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Abstract: This work recovers cubic-quartic optical solitons with dispersive reflectivity in fiber Bragg
gratings and parabolic law of nonlinearity. The Lie symmetry analysis first reduces the governing
partial differential equations to the corresponding ordinary differential equations which are sub-
sequently integrated. This integration is conducted using two approaches which are the modified
Kudryashov’s approach as well as the generalized Arnous’ scheme. These collectively yielded a full
spectrum of cubic-quartic optical solitons that have been proposed to control the depletion of the
much-needed chromatic dispersion. They range from bright, dark, singular to combo solitons. These
solitons are considered with dispersive reflectivity, which maintains the necessary balance between
chromatic dispersion and nonlinear refractive index structure for an uninterrupted transmission of
solitons along intercontinental distances. Their respective surface and contour plots are also exhibited.
A few closing words are included with some prospective future avenues of research to extend this
topic further.

Keywords: solitons; Bragg gratings; Lie symmetry; Kudryashov; Arnous

1. Introduction

Optical soliton transmission through fibers and other forms of waveguides is of
paramount importance in the modern day telecommunication industry. This technological
marvel has become a part of the daily lives of the global population ever since this concept
was introduced into the telecommunications industry about half a century ago. Today,
there are several models that describe these dynamics in polarization—preserving fibers,
dispersion-flattened fibers, optical metamaterials, optical couplers and others [1–6]. One of
the innovative engineering marvels that have been proposed to control the depletion of
the much-needed chromatic dispersion (CD) is the introduction of gratings structure along
the walls of the core [7–11]. This would lead to dispersive reflectivity which maintains the
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necessary balance between CD and nonlinear refractive index structure for an uninterrupted
transmission of solitons along intercontinental distances. Therefore, solitons have been
addressed in fiber Bragg gratings [12–17], such as new nonstationary soliton-like solutions
are reported for Bragg-resonant wave propagation in a periodic Kerr medium [12]. In
addition, slow Bragg solitons have been studied in [13]. Additionally, such solitons come
from gap solitons [12–14]. Bragg-grating solitons in a cubic-quartic medium are also
considered in [15]. Gap solitons have been retrieved in Bragg gratings with dispersive
reflectivity [16]. Dynamics and collisions of moving solitons are studied in Bragg gratings
with dispersive reflectivity [17].

The governing model is the nonlinear Schrödinger’s equation that is studied with
the cubic-quartic form of nonlinear refractive index AKA parabolic law of nonlinearity.
The integration of this model is the focus of the paper to retrieve soliton solutions. The
preliminary results stem from the reduction of the governing partial differential equation
(PDE) to an ordinary differential equation (ODE) by the usage of Lie symmetry analysis.
Many methods for obtaining soliton solutions have been proposed [18–31] such as the
Jacobi elliptic function method, the modified extended tanh-function method, the inverse
scattering approach, Wronskian formulation, the improved F-expansion method, Lie group
analysis, power series solution, and the (G/G)-expansion method, but this ODE is subse-
quently handled by the implementation of two newly introduced algorithms which are
due to Kudryashov [32–34] and Arnous [35,36]. Exact solutions of nonlinear differential
equations are considered in [32]. Soliton wave solutions, solitary wave solutions, elliptic
wave solutions, and periodic wave solutions are determined in [33]. New traveling wave
solutions for nonlinear directional couplers with optical metamaterials are obtained in [34].
Pure-cubic optical solitons in a polarization-preserving fiber with Kerr law nonlinearity are
reported in [35]. Optical solitons for the cubic quartic Bragg-gratings having an anti-cubic
nonlinear form are extracted in [36]. Thus, these integration schemes yielded a complete
spectrum of optical solitons that range from bright, dark, singular to combo solitons. The
details of the derivation and their respective surface and contour plots are exhibited. To con-
clude, a few closing words are included with some prospective future avenues of research
to extend this topic further.

