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Abstract: In the development of algorithms for convex optimization problems, symmetry plays
a very important role in the approximation of solutions in various real-world problems. In this
paper, based on a fixed point algorithm with the inertial technique, we proposed and study a new
accelerated algorithm for solving a convex bilevel optimization problem for which the inner level is
the sum of smooth and nonsmooth convex functions and the outer level is a minimization of a smooth
and strongly convex function over the set of solutions of the inner level. Then, we prove its strong
convergence theorem under some conditions. As an application, we apply our proposed algorithm
as a machine learning algorithm for solving some data classification problems. We also present some
numerical experiments showing that our proposed algorithm has a better performance than the
five other algorithms in the literature, namely BiG-SAM, iBiG-SAM, aiBiG-SAM, miBiG-SAM and
amiBiG-SAM.

Keywords: convex bilevel optimization problems; accelerated algorithm; common fixed point;
nonexpansive mappings; classification problems

1. Introduction

Breast cancer is the most common type of cancer in Thai women. Anxiously, although
the breast cancer can be treated, the risk of developing diseases that affect the heart or
blood vessels is very high.

The three most common methods for treating breast cancer are surgery, chemotherapy
and radiotherapy. However, radiotherapy often involves some incidental exposure of the
heart to ionizing radiation because it was discovered, in [1], that the exposure of the heart
to ionizing radiation during the therapy increases the consequent rate of ischemic heart
disease which begins within a few years after exposure and continues for at least 20 years.
Thus, women with preexisting cardiac risk factors have higher absolute increases in risk
from this therapy than other women.

Therefore, if a patient is diagnosed with heart disease early, they will be able to prevent
the risks from this type of treatment. Similarly, the malignant cells of a patient can be treated
before it spreads to other parts of the body when cancer is detected at an early stage. To
support the diagnosis of breast cancer and heart disease, our objective in this work is
developing an algorithm for such patient prediction.

It is well known that symmetry serves as the foundation for fixed-point and optimiza-
tion theory and methods. We first recall the background of some mathematical models.
Consider the constrained minimization problem:

min
x∈Γ
F (x), (1)
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when H is a real Hilbert space, F : H → R is a strongly convex differentiable function
with convexity parameter ρ, and Γ is the nonempty set of minimizers of the unconstrained
minimization problem, as in the form:

min
x
{φ(x) + ψ(x)}, (2)

where ψ, φ : H → R∪ {+∞} are proper convex and lower semicontinuous functions and φ
is a smooth function. Problems (1) and (2) are called outer-level and inner-level problems,
respectively. In [2–5], such a problem is labeled as a simple bilevel optimization problem.

In 2017, Sabach and Shtern [6] introduced the Bilevel Gradient Sequential Averaging
Method (BiG-SAM) for solving (1) and (2) as defined by Algorithm 1.

Algorithm 1 BiG-SAM: Bilevel Gradient Sequential Averaging Method

1: Initial step. Let x1 ∈ Rn and {αk} is a sequence in (0, 1] satisfying the conditions assumed in [7].

Select λ ∈
(

0, 1
Lφ

]
and σ ∈

(
0, 2

LF+ρ

)
while Lφ is the Lipschitz gradient of φ and LF is the

Lipschitz gradient of F .

2: Step 1. For k ≥ 1, compute 
yk := proxλψ(xk − λ∇φ(xk)),

uk := xk − σ∇F (xk),

xk+1 := αkuk + (1− αk)yk,

where ∇φ and ∇F are gradients of φ and F , respectively.

They presented that BiG-SAM appears simpler and cheaper than the method desired
in [8]. Moreover, the authors in [6] used a numerical example to show that BiG-SAM outruns
the method in [8] for solving problems (1) and (2). Up to this point, the algorithm in [6]
seems to be the most efficient method for convex simple bilevel optimization problems.

In 2019, Shehu et al. [9] utilized the notion of an inertial technique, which was proposed
by Polyak [10], to be beneficial to accelerate the convergence rate of the BiG-SAM method,
called iBiG-SAM, as defined by Algorithm 2.

Algorithm 2 iBiG-SAM: Inertial with Bilevel Gradient Sequential Averaging Method

1: Initial step. Let Lφ and LF be Lipschitz gradients of φ and F , respectively. Given {αk} be

a sequence in (0, 1), λ ∈
(

0, 2
Lφ

)
and σ ∈

(
0, 2

LF+ρ

]
. Select arbitrary points x1, x0 ∈ Rn and

α ≥ 3.

2: Step 1. Choose µk ∈ [0, µ̄k] such that for k ≥ 1,

µ̄k :=

min
{

k
k+α−1 , ηk

‖xk−xk−1‖

}
if xk 6= xk−1,

k
k+α−1 otherwise.

(3)

3: Step 2. Compute 

zk := xk + µk(xk − xk−1),

yk := proxλψ(zk − λ∇φzk),

uk := zk − σ∇F (zk),

xk+1 := αkuk + (1− αk)yk,

where ∇φ and ∇F are gradients of φ and F , respectively.
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They also proved that the sequence {xk} generated by iBiG-SAM converges to the
optimal solution of problems (1) and (2) under the sequence {αk} satisfying conditions:

(1) limk→∞ αk = 0;
(2) ∑∞

k=1 αk = +∞.

The above assumptions are derived from [7] by reducing some situations.
Recently, to accelerate the convergence of the iBiG-SAM algorithm, Duan and Zhang [11]

proposed three algorithms of inertial approximation methods based on the proximal gradi-
ent algorithm as defined by Algorithms 3–5.

Algorithm 3 aiBiG-SAM: The alternated inertial Bilevel Gradient Sequential Averag-
ing Method

1: Initial step. Let Lφ and LF be Lipschitz gradients of φ and F , respectively. Given λ ∈(
0, 2

Lφ

)
, σ ∈

(
0, 2

LF+ρ

]
, ε > 0. Let {αk} be a sequence in (0, 1) satisfying the conditions as-

sumed in [9]. Select arbitrary points x1, x0 ∈ H and α ≥ 3. Set k = 1.
2: Step 1. Compute

zk =

{
xk + µk(xk − xk−1), if k = odd;
xk if k = even.

3: When k is odd, choose µk such that 0 ≤ |µk| ≤ µ̄k with µ̄k defined by

µ̄k :=

{
min

{
k

k+α−1 , ηk
‖xk−xk−1‖

}
if xk 6= xk−1,

k
k+α−1 if xk = xk−1.

4: When k is even, µk = 0.
5: Step 2. Compute 

yk = proxλψ(zk − λ∇φ(zk)),

uk = zk − σ∇F (zk),
xk+1 = αkuk + (1− αk)yk, k ≤ 1,

where ∇φ and ∇F are gradients of φ and F , respectively.
6: Step 3. If ‖xk − xk−1‖ < ε, then stop. Otherwise, set k = k + 1 and go to Step 1.

Algorithm 4 miBiG-SAM: The multi-step inertial Bilevel Gradient Sequential Averag-
ing Method

1: Initial step. Let Lφ and LF be Lipschitz gradients of φ and F , respectively. Given λk ∈(
0, 2

Lφ

)
, σ ∈

(
0, 2

LF+ρ

)
, ε > 0 and α ≥ 3. Let {αk} be a sequence in (0, 1) satisfying the conditions

assumed in [9]. Select arbitrary points x0, x1, . . . , x2−q ∈ H and q ∈ N+. Set k = 1.
2: Step 1. Given xk, xk−1, . . . , xk−q+1 and compute

zk = xk + ∑
i∈Q

µi,k(xk−i − xk−1−i),

where Q = {0, 1, . . . , q− 1}. Choose µi,k such that 0 ≤ |µi,k| ≤ µ̄k with µ̄k defined by

µ̄k :=

min
{

k
k+α−1 , ηk

∑i∈Q ‖xk−i−xk−1−i‖

}
if ∑i∈Q ‖xk−i − xk−1−i‖ 6= 0,

k
k+α−1 otherwise.

