluated. It was recommended that ML systems
be trained and tested to determine whether or not a file is harmful. Experimental outcomes
verified that the random forest method is preferable for data categorization, with 99.4
percent accuracy. These results showed that the PE library was compatible with static
analysis and that focusing on only a few properties could improve malware detection and
characterization. The main benefit is that it is less likely that malicious software will be
installed by accident, as users can check a file’s validity before opening it [26].

3. Research Problem

Malware’s potentially harmful components can be detected using either static analysis
or dynamic analysis. Static analysis, such as the reverse-engineering method used to
disassemble a virus, focuses on parsing malware binaries to discover harmful strings [27].
However, dynamic analysis entails monitoring dangerous software even as it operates in a
controlled environment, such as a virtual computer. Both methods have their advantages
and disadvantages; however, when analysing malware, it is best to use both [28]. It is
possible that reducing the number of dangerous features would improve the accuracy of
malware detection. The researcher would then have more time to analyse collected data.
We are concerned that a large number of characteristics are being used to detect malware
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when fewer, more robust characteristics might do the job just as well. The process of
choosing which malicious features to implement begins with discovering possible methods
or algorithms. We need solutions that can both find malware that has never been seen
before and greatly reduce the number of characteristics that are currently needed to do
so [29].

H1. Evaluation of the higher accuracy among three ML methods for malware detection: DT, CNN,
and SVM.

4. Methodology

This research paper introduces the various steps and components of a typical machine
learning workflow for malware detection and classification, explores the challenges and
limitations of such a workflow, and assesses the most recent innovations and trends in the
field, with an emphasis on deep learning techniques. The proposed research methodology
of this research study is provided below [30].

To provide a more complete understanding of the proposed machine learning method
for malware detection, Figures 3 and 4 illustrate the workflow process from start to finish.
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4.1. Dataset

This study relied entirely on data provided by the Canadian Institute for Cybersecurity.
The collection has many data files that include log data for various types of malware [31].
These recovered log features may be used to train a broad variety of models. Approximate
51 distinct malware families were found in the samples. More than 17,394 data points from
different locations were included; the dataset had 279 columns and 17,394 rows.
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4.2. Pre-Processing

Data were stored in the file system as binary code, and the files themselves were
unprocessed executables. We prepared them in advance of our research. Unpacking the
executables required a protected environment, or virtual machine (VM). PEiD software
automated unpacking of compressed executables [32].

4.3. Features Extraction

Twentieth-century datasets frequently contain tens of thousands of features. In recent
years, as feature counts have grown, it has become clear that the resultant machine learning
model has been overfit [33]. To address this problem, we built a smaller set of features from
a larger set; this technique is commonly used to maintain the same degree of accuracy while
using fewer features. The goal of this study was to refine the existing dataset of dynamic
and static features by keeping those that were most helpful and eliminating those that were
not valuable for data analysis [34].

4.4. Features Selection

After completing feature extraction, which involved the discovery of more features,
feature selection was performed. Feature selection was a crucial process for enhancing
accuracy, simplifying the model, and reducing overfitting, as it involved choosing features
from a pool of newly recognised qualities. Researchers have used many feature classifica-
tion strategies in the past in an effort to identify dangerous code in software. As the feature
rank technique is very effective at picking the right features for building malware detection
models, it was extensively employed in this study [35,36].

5. Results and Discussion

The two main phases of the classification process were training and testing. To train
a system, it was sent both harmful and safe files [37]. Automated classifiers were taught
using a learning algorithm. Each classifier (KNN, CNN, NB, RF, SVM, or DT) became
smarter with each set of data it annotated. In the testing phase, a classifier was sent a
collection of new files, some harmful and some not; the classifier determined whether the
files were malicious or clean [38].
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Logistic Regression

Figure 5 Illustrates that DT had the highest accuracy (99%) and TPR (99.07%), and
that FPR had the lowest accuracy (2.01%). It is clear from the confusion matrix that DT
had a higher accuracy than all other (KNN, CNN, NB, RF, and SVM) machine learning
algorithms or classifiers [39].
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Our suggested method for malware categorization and detection was experimentally
evaluated using the gathered malware and cleanware [40]. We used supervised machine
learning algorithms or classifiers (KNN, CNN, NB, RF, SVM, and DT) to examine malware
and characterise it.

Through statistical analysis of Table 2’s results, we deduced that results of classifiers’
accuracy (KNN = 95.02%, CNN = 98.76%, Naïve Byes = 89.71%, Random Forest = 92.01%,
SVM = 96.41%, and DT = 99%) showed that DT was the optimal model for the malware
detection strategy. Classifiers’ TPRs (%) (KNN = 96.17%, CNN = 99.22%, Naïve Byes = 90%,
Random Forest = 95.9%, SVM = 98%, and DT = 99.07%) showed that CNN was the second
optimal model for the detection and identification of malware, and that SVM was the third
optimal model for malware detection. Table 2 shows the classifiers’ FPRs (%) (KNN = 3.42%,
CNN = 3.97%, Naïve Byes = 13%, Random Forest = 6.5%, SVM = 4.63%, and DT = 2.01%).
We presumed that CNN, SVM, DT and KNN classifiers had comparable high accuracy
and performance for all intents and purposes. It is clear that using the three most optimal
algorithms (DT = 99%, SVM = 96.41%, and CNN = 98.76%), which had a much higher TPR
(%) rate and accuracy, to identify malware DT accuracy is highest and DT is better choice
for malware detection.

6. Conclusions

This paper demonstrates that academics have recently shown a growing interest in
ML algorithm solutions for malware identification. We presented a protective mechanism
that evaluated three ML algorithm approaches to malware detection and chose the most
appropriate one. The results show that compared with other classifiers, DT (99%), CNN
(98.76%), and SVM (96.41%) performed well in terms of detection accuracy. DT, CNN,
and SVM algorithms’ performances detecting malware on a small FPR (DT = 2.01%, CNN
= 3.97%, and SVM = 4.63%,) in a given dataset were compared. In this experiment, we
evaluated and quantified the detection accuracy of a machine learning (ML) classifier that
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used static analysis to extract features based on PE data by comparing it to two other
ML classifiers. As a result of our efforts, machine learning algorithms can now identify
dangerous versus benign data. The DT machine learning method had the highest accuracy
(99%) of any classifier we evaluated. In addition to potentially providing the highest
detection accuracy and accurately characterising malware, static analysis based on PE
information and carefully selected data showed promise in experimental findings. That we
do not have to execute anything to determine if data are malicious is a significant benefit.
The three ML models (DT, CNN, and SVM) were trained, tested, and their efficiency
compared using the dataset obtained from the Canadian Institute for Cybersecurity.
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