Governing Model

Equations (1) and (2) represent the model for fiber Bragg gratings with dispersive
reflectivity that originates from the CD. The fields q(x, t) and r(x, t) represent the wave
profile along the two components of the dual-core fibers. The independent variables are x
and t that represent spatial and temporal co-ordinates, respectively. Then, β j (j = 1, 2) stem
from the detuning parameters, while cj, ηj and ζ j arise from cross-phase modulation (XPM).
αj come from inter-modal dispersion, while bj and ξ j arise from self-phase modulation
(SPM). aj describe dispersive reflectivity, while q(x, t) depicts the forward wave profile.
The first terms come from the temporal evolution in which i =

√
−1. r(x, t) purports

the backward wave profile, while t depicts time in the moving frame, and x signifies the
propagation variable [7–11]:

iqt + a1rxx +
(

b1|q|2 + c1|r|2
)

q +
(

ξ1|q|4 + η1|q|2|r|2 + ζ1|r|4
)

q + iα1qx + β1r = 0, (1)

irt + a2qxx +
(

b2|r|2 + c2|q|2
)

r +
(

ξ2|r|4 + η2|q|2|r|2 + ζ2|r|4
)

r + iα2rx + β2q = 0. (2)
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In fiber Bragg gratings, when CD is replaced by the collective count of third-order
dispersion (3OD) and fourth-order dispersions (4OD), the model modifies to [35–43]

iqt + ia1rxxx + b1rxxxx +
(

c1|q|2 + d1|r|2
)

q +
(

ξ1|q|4 + η1|q|2|r|2 + ζ1|r|4
)

q + iα1qx + β1r = 0, (3)

irt + ia2qxxx + b2qxxxx +
(

c2|r|2 + d2|q|2
)

r +
(

ξ2|r|4 + η2|q|2|r|2 + ζ2|r|4
)

r + iα2rx + β2q = 0. (4)

Here, cj (j = 1, 2) are associated with SPM, while aj is related to 3OD. dj stands for
XPM, while bj comes from 4OD.

2. Lie Symmetry Analysis

Let us characterize q(x, t) and r(x, t) as follows:

q(x, t) = u1(x, t)ei (−kx+wt+θ), (5)

r(x, t) = u2(x, t)ei (−kx+wt+θ), (6)

where u1(x, t) and u2(x, t) are the soliton amplitudes, k is the soliton frequency, w is the
soliton wave number and θ is the phase constant. Putting (5) and (6) into (3) and (4) exposes
the governing equations

(kαl − w)ul + (blk4 − alk3 + βl)ul̃ + (3alk− 6blk2)

(
∂2ul̃
∂x2

)

+ bl

(
∂4ul̃
∂x4

)
+ (clu2

l + dlu2
l̃ )ul + (ξlu4

l + ηlu2
l u2

l̃ + ζlu4
l̃ )ul = 0, (7)

(
∂ul
∂t

)
− (3alk2 − 4blk3)

(
∂ul̃
∂x

)
+ (al − 4blk)

(
∂3ul̃
∂x3

)
+ αl

(
∂ul
∂x

)
= 0, (8)

where l = 1, 2 and l̃ = 3− l. The Lie group symmetries for the system (7) and (8) are
enumerated as [44–47]

x∗ = x + ε ξ(x, t, u1, u2) + O(ε2),

t∗ = t + ε τ(x, t, u1, u2) + O(ε2),

u∗1 = u1 + ε φ1(x, t, u1, u2) + O(ε2),

u∗2 = u2 + ε φ2(x, t, u1, u2) + O(ε2), (9)

where φ2, φ1, τ and ξ are infinitesimals. The vector field for (7) and (8) is therefore ex-
tracted as

V = ξ(x, t, u1, u2)
∂

∂x
+ τ(x, t, u1, u2)

∂

∂t
+ φ1(x, t, u1, u2)

∂

∂u1
+ φ2(x, t, u1, u2)

∂

∂u2
. (10)