3: Step 2. Compute 
yk = proxλkψ(zk − λk∇φ(zk)),

uk = zk − σ∇F (zk),
xk+1 = αkuk + (1− αk)yk, k ≤ 1,

where ∇φ and ∇F are gradients of φ and F , respectively.
4: Step 3. If ‖xk − xk−1‖ < ε, then stop. Otherwise, set k = k + 1 and go to Step 1.
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Algorithm 5 amiBiG-SAM: The multi-step alternated inertial Bilevel Gradient Sequential
Averaging Method

1: Initial step. Let Lφ and LF be Lipschitz gradients of φ and F , respectively. Given λk ∈(
0, 2

Lφ

)
, σ ∈

(
0, 2

LF+ρ

]
, ε > 0 and α ≥ 3. Let {αk} be a sequence in (0, 1) satisfying the conditions

assumed in [9]. Select arbitrary points x0, x1, . . . , x2−q ∈ H and q ∈ N+. Set k = 1.
2: Step 1. Given xk, xk−1, . . . , xk−q+1 and compute

zk =

xk + ∑
i∈Q

µi,k(xk−i − xk−1−i), if k = odd;

xk if k = even.

where Q = {0, 1, . . . , q− 1}. Choose µi,k such that 0 ≤ |µi,k| ≤ µ̄k with µ̄k defined by

µ̄k :=

min
{

k
k+α−1 , ηk

∑i∈Q ‖xk−i−xk−1−i‖

}
if ∑i∈Q ‖xk−i − xk−1−i‖ 6= 0,

k
k+α−1 otherwise.

3: Step 2. Compute 
yk = proxλkψ(zk − λk∇φ(zk)),

uk = zk − σ∇F (zk),
xk+1 = αkuk + (1− αk)yk, k ≤ 1,

where ∇φ and ∇F are gradients of φ and F , respectively.
4: Step 3. If ‖xk − xk−1‖ < ε, then stop. Otherwise, set k = k + 1 and go to Step 1.

The convergence behavior of Algorithms 3–5 was shown, in [11], to be better than that
of BiG-SAM and iBiG-SAM.

It is known that the following variational inequality:

〈∇F (x?), x− x?〉 ≥ 0, ∀x ∈ Γ (4)

implies x? is a solution of convex bilevel optimization problem (1); for more details, see [12].
For recent results, see [13,14] and references therein.

It is worth noting that x? ∈ Γ can be described by fixed-point equation:

proxλψ(x? − λ∇φ(x?)) = x?, (5)

where λ > 0 and proxλψ(x) = arg min
u∈H

{
ψ(u) + 1

2λ‖u− x‖2
2

}
, which was introduced by

Moreau [15]. This means that solving the bilevel problem is equivalent to finding a fixed
point of the proximal operator. It is well known that the fixed point theory plays a very cru-
cial role in solving many real-world problems, such as problems in engineering, economics,
machine learning and data science, see [16–24] for more details. For the past three decades,
several fixed point algorithms were introduced and studied by many authors, see [25–34].
Some of these algorithms were applied for solving various problems in images and signal
processing, data classification and regression, for example, see [19–23]. In addition, fuzzy
classification is another important data classification mechanism, see [35,36].

All of the works mentioned above motivate and inspire us to establish a new acceler-
ated algorithm to solve a convex bilevel optimization problem and apply it for solving data
classification problems.

We organize the paper as follows: In Section 2, we provide some basic definitions
and useful lemmas used in the later section. The main results of the paper are given
in Section 3. In this section, we introduce and study a new accelerated algorithm for
solving a convex bilevel optimization problem and then prove a strong convergence of our
proposed algorithm. After that, we apply our main results for solving a data classification
problem in Section 4. Finally, a brief conclusion of the paper is given in Section 5.
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2. Preliminaries

Throughout this paper, a real Hilbert space, denoted by H, with the inner product
〈·, ·〉, inducing the norm ‖ · ‖.

A mapping T : C → C is called L-Lipschitz if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C ⊆ H.

If L ∈ [0, 1), then T is called contraction. It is called nonexpansive if L = 1. We denote
by F(T) the set of all fixed points of T, that is, F(T) = {x ∈ C : Tx = x}. For a sequence
{xk} inH, we denote the strong convergence and the weak convergence of {xk} to u ∈ H
by xk → u and xk ⇀ u, respectively.

Let {Tk} and = be families of nonexpansive operators from C into itself with ∅ 6=
F(=) ⊂ ⋂∞

k=1 F(Tk), where F(=) is the set of all common fixed points of = and F(Tk) is the
set of all fixed points of Tk.

The sequence {Tk} is said to satisfy the NST-condition (I) with = if for every bounded
sequence {xk} in C,

lim
k→∞
‖xk − Tkxk‖ = 0 =⇒ lim

k→∞
‖xk − Txk‖ = 0, ∀T ∈ =,

see [37] for more details. In particular, if = = {T}, then {Tk} is a sequence satisfying
NST-condition (I) with T.

Later, NST?-condition was proposed by Nakajo et al. [38] which is a weaker condition
than that of NST-condition (I). A sequence {Tk} is said to satisfy NST?-condition if for
every bounded sequence {xk} in C, if limk→∞ ‖xk− xk+1‖ = 0 and limk→∞ ‖xk− Tkxk‖ = 0
imply ωw(xk) ⊂

⋂∞
k=1 F(Tk), where ωw(xk) is the set of all weak cluster points of {xk}. It is

easy to see that if {Tk} satisfies the NST-condition (I), then it satisfies the NST?-condition.
In a real Hilbert spaceH, these properties hold: for any u, v ∈ H,

(1) ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉;
(2) ‖ru + (1− r)v‖2 = r‖u‖2 + (1− r)‖v‖2 − r(1− r)‖u− v‖2, ∀r ∈ [0, 1].

If C is a nonempty closed convex subset of H, then for each x ∈ H, there exists
a unique element in C, say PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

The mapping PC is known as the metric projection of H onto C and it is also nonex-
pansive. Moreover,

〈x− PCx, y− PCx〉 ≤ 0 (6)

holds for all x ∈ H and y ∈ C.
The following results are also essential for proving our main results.

Lemma 1 ([39]). Let {uk}, {tk} be nonnegative real numbers sequences, {vk} a sequence in [0, 1]
and {wk} a sequence of numbers such that

uk+1 ≤ (1− vk)uk + vkwk + tk, ∀k ∈ N.

If all following conditions hold:

(1) ∑∞
k=1 vk = +∞;

(2) ∑∞
k=1 tk < +∞;

(3) lim supk→∞ wk ≤ 0.

Then, lim supk→∞ uk = 0.

Lemma 2 ([40]). Let H be a real Hilbert space and T : H → H a nonexpansive mapping with
F(T) 6= ∅. Then, for any sequence {xk} inH such that xk ⇀ u ∈ H and limk→∞ ‖xk−Txk‖ = 0
imply u ∈ F(T).
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Lemma 3 ([41]). Let {λk} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {λki

} of {λk} which satisfies λki
< λki+1 for all i ∈ N. Define

{ϕ(k)}k≥m0 of integers as follows:

ϕ(k) = max{j ≤ k : λk < λk+1},
where m0 ∈ N such that {j ≤ m0 : λk < λk+1} 6= ∅. Then, the following hold:
(1) ϕ(m0) ≤ ϕ(m0 + 1) ≤ . . . and ϕ(k)→ ∞;
(2) λϕ(k) ≤ λϕ(k)+1 and λk ≤ λϕ(k)+1 for all k ≥ m0.

Proposition 1 ([6]). Suppose F : H → R is strongly convex with convexity parameter ρ > 0 and
continuously differentiable function such that∇F is Lipschitz continuous with constant LF . Then,
the mapping I − σ∇F is contraction for all σ ≤ 2

LF+ρ , where I is the identity operator.

Definition 1 ([15]). Let ψ : H → R ∪ {+∞} be a proper convex and lower semicontinuous
function. The proximity operator of parameter λ > 0 of ψ at u ∈ H is denoted by proxλψ and it is
defined by

proxλψ(u) = arg min
v∈H

{
ψ(v) +

1
2λ
‖v− u‖2

}
.

The operator T := proxλψ(I − λ∇φ) is known as a forward–backward operator of
φ and ψ with respect to λ, where λ > 0 and ∇φ is the gradient operator of function φ.
Moreover, T is a nonexpansive mapping whenever λ ∈ (0, 2

Lφ
) where Lφ is a Lipschitz

gradient of φ.

Lemma 4 ([42]). For a real Hilbert space H, let ψ : H → R ∪ {+∞} be a proper convex and
lower semicontinuous function, and φ : H → R be convex differentiable with gradient ∇φ being
Lφ-Lipschitz gradient for some Lφ > 0. If {Tk} is the family of forward–backward operators of φ and

ψ with respect to ck ∈
(

0, 2
Lφ

)
such that {ck} converges to c, then {Tk} satisfies NST-condition (I)

with T, where T is the forward–backward operator of φ and ψ with respect to c ∈
(

0, 2
Lφ

)
.

3. Main Results

We start this section by introducing a new common fixed point algorithm using the
inertial technique together with the modified Ishikawa iteration (see [43–45] for more
details) to obtain a strong convergence theorem for two countable families of nonexpansive
mappings in a real Hilbert space as seen in Algorithm 6.

Algorithm 6 IVAM (I): Inertial Viscosity Approximation Method for Two Families of Non-
expansive Mappings

1: Input. Let x0, x1 ∈ H, {ηk} a positive sequence and f : H → H a contraction with constant γ.

Choose {αk}, {βk}, {ξk} ⊂ (0, 1) and θk ≥ 0.

2: Select µk ∈ (0, µ̄k] such that for k ≥ 1,

µ̄k :=

min
{

θk, ηk
‖xk−xk−1‖

}
if xk 6= xk−1,

θk otherwise.
(7)

3: Compute 

zk = xk + µk(xk − xk−1),

yk = βkzk + (1− βk)Tkzk,

wk = ξkyk + (1− ξk)Skyk

xk+1 = αk f (wk) + (1− αk)wk.
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Lemma 5. Let {Tk} and {Sk} be two countable families of nonexpansive mappings fromH into
itself such that Γ = ∩∞

k=1F(Tk)
⋂
∩∞

k=1F(Sk) 6= ∅ and let f : H → H be a contraction. If
limk→∞

ηk
αk

= 0, then the sequence {xk} generated by Algorithm 6 is bounded. Furthermore,
{ f (wk)}, {wk}, {yk} and {zk} are bounded.

Proof. Let x? ∈ Γ be such that x? = PΓ f (x?). Then, by the definition of zk and yk in
Algorithm 6, for every k ∈ N, we have

‖zk − x?‖ = ‖xk + µk(xk − xk−1)− x?‖
≤ ‖xk − x?‖+ µk‖xk − xk−1‖, (8)

and

‖yk − x?‖ ≤ βk‖zk − x?‖+ (1− βk)‖Tkzk − x?‖
≤ βk‖zk − x?‖+ (1− βk)‖zk − x?‖
= ‖zk − x?‖. (9)

This implies

‖wk − x?‖ ≤ ξk‖yk − x?‖+ (1− ξk)‖Skyk − x?‖
≤ ξk‖yk − x?‖+ (1− ξk)‖yk − x?‖
= ‖yk − x?‖ (10)

≤ ‖zk − x?‖. (11)

It follows from (8) and (11) that

‖xk+1 − x?‖ = ‖αk( f (wk)− x?) + (1− αk)(wk − x?)‖
≤ αk‖ f (wk)− x?‖+ (1− αk)‖wk − x?‖
= αk‖ f (wk)− f (x?) + f (x?)− x?‖+ (1− αk)‖wk − x?‖
≤ αk‖ f (wk)− f (x?)‖+ αk‖ f (x?)− x?‖+ (1− αk)‖wk − x?‖
≤ αkγ‖wk − x?‖+ αk‖ f (x?)− x?‖+ (1− αk)‖wk − x?‖
= [1− αk(1− γ)]‖wk − x?‖+ αk‖ f (x?)− x?‖
≤ [1− αk(1− γ)]‖zk − x?‖+ αk‖ f (x?)− x?‖
≤ [1− αk(1− γ)](‖xk − x?‖+ µk‖xk − xk−1‖) + αk‖ f (x?)− x?‖
= [1− αk(1− γ)]‖xk − x?‖+ µk‖xk − xk−1‖ − αk(1− γ)µk‖xk − xk−1‖
+ αk‖ f (x?)− x?‖
≤ [1− αk(1− γ)]‖xk − x?‖+ µk‖xk − xk−1‖+ αk‖ f (x?)− x?‖

= [1− αk(1− γ)]‖xk − x?‖+ αk(1− γ)

[ µk
αk
‖xk − xk−1‖+ ‖ f (x?)− x?‖

1− γ

]

≤ max

{
‖xk − x?‖,

µk
αk
‖xk − xk−1‖+ ‖ f (x?)− x?‖

1− γ

}
.

Using lim
k→∞

ηk
αk

= 0 and (7), we obtain

lim
k→∞

µk
αk
‖xk − xk−1‖ = lim

k→∞

ηk
αk‖xk − xk−1‖

‖xk − xk−1‖ = lim
k→∞

ηk
αk

= 0.
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Thus, there exists 0 < M such that µk
αk
‖xk − xk−1‖ < M for all k ∈ N, which implies

‖xk+1 − x?‖ ≤ max
{
‖xk − x?‖, M + ‖ f (x?)− x?‖

1− γ

}
. (12)

By mathematical induction, we conclude that ‖xk − x?‖ ≤ M for all k ∈ N, where

M = max
{
‖x1 − x?‖, M+‖ f (x?)−x?‖

1−γ

}
. It follows that {xk} is bounded. This implies that the

sequences { f (wk)}, {wk}, {yk} and {zk} are bounded.

We now prove a strong convergence theorem of the sequence {xk} generated by
Algorithm 6 to solve a common fixed point problem as follows.

Theorem 1. Let {Tk} and {Sk} be two countable families of nonexpansive mappings from H
into H such that Γ = ∩∞

k=1F(Tk)
⋂
∩∞

k=1F(Sk) 6= ∅. Let {xk} be a sequence generated by
Algorithm 6. Suppose {Tk} and {Sk} satisfy NST?-conditions and the following conditions hold:

(1) 0 < a < αk < â < 1;
(2) 0 < b < βk < b̂ < 1;
(3) 0 < c < ξk < ĉ < 1;
(4) limk→∞ αk = 0 and ∑∞

k=1 αk = +∞;
(5) limk→∞

ηk
αk

= 0,

where a, b, c, â, b̂ and ĉ are real positive numbers. Then, {xk} converges strongly to x? ∈ Γ, where
x? = PΓ f (x?).

Proof. Let x? ∈ Γ be such that x? = PΓ f (x?). It follows from (11) that

‖xk+1 − x?‖2 = ‖αk[ f (wk)− f (x?)] + (1− αk)(wk − x?) + αk( f (x?)− x?)‖2

≤ ‖αk[ f (wk)− f (x?)] + (1− αk)(wk − x?)‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
= αk‖ f (wk)− f (x?)‖2 + (1− αk)‖wk − x?‖2

− αk(1− αk)‖( f (wk)− f (x?))− (wk − x?)‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
≤ αk‖ f (wk)− f (x?)‖2 + (1− αk)‖wk − x?‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
≤ αkγ2‖wk − x?‖2 + (1− αk)‖wk − x?‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
= [1− αk(1− γ2)]‖wk − x?‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
≤ [1− αk(1− γ2)]‖zk − x?‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉.