The fourth prolongation formula for (7) and (8) is also presented as below [44,46]

pr(4)V = V + φt
1

∂

∂u1t
+ φt

2
∂

∂u2t
+ φx

1
∂

∂u1x
+ φx

2
∂

∂u2x
+ φxx

1
∂

∂u1xx
+ φxx

2
∂

∂u2xx

+ φxxx
1

∂

∂u1xxx
+ φxxx

2
∂

∂u2xxx
+ φxxxx

1
∂

∂u1xxxx
+ φxxxx

2
∂

∂u2xxxx
, (11)
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where φxxxx
2 , φxxxx

1 , φxxx
2 , φxxx

1 , φxx
2 , φxx

1 , φx
2 , φx

1 , φt
2 and φt

1 denote the extended infinitesimals.
With the usage of pr(4)V(∆) = 0, whenever ∆ = 0 in (7) and (8), the invariance condition
enables us the fundamental equations

φl

(
αlk− w + 3clu2

l + dlu2
l̃ + 5ξlu4

l + 3ηlu2
l u2

l̃ + ζlu4
l̃

)

+ φl̃

(
blk4 − alk3 + βl + 2dlulul̃ + 2ηlu3

l ul̃ + 4ζlulu3
l̃

)
+ (3alk− 6blk2)φxx

l̃ + blφ
xxxx
l̃ = 0, (12)

φt
l + αlφ

x
l − (3alk2 − 4blk3)φx

l̃ + (al − 4blk)φxxx
l̃ = 0. (13)

From (12) and (13), the infinitesimals are enlisted as

ξ = C1, τ = C2, φ1 = 0, φ2 = 0, (14)

where C1 and C2 are constants. As a result, the infinitesimal generators for (7) and (8) are
structured below

V1 = ∂
∂t , V2 = ∂

∂x . (15)

The vector field
V1 + νV2 =

∂

∂t
+ ν

∂

∂x
, (16)

where ν is non-zero real number, leaves us with the similarity variables:

σ = x− νt,

q(x, t) = P1(σ)ei(−kx+wt+θ),

r(x, t) = P2(σ)ei(−kx+wt+θ), (17)

where P1 and P2 are new dependent variables. Inserting (17) into (3) and (4) enables us the
strategic equations

bl P′′′′l̃ + (3alk− 6blk2)P′′l̃ + (cl P2
l + dl P2

l̃ )Pl + (ξl P4
l + ηl P2

l P2
l̃ + ζl P4

l̃ )Pl

+ (kαl − w)Pl + (blk4 − alk3 + βl)Pl̃ = 0, (18)

(al − 4blk)P′′′l̃ + (αl − ν)P′l − (3alk2 − 4blk3)P′l̃ = 0. (19)

With the criterion,
P2 = ωP1, (20)

Equations (18) and (19) evolve as

ωb1P′′′′1 + ω(3a1k− 6b1k2)P′′1 + (ξ1 + ω2η1 + ω4ζ1)P5
1

+ (c1 + ω2d1)P3
1 + (kα1 − w + ω(b1k4 − a1k3 + β1))P1 = 0, (21)

ω(a1 − 4b1k)P′′′1 + (α1 − ν−ω(3a1k2 − 4b1k3))P′1 = 0, (22)

with the usage of the constraints
ωb1 = b2,

c1 + ω2d1 = ω(d2 + ω2c2),

(a1 − 2kb1)ω = a2 − 2b2k,

ω4ζ1 + ω2η1 + ξ1 = ω(ω4ξ2 + ω2η2 + ζ2),

b1ωk4 − a1ωk3 + α1k + β1ω− w = b2k4 − a2k3 + α2ωk + β2 −ωw. (23)
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Equation (22) provides us with the velocity

ν = α1 −ωk2(3a1 − 4b1k), (24)

and the certain restrictions

ω(4ωb1k3 − 3ωa1k2 + α1) = 4b2k3 − 3a2k2 + ωα2, (25)

ω(a1 − 4b1k) = a2 − 4b2k = 0, (26)

while Equation (21) comes out as

ωP′′′′1 + A1P′′1 + A2P1 + A3P3
1 + A4P5

1 = 0, (27)

where

A1 =
ω(3a1k− 6b1k2)

b1
, A2 =

(kα1 − w + ω(b1k4 − a1k3 + β1))

b1
,

A3 =
(c1 + ω2d1)

b1
, A4 =

(ξ1 + ω2η1 + ω4ζ1)

b1
. (28)

3. Modified Kudryashov’s Method

Equation (27) holds the solution form [32–34]

P1(σ) = B0 + B1R(σ), (29)

with the aid of the ancillary equation

R′(σ) = (R2(σ)− R(σ)) ln(a), B1 6= 0, (30)

and the analytical solution

R(σ) =
1

1 + daσ
, (31)

where B0 and B1 are constants. Plugging (29) together with (30) into (27) enables us with
the simplest equations

A2B0 + A3B3
0 + A4B5

0,= 0,

ω B1 ln(a)4 + A1B1 ln(a)2 + A2B1 + 3 A3B2
0B1 + 5 A4B4

0B1 = 0,

−15 ω B1 ln(a)4 − 3 A1B1 ln(a)2 + 3 A3B0B2
1 + 10 A4B3

0B2
1 = 0,

50 ω B1 ln(a)4 + 2 A1B1 ln(a)2 + A3B3
1 + 10 A4B2

0B3
1 = 0,

−60 ω B1 ln(a)4 + 5 A4B0B4
1 = 0,

24 ω B1 ln(a)4 + A4B5
1 = 0. (32)

Thus, Equation (32) satisfies the results:

B0 = ±1
2

√
3A1 ln(a)2 − 10A2

A3
, B1 = ∓

√
3A1 ln(a)2 − 10A2

A3
, ω =

A1 ln(a)2 − 2 A2

2 ln(a)4 ,

A4 =
12
(
2A2 − A1 ln(a)2)A2

3

100A2
2 − 60A2 A1 ln(a)2 + 9A2

1 ln(a)4
, A3

(
3A1 ln(a)2 − 10A2

)
> 0. (33)

As a result, the analytical solutions read as

q(x, t) = ±


√

3A1 ln(a)2 − 10A2

A3

( (
1− dax−νt)

2(1 + dax−νt)

)ei (−kx+wt+θ), (34)
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r(x, t) = ±


√

3A1 ln(a)2 − 10A2
A3

((
1− dax−νt)(A1 ln(a)2 − 2 A2

)
4(1 + dax−νt) ln(a)4

)ei (−kx+wt+θ). (35)

Setting d = ±1 and a = e paves the way to the dark solitons

q(x, t) = ±
{√

3A1 − 10A2

A3

(
1
2

tanh
(

x− νt
2

))}
ei (−kx+wt+θ), (36)

r(x, t) = ±
{√

3A1 − 10A2

A3

(
(A1 − 2 A2)

4
tanh

(
x− νt

2

))}
ei (−kx+wt+θ), (37)

and the singular solitons

q(x, t) = ±
{√

3A1 − 10A2

A3

(
1
2

coth
(

x− νt
2

))}
ei (−kx+wt+θ), (38)

r(x, t) = ±
{√

3A1 − 10A2

A3

(
(A1 − 2 A2)

4
coth

(
x− νt

2

))}
ei (−kx+wt+θ). (39)

The surface plots of solitons (36) and (37) are depicted in Figure 1.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Kink behavior of |q(x, t)| shown as (a–c) and anti-kink behavior of |r(x, t)| shown as (d–f), respectively, given by (36) and (37) with A1 = 0.4, A2 = 0.3,
A3 = −0.3, ν = 0.4.
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4. Generalized Arnous Method

Equation (27) satisfies the explicit solution [35,36]

P(σ) = α0 +
α1 + β1Φ′(σ)

Φ(σ)
, (40)

by the aid of the auxiliary equation[
Φ′(σ)

]2
=
[
Φ(σ)2 − ρ

]
ln(a)2, (41)

Φ(n)(σ) =


Φ(σ) ln(a)n, n is even,

Φ′(σ) ln(a)n−1, n is odd,
, n ≥ 2, a > 0, a 6= 1, (42)

and the analytical solution

Φ(σ) = κ ln(a)aσ +
ρ

4κ ln(a)aσ
, (43)

where κ, β1, α1, ρ, α0 are constants.