This together with zk − x? = (xk − x?) + µk(xk − xk−1) and 0 ≤ γ < 1 give us that

‖xk+1 − x?‖2 ≤ [1−αk(1−γ)]‖(xk − x?) + µk(xk − xk−1)‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉

≤ [1−αk(1−γ)]
(
‖xk−x?‖2+2µk‖xk−x?‖‖xk − xk−1‖+µ2

k‖xk − xk−1‖2
)

+ 2αk〈 f (x?)− x?, xk+1 − x?〉
= [1− αk(1− γ)]‖xk − x?‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
+ [1− αk(1− γ)]µk‖xk − xk−1‖(2‖xk − x?‖+ µk‖xk − xk−1‖). (13)

Because lim
k→∞

µk‖xk− xk−1‖ = lim
k→∞

αk
µk
αk
‖xk− xk−1‖ = 0, there exists 0 < M1 such that

µk‖xk − xk−1‖ ≤ M1 (14)

for all k ∈ N.
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Put M2 := sup
k∈N
{‖xk − x?‖, M1}. This together with (13) and (14) yields

‖xk+1 − x?‖2 ≤ [1− αk(1− γ)]‖xk − x?‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
+ µk‖xk − xk−1‖(2‖xk − x?‖+ M1)

≤ [1− αk(1− γ)]‖xk − x?‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
+ µk‖xk − xk−1‖(2M2 + M2)

= [1− αk(1− γ)]‖xk − x?‖2 + 2αk〈 f (x?)− x?, xk+1 − x?〉
+ 3M2µk‖xk − xk−1‖

= [1− αk(1− γ)]‖xk − x?‖2

+ αk(1− γ)

[
3M2

µk
αk
‖xk − xk−1‖+ 2〈 f (x?)− x?, xk+1 − x?〉

1− γ

]
. (15)

We now set uk, vk and sk as the following:

uk := ‖xk − x?‖2, vk := αk(1− γ)

and
sk :=

3M2µk
αk(1− γ)

‖xk − xk−1‖+
2

1− γ
〈 f (x?)− x?, xk+1 − x?〉.

So, we have from (15) that

uk+1 ≤ (1− vk)uk + vksk, ∀k ∈ N. (16)

Next, we analyze the convergence of sequence {xk} by considering the following
two cases:

Case 1. Suppose {‖xk − x?‖}k≥mo is nonincreasing for some m0 ∈ N. Because {‖xk −
x?‖} is bounded from below by zero, we obtain lim

k→∞
‖xk − x?‖ exists. It follows from

lim
k→∞

αk = 0 and
∞

∑
k=1

αk = +∞ that

∞

∑
k=1

vk =
∞

∑
k=1

αk(1− γ) = (1− γ)
∞

∑
k=1

αk = +∞.

To apply Lemma 1, we need to claim that lim supk→∞〈 f (x?) − x?, xk+1 − x?〉 ≤ 0.
Indeed, by definition of yk, we have

‖yk − x?‖2 = ‖βk(zk − x?) + (1− βk)(Tkzk − x?)‖2

= βk‖zk − x?‖2 + (1− βk)‖Tkzk − x?‖2 − βk(1− βk)‖zk − Tkzk‖2

≤ βk‖zk − x?‖2 + (1− βk)‖zk − x?‖2 − βk(1− βk)‖zk − Tkzk‖2

= ‖zk − x?‖2 − βk(1− βk)‖zk − Tkzk‖2. (17)

By Algorithm 6, (10) and (17), we obtain
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‖xk+1 − x?‖2 = ‖αk( f (wk)− x?) + (1− αk)(wk − x?)‖2

= αk‖ f (wk)− x?‖2 + (1− αk)‖wk − x?‖2 − αk(1− αk)‖ f (wk)− wk‖2

≤ αk‖ f (wk)− x?‖2 + (1− αk)‖wk − x?‖2 (18)

≤ αk‖ f (wk)− x?‖2 + (1− αk)‖yk − x?‖2

≤ αk‖ f (wk)− x?‖2 + (1− αk)
(
‖zk − x?‖2 − βk(1− βk)‖zk − Tkzk‖2

)
= αk‖ f (wk)− x?‖2 + (1− αk)‖(xk − x?) + µk(xk − xk−1)‖2

− (1− αk)βk(1− βk)‖zk − Tkzk‖2

≤ αk‖ f (wk)− x?‖2 − (1− αk)βk(1− βk)‖zk − Tkzk‖2

+ (1− αk)
(
‖xk − x?‖2 + 2µk‖xk − x?‖‖xk − xk−1‖+ µ2

k‖xk − xk−1‖2
)

,

which implies that for any k ∈ N,

(1− αk)βk(1− βk)‖zk − Tkzk‖2 ≤ αk‖ f (wk)− x?‖2 + (1− αk)‖xk − x?‖2 − ‖xk+1 − x?‖2

+ 2µk(1− αk)‖xk − x?‖‖xk − xk−1‖
+ µ2

k(1− αk)‖xk − xk−1‖2

= αk(‖( f (wk)− f (xk)) + ( f (xk)− x?)‖2)

+ (1− αk)‖xk − x?‖2 − ‖xk+1 − x?‖2

+ 2µk(1− αk)‖xk − x?‖‖xk − xk−1‖
+ µ2

k(1− αk)‖xk − xk−1‖2

≤ αk

(
‖ f (wk)− f (xk)‖2 + 2‖ f (wk)− f (xk)‖‖ f (xk)− x?‖

)
+ αk‖ f (xk)− x?‖2 + (1− αk)‖xk − x?‖2

− ‖xk+1 − x?‖2 + 2µk(1− αk)‖xk − x?‖‖xk − xk−1‖
+ µ2

k(1− αk)‖xk − xk−1‖2.

Taking k→ ∞, we obtain

lim
k→∞
‖zk − Tkzk‖ = 0. (19)

This implies

lim
k→∞
‖yk − zk‖ = lim

k→∞
(1− βk)‖Tkzk − zk‖

≤ lim
k→∞
‖Tkzk − zk‖

= 0. (20)

Because ‖zk − xk‖ = µk‖xk − xk−1‖ and limk→∞ µk‖xk − xk−1‖ = 0, we derive

lim
k→∞
‖zk − xk‖ = 0. (21)

From ‖yk − xk‖ ≤ ‖yk − zk‖+ ‖zk − xk‖, (20) and (21), we obtain

lim
k→∞
‖yk − xk‖ = 0. (22)
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Moreover, we have from (9), (18) and nonexpansiveness of Sk that

‖xk+1 − x?‖2 ≤ αk‖ f (wk)− x?‖2 + (1− αk)‖wk − x?‖2

= αk‖ f (wk)− x?‖2 + ‖wk − x?‖2 − αk‖wk − x?‖2

≤ αk‖ f (wk)− x?‖2 + ‖wk − x?‖2

= αk‖ f (wk)− x?‖2 + ‖ξk(yk − x?) + (1− ξk)(Skyk − x?)‖2

= αk‖ f (wk)− x?‖2 + ξk‖yk − x?‖2 + (1− ξk)‖Skyk − x?‖2

− ξk(1− ξk)‖yk − Skyk‖2

≤ αk‖ f (wk)− x?‖2 + ξk‖yk − x?‖2 + (1− ξk)‖yk − x?‖2

− ξk(1− ξk)‖yk − Skyk‖2

= αk‖ f (wk)− x?‖2 + ‖yk − x?‖2 − ξk(1− ξk)‖yk − Skyk‖2

≤ αk‖ f (wk)− x?‖2 + ‖zk − x?‖2 − ξk(1− ξk)‖yk − Skyk‖2

= αk‖ f (wk)− x?‖2 + ‖(xk − x?) + µk(xk − xk−1)‖2 − ξk(1− ξk)‖yk − Skyk‖2

≤ αk‖ f (wk)− x?‖2 + ‖xk − x?‖2 + 2µk‖xk − x?‖‖xk − xk−1‖
+ µ2

k‖xk − xk−1‖2 − ξk(1− ξk)‖yk − Skyk‖2.

The above inequality implies

ξk(1− ξk)‖yk − Skyk‖2 ≤ αk‖ f (wk)− x?‖2 + ‖xk − x?‖2 + 2µk‖xk − x?‖2‖xk − xk−1‖2

+ µ2
k‖xk − xk−1‖2 − ‖xk+1 − x?‖2.