Remark 1. This is worth mentioning that, in paper [35], there are some typing mistakes in
Equations (5) and (7). In Equation (5), summation j should vary from 1 to n. Equation (7) has to be
replaced by (42) of this manuscript.

Putting (40), together with (41) into (27), gives the ancillary equations

A4β5
1ρ2 ln(a)4 − 10 A4α2

1β3
1ρ ln(a)2 + 5 A4α4

1β1 + 24 ω ln(a)4β1ρ2 = 0,

−20 A4α0α1β3
1ρ ln(a)2 + 20 A4α0α3

1β1 = 0,

−2 A4β5
1ρ ln(a)4 +

(
10 A4α2

1β3
1 −

(
A3β3

1 + 10 A4α2
0β3

1 + 8 ω ln(a)2β1

)
ρ
)

ln(a)2

−2 A1 ln(a)2β1ρ + 30 A4α2
0α2

1β1 + 3 A3α2
1β1 = 0,

20 A4α0α1β3
1 ln(a)2 + 20 A4α3

0α1β1 + 6 A3α0α1β1 = 0,

A4β5
1 ln(a)4 +

(
A3β3

1 + 10 A4α2
0β3

1 + 8 ω ln(a)2β1

)
ln(a)2

+A2β1 − 8 ω ln(a)4β1 + 3 A3α2
0β1 + 5 A4α4

0β1 = 0,

5 A4α1β4
1ρ2 ln(a)4 − 10 A4α3

1β2
1ρ ln(a)2 + 24 ω ln(a)4α1ρ2 + A4α5

1 = 0,

5 A4α0β4
1ρ2 ln(a)4 − 30 A4α0α2

1β2
1ρ ln(a)2 + 5 A4α0α4

1 = 0,

−10 A4α1β4
1ρ ln(a)4 +

(
10 A4α3

1β2
1 −

(
3 A3α1β2

1 + 30 A4α2
0α1β2

1 + 8 ω ln(a)2α1

)
ρ
)

ln(a)2

+10 A4α2
0α3

1 − 12 ω ln(a)4α1ρ + A3α3
1 − 2 A1 ln(a)2α1ρ = 0,

−10 A4α0β4
1ρ ln(a)4 + 3 A3α0α2

1

+
(

30 A4α0α2
1β2

1 −
(

10 A4α3
0β2

1 + 3 A3α0β2
1

)
ρ
)

ln(a)2 + 10 A4α3
0α2

1 = 0,

A2α1 + 5 A4α1β4
1 ln(a)4 +

(
3 A3α1β2

1 + 30 A4α2
0α1β2

1 + 8 ω ln(a)2α1

)
ln(a)2

+5 A4α4
0α1 + 3 A3α2

0α1 + A1 ln(a)2α1 − 7 ω ln(a)4α1 = 0,

5 A4α0β4
1 ln(a)4 +

(
10 A4α3

0β2
1 + 3 A3α0β2

1

)
ln(a)2 + A2α0 + A3α3

0 + A4α5
0 = 0. (44)
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As a result, Equation (44) admits the results:

Result 1.

α0 = α1 = 0, β1 = ± 1
ln(a)

√
6A1 ln(a)2 − 5A2

2A3
, ω =

2A1 ln(a)2 − A2

16 ln(a)4 ,

A4 =
6
(

A2 − 2A1 ln(a)2)A2
3

25A2
2 − 60A2 A1 ln(a)2 + 36A2

1 ln(a)4
, A3

(
12A1 ln(a)2 − 10A2

)
> 0. (45)

Thus, the exact solutions stick out as

q(x, t) = ±


√

12A1 ln(a)2 − 10A2

A3

(
4κ2 ln(a)2a2(x−νt) − ρ

2
(
4κ2 ln(a)2a2(x−νt) + ρ

))
ei (−kx+wt+θ), (46)

r(x, t) = ±


√

12A1 ln(a)2 − 10A2

A3


(

4κ2 ln(a)2a2(x−νt) − ρ
)(

2A1 ln(a)2 − A2
)

32
(
4κ2 ln(a)2a2(x−νt) + ρ

)
ln(a)4

ei (−kx+wt+θ). (47)

Taking ρ = ±4κ2 and a = e provides us with the dark solitons

q(x, t) = ±
{√

12A1 − 10A2

A3

(
tanh(x− νt)

2

)}
ei (−kx+wt+θ), (48)

r(x, t) = ±
{√

12A1 − 10A2

A3

(
(2A1 − A2) tanh(x− νt)

32

)}
ei (−kx+wt+θ), (49)

and the singular solitons

q(x, t) = ±
{√

12A1 − 10A2

A3

(
coth(x− νt)

2

)}
ei (−kx+wt+θ), (50)

r(x, t) = ±
{√

12A1 − 10A2

A3

(
(2A1 − A2) coth(x− νt)

32

)}
ei (−kx+wt+θ). (51)

The surface plots of solitons (48) and (49) are depicted in Figure 2.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Kink wave representation for |q(x, t)| shown as (a–c) and |r(x, t)| shown as (d–f), respectively, given by (48) and (49) with A1 = 0.5, A2 = 0.3, A3 = 0.3, ν = 0.4.
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Result 2.

α0 = β1 = 0, α1 = ±

√
−18A1 ln(a)2ρ + 20A2ρ

A3
, ω = −A2 + A1 ln(a)2

ln(a)4 ,

A4 =
6
(

A2 + A1 ln(a)2)A2
3

100A2
2 + 180A2 A1 ln(a)2 + 81A2

1 ln(a)4
, ρA3

(
18A1 ln(a)2 + 20A2

)
< 0. (52)

Hence, the analytical solutions stand as

q(x, t) = ±


√
−18A1 ln(a)2ρ + 20A2ρ

A3

(
4κ ln(a)ax−νt

4κ2 ln(a)2a2(x−νt) + ρ

)ei (−kx+wt+θ), (53)

r(x, t) = ∓


√
−18A1 ln(a)2ρ + 20A2ρ

A3

(
4κ ln(a)ax−νt(A2 + A1 ln(a)2)(

4κ2 ln(a)2a2(x−νt) + ρ
)

ln(a)4

)ei (−kx+wt+θ).

(54)
Setting ρ = ±4κ2and a = e leaves us with the bright solitons

q(x, t) = ±
{√
−18A1 + 20A2

A3
(sech(x− νt))

}
ei (−kx+wt+θ), (55)

r(x, t) = ∓
{√
−18A1 + 20A2

A3
((A2 + A1)sech(x− νt))

}
ei (−kx+wt+θ), (56)

and the singular solitons

q(x, t) = ±
{√

18A1 + 20A2

A3
(csch(x− νt))

}
ei (−kx+wt+θ), (57)

r(x, t) = ∓
{√

18A1 + 20A2

A3
((A2 + A1)csch(x− νt))

}
ei (−kx+wt+θ). (58)

The surface plots of solitons (55)–(58) are depicted in Figures 3 and 4.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Representation of bright soliton for |q(x, t)| shown as (a–c) and dark soliton |r(x, t)| shown as (d–f), respectively, given by (55) and (56) with A1 = −0.5,
A2 = 0.3, A3 = 0.1, ν = 0.5.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Graphical representation for |q(x, t)| shown as (a–c) and |r(x, t)| shown as (d–f), respectively, given by (57) and (58) with A1 = 0.5, A2 = 0.3,
A3 = 0.1, ν = 0.5.
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Result 3.