By assumptions (3), (4) and limk→∞ ‖xk− x?‖ exists together with lim
k→∞

µk‖xk− xk−1‖ =
0, we obtain

lim
k→∞
‖yk − Skyk‖ = 0. (23)

From the definition of wk and assumption (3), we have

‖wk − xk‖ ≤ ξk‖yk − xk‖+ (1− ξk)‖Skyk − xk‖
≤ ξk‖yk − xk‖+ (1− ξk)(‖Skyk − yk‖+ ‖yk − xk‖)
= ‖yk − xk‖+ (1− ξk)‖Skyk − yk‖
≤ ‖yk − xk‖+ ‖Skyk − yk‖.

It follows from (22) and (23) that

lim
k→∞
‖wk − xk‖ = 0. (24)

Using the definition of xk+1, we have

‖xk+1 − xk‖ ≤ αk‖ f (wk)− xk‖+ (1− αk)‖wk − xk‖
≤ αk‖ f (wk)− f (x?)‖+ αk‖ f (x?)− xk‖+ (1− αk)‖wk − xk‖
≤ αkγ‖wk − x?‖+ αk‖ f (x?)− xk‖+ ‖wk − xk‖.

Due to limk→∞ αk = 0, (24) and the boundedness of {xk} and {wk}, we obtain

lim
k→∞
‖xk+1 − xk‖ = 0. (25)

Let ζ = lim supk→∞〈 f (x?) − x?, xk+1 − x?〉. The boundedness of {xk} implies that
there exists a subsequence {xkj

} such that

lim
j→∞
〈 f (x?)− x?, xkj+1 − x?〉 = lim sup

k→∞
〈 f (x?)− x?, xk+1 − x?〉 = ζ
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and xkj
⇀ x ∈ H. It derives from the nonexpansiveness of Tk that

‖xk − Tkxk‖ ≤ ‖xk − zk‖+ ‖zk − Tkzk‖+ ‖Tkzk − Tkxk‖
≤ ‖xk − zk‖+ ‖zk − Tkzk‖+ ‖zk − xk‖
= 2‖xk − zk‖+ ‖zk − Tkzk‖. (26)

It follows from (19) and (21) that lim
k→∞
‖xk − Tkxk‖ = 0.

Using Lemma 2, we obtain x ∈ ∩∞
k=1F(Tk). Due to Sk being nonexpansive, we have

for any k ∈ N,

‖xk − Skxk‖ ≤ ‖xk − yk‖+ ‖yk − Skyk‖+ ‖Skyk − Skxk‖
≤ ‖xk − yk‖+ ‖yk − Skyk‖+ ‖yk − xk‖
= 2‖xk − yk‖+ ‖yk − Skyk‖, (27)

which implies lim
k→∞
‖xk − Skxk‖ = 0 by employing (22) and (23). By Lemma 2, we obtain

x ∈ ∩∞
k=1F(Sk). Because lim

k→∞
‖xk+1 − xk‖ = 0, it follows that xkj+1 converges weakly to x.

In addition, utilizing x? = PΓ f (x?) together with (6) gives us that

ζ = lim
j→∞
〈 f (x?)− x?, xkj+1 − x?〉 = 〈 f (x?)− x?, x− x?〉 ≤ 0.

Therefore,
lim sup

k→∞
〈 f (x?)− x?, xk − x?〉 = 0. (28)

Invoking lim
k→∞

µk
αk
‖xk − xk−1‖ = 0 and (28), we obtain

lim sup
k→∞

sk = lim sup
k→∞

[
3M2

µk
αk(1−γ)

‖xk−xk−1‖+
2

1−γ
〈 f (x?)−x?, xk+1− x?〉

]
≤ 0. (29)

Coming back to (16), by Lemma 1, we can conclude that xk → x?.
Case 2. Suppose that {‖xk − x?‖} is not a monotonically decreasing sequence. To

apply Lemma 3, put λk := ‖xk − x?‖. Then, there exists a subsequence {λki
} of {λk}

such that
λki

< λki+1, ∀i ∈ N.

In this case, let ϕ : N→ N be defined by

ϕ(k) := max{j ∈ N : j ≤ k, λkj
< λkj+1}.

Therefore, ϕ(k) satisfies the condition in Lemma 3. Hence, we have λϕ(k) ≤ λϕ(k)+1
for all k. This means that

‖xϕ(k) − x?‖ ≤ ‖xϕ(k)+1 − x?‖, ∀k.

As the proof in Case 1, we also have that for any k,

βϕ(k)(1− βϕ(k))(1− αϕ(k))‖zϕ(k) − Tϕ(k)zϕ(k)‖2

≤ αϕ(k)‖ f (wϕ(k))− f (xϕ(k))‖2 + αϕ(k)‖ f (xϕ(k))− x?‖2

+ 2αϕ(k)‖ f (wϕ(k))− f (xϕ(k))‖‖ f (xϕ(k))− x?‖ − αϕ(k)‖xϕ(k) − x?‖2

+ ‖xϕ(k) − x?‖2 − ‖xϕ(k)+1 − x?‖2

+ µϕ(k)(1− αϕ(k))‖xϕ(k) − xϕ(k)−1‖
(

2‖xϕ(k) − x?‖+ µϕ(k)‖xϕ(k) − xϕ(k)−1‖
)

.



Symmetry 2022, 14, 2617 13 of 23

Because ‖xϕ(k) − x?‖ ≤ ‖xϕ(k)+1 − x?‖ for all k, the above inequality leads to

βϕ(k)(1− βϕ(k))(1− αϕ(k))‖zϕ(k) − Tϕ(k)zϕ(k)‖2

≤ αϕ(k)‖ f (wϕ(k))− f (xϕ(k))‖2 + αϕ(k)‖ f (xϕ(k))− x?‖2

+ 2αϕ(k)‖ f (wϕ(k))− f (xϕ(k))‖‖ f (xϕ(k))− x?‖ − αϕ(k)‖xϕ(k) − x?‖2

+ µϕ(k)(1− αϕ(k))‖xϕ(k) − xϕ(k)−1‖
(

2‖xϕ(k) − x?‖+ µϕ(k)‖xϕ(k) − xϕ(k)−1‖
)

.

Using lim
k→∞

αϕ(k) = 0 and lim
k→∞

µϕ(k)‖xϕ(k) − xϕ(k)−1‖ = 0, we obtain

lim
k→∞
‖zϕ(k) − Tϕ(k)zϕ(k)‖ = 0. (30)

Similar to the proof of Case 1, we conclude

lim
k→∞
‖zϕ(k) − xϕ(k)‖ = 0, (31)

lim
k→∞
‖yϕ(k) − xϕ(k)‖ = 0, (32)

lim
k→∞
‖yϕ(k) − Sϕ(k)yϕ(k)‖ = 0, (33)

and so

lim
k→∞
‖xϕ(k)+1 − xϕ(k)‖ = 0. (34)

Put δ := lim sup
k→∞

〈 f (x?)− x?, xϕ(k)+1− x?〉. Due to {xϕ(k)} being bounded, there exists

a subsequence {xϕ(kj)
} of {xϕ(k)} such that

δ := lim sup
k→∞

〈 f (x?)− x?, xϕ(k)+1 − x?〉 = δ := lim
j→∞
〈 f (x?)− x?, xϕ(kj)+1 − x?〉

and xϕ(kj)
⇀ ν for some ν ∈ H. The nonexpansiveness of Tϕ(k) and Sϕ(k) implies

‖xϕ(k) − Tϕ(k)xϕ(k)‖ ≤ ‖xϕ(k) − zϕ(k)‖+ ‖zϕ(k) − Tϕ(k)zϕ(k)‖+ ‖Tϕ(k)zϕ(k) − Tϕ(k)xϕ(k)‖
≤ ‖xϕ(k) − zϕ(k)‖+ ‖zϕ(k) − Tϕ(k)zϕ(k)‖+ ‖zϕ(k) − xϕ(k)‖ (35)

and

‖xϕ(k) − Sϕ(k)xϕ(k)‖ ≤ ‖xϕ(k) − yϕ(k)‖+ ‖yϕ(k) − Sϕ(k)yϕ(k)‖+ ‖Sϕ(k)yϕ(k) − Sϕ(k)xϕ(k)‖
≤ ‖xϕ(k) − yϕ(k)‖+ ‖yϕ(k) − Sϕ(k)yϕ(k)‖+ ‖yϕ(k) − xϕ(k)‖. (36)

Taking k→ ∞ in (35) and (36), we derive from (30)–(33) that

lim
k→∞
‖xϕ(k) − Tϕ(k)xϕ(k)‖ = 0 (37)

and

lim
k→∞
‖xϕ(k) − Sϕ(k)xϕ(k)‖ = 0. (38)

By Lemma 2, we obtain ν ∈ Γ. Due to lim
j→∞
‖xϕ(kj)+1 − xϕ(kj)

‖ = 0, we obtain

xϕ(kj)+1 ⇀ ν. Furthermore, it follows from x? := PΓ f (x?) and (6) that

δ := lim
j→∞
〈 f (x?)− x?, xϕ(kj)+1 − x?〉 = 〈 f (x?)− PΓ f (x?), ν− PΓ f (x?)〉 ≤ 0,
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and thus

lim sup
k→∞

〈 f (x?)− x?, xϕ(k)+1 − x?〉 = δ ≤ 0. (39)

Because λϕ(k) ≤ λϕ(k)+1, as in the proof of Case 1, we have that for every k,

‖xϕ(k) − x?‖2

≤ ‖xϕ(k)+1 − x?‖2

≤
(

1− αϕ(k)(1− γ)
)
‖xϕ(k) − x?‖2

+ αϕ(k)(1−γ)

3M2
µϕ(k)
αϕ(k)
‖xϕ(k)− xϕ(k)−1‖+ 2〈 f (x?)− x?, xϕ(k)+1 − x?〉

1− γ

. (40)

Therefore,

αϕ(k)(1− γ)‖xϕ(k) − x?‖2

≤ αϕ(k)(1− γ)

3M2
µϕ(k)
αϕ(k)
‖xϕ(k) − xϕ(k)−1‖+ 2〈 f (x?)− x?, xϕ(k)+1 − x?〉

1− γ

. (41)

From αϕ(k) ∈ (0, 1) and γ ∈ [0, 1), we obtain αϕ(k)(1− γ) > 0, which implies

‖xϕ(k) − x?‖2 ≤
3M2

µϕ(k)
αϕ(k)
‖xϕ(k) − xϕ(k)−1‖+ 2〈 f (x?)− x?, xϕ(k)+1 − x?〉

1− γ
. (42)

Invoking lim
k→∞

µk
αk
‖xk − xk−1‖ = 0 and (39), we obtain

lim sup
k→∞

‖xϕ(k) − x?‖ = 0,

and hence
lim
k→∞
‖xϕ(k) − x?‖ = 0.

It follows from (34) that lim
k→∞
‖xϕ(k)+1 − x?‖ = 0. By Lemma 3, we obtain

0 ≤ lim
k→∞
‖xk − x?‖ ≤ lim

k→∞
‖xϕ(k)+1 − x?‖ = 0.

Therefore, {xk} converges strongly to x?.

We observe that Algorithm 6 can be reduced to Algorithm 7 by setting Sk = Tk for
finding a common fixed point of a countable family of nonexpansive mappings of {Tk}.

Corollary 1. Let {Tk} be a countable family of nonexpansive mappings fromH into itself such that
Γ = ∩∞

k=1F(Tk) 6= ∅. Suppose {Tk} satisfies NST?-conditions and the following conditions hold:

(1) 0 < a < αk < â < 1;
(2) 0 < b < βk < b̂ < 1;
(3) 0 < c < ξk < ĉ < 1;
(4) limk→∞ αk = 0 and ∑∞

k=1 αk = +∞;
(5) limk→∞

ηk
αk

= 0,

where a, b, c, â, b̂ and ĉ are real positive numbers. Then, the sequence {xk} generated by Algorithm 7
converges strongly to x? ∈ Γ, where x? = PΓ f (x?).
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Algorithm 7 IVMIA (II): Inertial Viscosity Approximation Method for a family of Nonex-
pansive Mappings

1: Input. Let x0, x1 ∈ H, {ηk} a positive sequence and f : H → H a γ-contraction.

Choose {αk}, {βk}, ξk ⊂ (0, 1) and θk ≥ 0.

2: Select µk ∈ (0, µ̄k] such that for k ≥ 1,

µ̄k :=

min
{

θk, ηk
‖xk−xk−1‖

}
if xk 6= xk−1,

θk otherwise.
(43)

3: Compute 

zk = xk + µk(xk − xk−1),

yk = βkzk + (1− βk)Tkzk,

wk = ξkyk + (1− ξk)Tkyk

xk+1 = αk f (wk) + (1− αk)wk.

4. Application to Convex Bilevel Optimization Problems

The aim of this section is to apply our proposed algorithm for solving the following
convex bilevel optimization problem:

min
x∈Γ
F (x), (44)

where F : H → R is strongly convex differentiable with ∇F being LF -Lipschitz continu-
ous and Γ is the set of all common minimizers of the following unconstrained minimiza-
tion problems:

min
x
{φ1(x) + ψ1(x)} and min

x
{φ2(x) + ψ2(x)}, (45)

where ψi, φi : H → (−∞,+∞], i = 1, 2, are proper convex and lower semicontinuous
functions and φ1, φ2 are differentiable functions. Problem (45) can be reduced to (2) if
φ1 = φ2 and ψ1 = ψ2. As in the literature, we know that x? ∈ Γ if and only if

x? = proxλkψ1
(I − λk∇φ1) and x? = proxεkψ2

(I − εk∇φ2),

where λk ∈
(

0, 2
Lφ1

)
, εk ∈

(
0, 2

Lφ2

)
while Lφ1 and Lφ2 are Lipschitz gradients of ∇φ1 and

∇φ2, respectively. In addition, x? ∈ Γ also is a solution of problem (44) if it satisfies the
following form:

〈∇F (x?), x− x?〉 ≥ 0, ∀x ∈ Γ. (46)

Therefore, we solve convex bilevel optimization problems (44) and (45) by finding
a common fixed point x? of proxλkψ1

(I − λk∇φ1) and proxεkψ2
(I − εk∇φ2), which satisfies

the formulation of (46).
Next, we present the algorithm derived from our main result for solving the convex

bilevel optimization problem as defined by Algorithm 8.
In order to solve (44) and (45), we suppose the following conditions hold:

(1) f : H → H is a γ-contraction with γ ∈ [0, 1);

(2) {λk} ⊂
(

0, 2
Lφ1

)
and λ ∈

(
0, 2

Lφ1

)
with λk → λ;

(3) {εk} ⊂
(

0, 2
Lφ2

)
and ε ∈

(
0, 2

Lφ2

)
with εk → ε;

(4) {αk}, {βk} and {ξk} are sequences in (0, 1);
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(5) ψi, i = 1, 2, be two lower semicontinuous functions and convex fromH into R∪+∞;
(6) φi, i = 1, 2, be two smooth convex loss functions and differentiable with Lφi -Lipschitz

continuous gradients of ∇φi, i = 1, 2, respectively;
(7) F : H → R is strongly convex differentiable with ∇F being LF -Lipschitz constant

and σ ∈
(

0, 2
LF+ρ

)
where ρ is a parameter such that F is strongly convex.

Theorem 2. Let {xk} be a sequence generated by Algorithm 8 such that all conditions as in
Theorem 1 hold. Let Ω be the set of all solutions of (44). Then, {xk} converges strongly to x? ∈ Ω
which satisfies x? = PΓ f (x?).

Algorithm 8 iVMBi(I): Inertial Viscosity Method for Bilevel Optimization Problem (I)

1: Input. Let x0, x1 ∈ H, {ηk} a positive sequence. Choose {αk}, {βk}, {ξk} ⊂ (0, 1) and

θk ≥ 0.