α0 = 0, α1 = ±

√
10A2ρ− 3A1 ln(a)2ρ

4A3
, ω =

A1 ln(a)2 − 2A2

2 ln(a)4 , β1 = ± 1
ln(a)

√
−10A2 − 3A1 ln(a)2

4A3
,

A4 =
12
(
2A2 − A1 ln(a)2)A2

3

100A2
2 − 60A2 A1 ln(a)2 + 9A2

1 ln(a)4
, A3

(
3A1 ln(a)2 − 10A2

)
> 0. (59)

Therefore, the explicit solutions shape up as

q(x, t) = ±


√

3A1 ln(a)2 − 10A2

A3


(

4
√−ρ ln(a)κax−νt + 4κ2 ln(a)2a2(x−νt) − ρ

)
2
(
4κ2 ln(a)2a2(x−νt) + ρ

)
ei (−kx+wt+θ), (60)

r(x, t) = ±


√

3A1 ln(a)2 − 10A2
A3

 (A1 ln(a)2 − 2A2)
(

4
√−ρ ln(a)κax−νt + 4κ2 ln(a)2a2(x−νt) − ρ

)
4 ln(a)4

(
4κ2 ln(a)2a2(x−νt) + ρ

)
ei (−kx+wt+θ). (61)

Taking ρ = −4κ2 and a = e paves the way to the bright-singular combo solitons

q(x, t) = ±
{√

3A1 − 10A2

A3

(
1
2
(sech(x− νt) + coth(x− νt))

)}
ei (−kx+wt+θ), (62)

r(x, t) = ±
{√

3A1 − 10A2

A3

(
(A1 − 2A2)

4
(sech(x− νt) + coth(x− νt))

)}
ei (−kx+wt+θ). (63)

Remark 2. The special cases as suggested: α1 = −α2 and β1 = β2 reduce the model (3) and (4) to

iqt + ia1rxxx + b1rxxxx +
(

c1|q|2 + d1|r|2
)

q +
(

ξ1|q|4 + η1|q|2|r|2 + ζ1|r|4
)

q− iα2qx + β2r = 0, (64)

irt + ia2qxxx + b2qxxxx +
(

c2|r|2 + d2|q|2
)

r +
(

ξ2|r|4 + η2|q|2|r|2 + ζ2|r|4
)

r + iα2rx + β2q = 0. (65)

These special cases indeed conform to the fiber Bragg-grating system. The final solutions of
this special form also admit all the soliton solutions reported in the current paper by setting
the special cases α1 = −α2 and β1 = β2 in (28).

5. Conclusions

A complete spectrum of CQ optical solitons is revealed for fiber Bragg gratings with
dispersive reflectivity and parabolic law of SPM. It is not exactly known if the model
Equations (1) and (2) are derivable from a particular Lagrangian. However, the models
are already studied from a numerical perspective in the past [48–51]. Thus, in order to
make the current study novel, the CD from past papers is being replaced by a combination
of 3OD and 4OD. This newly structured model is therefore investigated by the aid of
Lie symmetry for the first time. Such CQ optical solitons have been proposed to control
the depletion of the much-needed CD. These solitons are also considered with dispersive
reflectivity, which maintains the necessary balance between chromatic dispersion and
nonlinear refractive index structure for an uninterrupted transmission of solitons along
intercontinental distances. The Lie symmetry analysis coupled with Kudryashov and
Arnous approaches collectively revealed a variety of soliton solutions that are bright, dark,
singular and combo solitons and are reported in the current paper for the first time by using
these newly proposed integration methods. Dark-soliton solutions are meaningful only if
the background which supports the dark solitons is modulationally stable. Bright solitons
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are formed when the group–velocity dispersion is anomalous. Bright and dark solitons
are considered from the perspective of modulation instability. Dark solitons are observed
when the carrier wave is modulationally stable, while bright solitons are observed when
the carrier wave is unstable with respect to long-wave modulations [12–17,52].