2: Step 1. Select µk ∈ (0, µ̄k] such that for k ≥ 1,

µ̄k :=

min
{

θk, ηk
‖xk−xk−1‖

}
if xk 6= xk−1,

θk otherwise.
(47)

3: Step 2. Compute



zk = xk + µk(xk − xk−1),

yk = βkzk + (1− βk)proxλkψ1
(I − λk∇φ1)zk,

wk = ξkyk + (1− ξk)proxεkψ2
(I − εk∇φ2)yk

uk = (I − σ∇F )(wk),

xk+1 = αkuk + (1− αk)wk.

Proof. Let Tk := proxλkψ1(I − λk∇φ1) and Sk := proxεkψ2(I − εk∇φ2) as in Algorithm 6,

where λk ∈
(

0, 2
Lφ1

)
, εk ∈

(
0, 2

Lφ2

)
while Lφi , i = 1, 2, are Lipschitz gradients of ∇φi,

i = 1, 2, respectively. Using Proposition 1, we get that I − σ∇F is a contraction mapping.
By Theorem 1 and setting f := I − σ∇F , we obtain that {xk} converges strongly to x? ∈ Γ,
where x? = PΓ f (x?). Observe that f (x?) = x? − σ∇F (x?). It is derived from (6) that for
any x ∈ Γ,

0 ≤ 〈PΓ f (x?)− f (x?), x− PΓ f (x?)〉
= 〈x? − f (x?), x− x?〉
= 〈x? − (x? − σ∇F (x?)), x− x?〉
= σ〈∇F (x?), x− x?〉.

Because 0 < σ, we conclude 0 ≤ 〈∇F (x?), x − x?〉 for all x ∈ Γ, that is, x? is an
optimal solution of problem (44). Hence, we obtain the desired result.

Furthermore, our algorithm can be applied to solving convex bilevel optimization
problems (1) and (2) by using the same proximity operator in step 2 and 3 as seen in
Algorithm 9.
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Algorithm 9 iVMBi(II): Inertial Viscosity Method for Bilevel Optimization Problem (II)

1: Input. Let x0, x1 ∈ H, {ηk} a positive sequence. Choose {αk}, {βk}, {ξk} ⊂ (0, 1) and

θk ≥ 0.

2: Step 1. Select µk ∈ (0, µ̄k] such that for k ≥ 1,

µ̄k :=

min
{

θk, ηk
‖xk−xk−1‖

}
if xk 6= xk−1,

θk otherwise.
(48)

3: Step 2. Compute



zk = xk + µk(xk − xk−1),

yk = βkzk + (1− βk)proxλkψ(I − λk∇φ)zk,

wk = ξkyk + (1− ξk)proxλkψ(I − λk∇φ)yk

uk = (I − σ∇F )(wk),

xk+1 = αkuk + (1− αk)wk.

The following result is immediately obtained by Theorem 2.

Theorem 3. Let {xk} be a sequence generated by Algorithm 9 such that all conditions as in
Corollary 1 hold. Then, {xk} converges strongly to x? ∈ arg min(φ + ψ) which satisfies

x? = PΓ f (x?) and 〈∇F (x?), x− x?〉 ≥ 0, ∀x ∈ Γ,

that is, xk → x? ∈ Ω, where Ω is the set of all solutions of problems (1) and (2).

Next, we use Algorithm 9 as a machine learning algorithm for solving some data
classification problems applying on UCI-datasets of breast cancer and heart disease. More-
over, we compare the performance of Algorithm 9 with BiG-SAM, iBiG-SAM, aiBiG-SAM,
miBiG-SAM and amiBiG-SAM.

In order to employ Algorithm 9 for solving data classification, we need to know
what is the objective function of the inner level. To obtain this, we use a single-layer
feedback neuron network (SLFNs) model and the concept of extreme learning machine
(ELM) introduced by Huang et al. [46].

In supervised learning, we start with the training set of N samples S := {(pk, qk) : pk ∈
Rn, qk ∈ Rm, k = 1, 2, . . ., N}, where pk is input data and qk is a target. The mathematical
model of ELM for SLFNs with M hidden nodes and activate function G is given by

oj =
M

∑
i=1

miG(〈wi, pj〉+ ri), j = 1, 2, . . . , N

where mi is the weight vector connecting the i-th hidden node and the output node, ri is a
bias and wi is the weight vector connecting the i-th hidden node and the input node.
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Let A be a matrix given by the following:

A =

G(〈w1, p1〉+ r1) · · · G(〈wM, p1〉+ rM)
...

. . .
...

G(〈w1, pN〉+ r1) · · · G(〈wM, pN〉+ rM)

.

This matrix A is known as the hidden-layer output matrix.
For prediction or classification problem by using ELM model, we need a zero mean,

that is,
N

∑
j=1
|oj − qj| = 0. Hence,

qj =
M

∑
i=1

miG(〈wi, xj〉+ ri), i = 1, 2, . . . , N.

We can write the above system of linear equations of M variable and N equations as a
matrix equation as follows:

Am = Q, (49)

where m = [mT
1 , . . ., mT

M]T and Q = [qT
1 , . . ., qT

N ]
T is the training data. To solve ELM, it is to

find a weight m satisfies (49). If the Moore–Penrose generalized inverse A† of A exists, then
m = A†Q. However, in the case that A† does not exist, we can find m as the minimizer of
the following convex minimization problem:

min
m
‖Am−Q‖2

2. (50)

Using a least squares model (50) may cause the over fitting problem. In order to
prevent this problem, the regularization methods were proposed. The classical one is
the Tikhonov regularization [47], which was employed to solve the following minimiza-
tion problem:

Minimize: ‖Am−Q‖2
2 + β‖Km‖2

2, (51)

where β is the regularized parameter and K is the Tikhonov matrix. In the standard form,
K is set to be the identity.

Another regularization method is the least absolute shrinkage and selection oper-
ator (LASSO), which was proposed by Tibshirani [48] for solving the following convex
minimization problem:

Minimize: ‖Am−Q‖2
2 + β‖m‖1, (52)

where β is the regularized parameter and ‖(x1, x2, . . . , xp)‖1 = ∑
p
i=1 |xi|.

In this work, we set ψ(m) = β‖m‖1 and φ(m) = ‖Am−Q‖2
2. Based on model (52),

we can apply Algorithm 9 for solving the convex bilevel optimization problems (1) and (2)
while the objective function of the outer level F (m) = 1

2‖m‖2
2. We now conduct some

numerical experiments for classifications of the following datasets.
In these experiments, we aim to classify the datasets of breast cancer and heart disease

from https://archive.ics.uci.edu, accessed on 12 June 2022.
Breast cancer dataset [49]. This dataset contains 699 samples, each of which has

11 attributes. In this dataset, we classify two classes of data.
Heart disease dataset [50]. This dataset contains 303 samples, each of which has

13 attributes. In this dataset, we classify two classes of data.
Throughout these experiments, all the results are performed under MATLAB 9.6

(R2019a) running on a MacBook Air 13.3-inch, 2020, with Apple M1 chip processor and
8-core GPU, configured with 8 GB of RAM.

In all the experiments, sigmoid is used as an activation function, and we set the number
of hidden node M = 30. The following formula for the accuracy of the data classification is
given by

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
× 100,

https://archive.ics.uci.edu
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where TP is the model successfully predicting the patient as positive, TN denotes the
model successfully predicting the patient as negative, FN represents the prediction of the
diseased patient as healthy by negative test results and FP means the prediction of a healthy
patient as diseased by a positive test result.

We also compute the success probability of making a correct positive class classification
as the following form:

Precision (Pre) =
TP

TP + FP
.

In addition, we measure the sensitivity of the model toward identifying the positive
class as the following form:

Recall (Rec) =
TP

TP + FN
.

The Lipschitz gradient Lφ of∇φ is computed by 2‖A‖2. When the dimension of A is so
large, it is hard to compute such Lφ. All parameters for each algorithm of our experiments
are given in Table 1.

Table 1. Chosen parameters of each algorithm.