The stability criterion for dark solitons can be expressed in terms of the renormalized
soliton momentum as [53]

dMr

dv
> 0. (66)

This stability criterion was provided with the help of the Lyapunov function [54]. This
criterion was considered to address the instability of dark solitons with the variational
principle [55,56]. The stability of dark solitons can also be formulated using the following
alternative definition of the renormalized momentum [57]

Mr =
i
2

∫ ∫
[(u− 1)∇Tu∗ − (u∗ − 1)∇Tu]dr, (67)

where ∇T denotes the transverse part of the Laplacian operator in the multidimensional
case. This definition was used to analyze the transverse instability of dark solitons [58].
This list of solitons therefore opens up future avenues of research. One of the prime
prospects would be to address the conservation laws that would subsequently lead to the
quasi-monochromatic dynamics of soliton parameters which are of paramount importance
when weak perturbation terms to the model sneak in. The numerical studies are also to
be conducted later on with the application of Adomian decomposition scheme or Laplace–
Adomian decomposition. These would reveal an insightful visual perspective to the model.
These studies would give way to results that will be disseminated elsewhere.

Author Contributions: Conceptualization, S.M. (Sandeep Malik); methodology, S.K.; software, A.B.; writ-
ing—original draft preparation, Y.Y.; writing—review and editing, L.M. and S.M. (Simona Moldovanu);
project administration, C.I. and H.M.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author Sandeep Malik wishes to express his gratitude to the CSIR for
providing financial support in the form of an SRF scholarship, as evidenced by letter number:
09/1051(0028)/2018-EMR-I. The author Sachin Kumar wants to acknowledge the financial support
provided under the Scheme “Fund for Improvement of S & T Infrastructure (FIST)”of the Department
of Science & Technology (DST), Government of India, as evidenced by letter number: SR/FST/MS-
I/2021/104 to the Department of Mathematics and Statistics, Central University of Punjab.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khalil, T.A.; Badra, N.; Ahmed, H.M.; Rabie, W.B. Bright solitons for twin-core couplers and multiple-core couplers having

polynomial law of nonlinearity using Jacobi elliptic function expansion method. Alex. Eng. J. 2022, 61, 11925–11934. [CrossRef]
2. Elsherbeny, A.M.; El-Barkouky, R.; Ahmed, H.M.; El-Hassani, R.M.I.; Arnous, A.H. Optical solitons and another solutions for

Radhakrishnan-Kundu-Laksmannan equation by using improved modified extended tanh-function method. Opt. Quantum
Electron. 2021, 53, 718. [CrossRef]

3. Hashemi, M.S.; Akgül, A. Solitary wave solutions of time–space nonlinear fractional Schrödinger’s equation: Two analytical
approaches. J. Comput. Appl. Math. 2018, 339, 147–160. [CrossRef]

4. Biswas, A.; Vega-Guzman, J.; Mahmood, M.F.; Khan, S.; Zhou, Q.; Moshokoa, S.P.; Belic, M.R. Solitons in optical fiber Bragg
gratings with dispersive reflectivity. Optik 2019, 182, 119–123. [CrossRef]

5. Biswas, A.; Ekici, M.; Sonmezoglu, A.; Arshed, S.; Belic, M.R. Optical soliton perturbation with full nonlinearity by extended trial
function method. Opt. Quantum Electron. 2018, 50, 449. [CrossRef]

http://doi.org/10.1016/j.aej.2022.05.042
http://dx.doi.org/10.1007/s11082-021-03382-0
http://dx.doi.org/10.1016/j.cam.2017.11.013
http://dx.doi.org/10.1016/j.ijleo.2018.12.180
http://dx.doi.org/10.1007/s11082-018-1701-z


Symmetry 2022, 14, 2370 16 of 17
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