Parameters Algorithm 9 Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5

σ 2
LF+ρ

2
LF+ρ

2
LF+ρ

2
LF+ρ

2
LF+ρ

2
LF+ρ

λ - 1
Lφ

1
Lφ

1
Lφ

- -

λk
1

Lφ
- - - 1

Lφ

1
Lφ

α - - 3 3 3 3
αk

1
50k

1
k+2

1
50k

1
k+2

1
k+2

1
k+2

θk
k

k+1 - - - - -
ηk

1050

k2 - 1050

k2
αk

k0.01
αk

k0.01
αk

k0.01

q - - - - 4 4

From Table 1, we select the best choice of parameter for each algorithm in order
to achieve the highest performance. It is worth noting that all parameters satisfy the
assumptions of each convergence theorem, see [6,9,11] for more details. In addition, we set
β = 0.00001 which is a regularized parameter of problem (52). In Algorithm 9, we choose
ξk, βk = 1

k+2 for experimentation on the breast cancer dataset, while the classification of
heart disease uses ξk = 0.5 together with βk = 0.1.

We compare the performance of each method at the 100th and 500th iterations and
obtain the following results, as seen in Tables 2 and 3, respectively.

Table 2. The performance of each algorithm at 100th iteration on each dataset.

Dataset Algorithm Pre Train Rec Train Pre Test Rec Test Acc Train Acc Test

Breast Cancer

Algorithm 1 0.8845 0.9812 0.9718 1.0000 90.4082 98.0861
Algorithm 2 0.9686 0.9625 0.9857 1.0000 95.5102 99.0431
Algorithm 3 0.8845 0.9812 0.9718 1.0000 90.4082 98.0861
Algorithm 4 0.8966 0.9750 0.9718 1.0000 91.0204 98.0861
Algorithm 5 0.8845 0.9812 0.9718 1.0000 90.4082 98.0861
Algorithm 9 0.9747 0.9625 0.9857 1.0000 95.9184 99.0431

Heart Disease

Algorithm 1 0.7656 0.8522 0.7647 0.7800 77.6190 75.2688
Algorithm 2 0.8306 0.8957 0.7719 0.8800 84.2857 79.5699
Algorithm 3 0.7656 0.8522 0.7647 0.7800 77.6190 75.2688
Algorithm 4 0.8049 0.8609 0.7593 0.8200 80.9524 76.3441
Algorithm 5 0.7656 0.8522 0.7647 0.7800 77.6190 75.2688
Algorithm 9 0.8268 0.9130 0.7667 0.9200 84.7619 80.6452
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Table 3. The performance of each algorithm at 500th iteration on each dataset.

Dataset Algorithm Pre Train Rec Train Pre Test Rec Test Acc Train Acc Test

Breast Cancer

Algorithm 1 0.9506 0.9625 0.9857 1.0000 94.2857 99.0431
Algorithm 2 0.9778 0.9625 0.9928 1.0000 96.1224 99.5215
Algorithm 3 0.9506 0.9625 0.9857 1.0000 94.2857 99.0431
Algorithm 4 0.9536 0.9625 0.9857 1.0000 94.4898 99.0431
Algorithm 5 0.9506 0.9625 0.9857 1.0000 94.2857 99.0431
Algorithm 9 0.9778 0.9625 0.9928 1.0000 96.1224 99.5215

Heart Disease

Algorithm 1 0.8065 0.8696 0.7679 0.8600 81.4286 78.4946
Algorithm 2 0.8455 0.9043 0.7797 0.9200 85.7143 81.7204
Algorithm 3 0.8065 0.8696 0.7679 0.8600 81.4286 78.4946
Algorithm 4 0.8115 0.8609 0.7544 0.8600 81.4286 77.4194
Algorithm 5 0.8065 0.8696 0.7679 0.8600 81.4286 78.4946
Algorithm 9 0.8455 0.9043 0.7833 0.9400 85.7143 82.7957

Table 2 shows that our algorithm performs the best accuracy at the 100th iteration.
Moreover, Table 3 shows the performance of each algorithm at the 500th iteration. We
found that Algorithm 9 has a better accuracy than the others.

Next, we show the performance for the prediction of each algorithm in terms of the num-
ber of iterations and training times for which each algorithm achieves the highest accuracy.

From Table 4, comparing with Algorithm 1 (BiG-SAM), Algorithm 2 (iBiG-SAM),
Algorithm 3 (aiBiG-SAM), Algorithm 4 (miBiG-SAM) and Algorithm 5 (amiBiG-SAM),
Algorithm 9 provides a higher value of accuracy for training. In the testing case, we found
that the accuracy of Algorithm 2 (iBiG-SAM) is better than our algorithm on the breast
cancer experimentation. However, our method has the lowest number of iterations and
training times compared with the others.

Table 4. The iteration number and training time of each algorithm with the highest accuracy on
each dataset.

Dataset Algorithm Iteration No. Training Time Acc Train Acc Test

Breast Cancer

Algorithm 1 819 0.0272 95.1020 99.0431
Algorithm 2 264 0.0095 96.1224 99.5215
Algorithm 3 819 0.0267 95.1020 99.0431
Algorithm 4 531 0.0320 95.1020 99.0431
Algorithm 5 819 0.0330 95.1020 99.0431
Algorithm 9 78 0.0054 96.1224 99.0431

Heart Disease

Algorithm 1 2024 0.0293 86.1905 79.5699
Algorithm 2 556 0.0096 86.1905 81.7204
Algorithm 3 2024 0.0452 86.1905 79.5699
Algorithm 4 1226 0.0517 86.1905 79.5699
Algorithm 5 1398 0.0317 85.7143 78.4946
Algorithm 9 192 0.0064 86.1905 82.7957

We also construct a 10-fold cross validation to appraise the performance of each
algorithm and use Average accuracy as the appraising tool. It is defined as follows:

Average Acc =
N

∑
i=1

ui
vi
× 100%/N.

where N is a number of sets considered during the cross validation (N = 10), ui is a number
of correctly predicted data at fold i and vi is a number of all data at fold i.

Let ErrM = sum of errors in all 10 training sets, ErrK = sum of errors in all 10 testing
sets, M = sum of all data in 10 training sets and K = sum of all data in 10 testing sets. Then,

Error% =
errorM% + errorK%

2
,

where errorM% = ErrM
M × 100% and errorK% = ErrK

K × 100%
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We split the data into training sets and testing sets by using the 10-fold cross validation,
as seen in Table 5.

Table 5. Number of samples in each fold for all datasets.

Breast Cancer Heart Disease

Train Test Train Test

Fold 1 630 69 273 30
Fold 2 629 70 272 31
Fold 3 629 70 272 31
Fold 4 629 70 272 31
Fold 5 629 70 273 30
Fold 6 629 70 273 30
Fold 7 629 70 273 30
Fold 8 629 70 273 30
Fold 9 629 70 273 30

Fold 10 629 70 273 30

In Table 6, we show the average of the accuracy of each algorithm with the 500th
iteration.

Table 6. Average accuracy of each algorithm at 500th iteration with 10-fold cross validation.

Algorithm
Breast Cancer Heart Disease

Acc Train Acc Test Error% Acc Train Acc Test Error%

Algorithm 1 95.8989 95.9876 4.0534 79.8319 78.5484 20.8104
Algorithm 2 96.7094 96.9876 3.1474 85.0318 82.8387 16.0616
Algorithm 3 95.8989 95.9876 4.0534 79.8319 78.5484 20.8104
Algorithm 4 96.0420 96.1304 3.9103 80.9683 80.5269 19.2519
Algorithm 5 95.8989 95.9876 4.0534 79.8319 78.5484 20.8104
Algorithm 9 96.7889 97.4182 2.8930 85.8148 82.8387 15.9883

Table 6 demonstrates that Algorithm 9 performs better than Algorithm 1 (BiG-SAM),
Algorithm 2 (iBiG-SAM), Algorithm 3 (aiBiG-SAM), Algorithm 4 (miBiG-SAM) and Algorithm 5
(amiBiG-SAM) in terms of the accuracy in all the experiments conducted.

5. Conclusions

We propose a novel iterative method based on a fixed-point approach with an inertial
technique for approximating a common fixed point of two countable families of nonex-
pansive mappings in a Hilbert space and also present strong convergence theorems. Our
algorithm leads to a sequence converging strongly to a solution for convex bilevel optimiza-
tion problems for which the inner level consists of the minimization of the sum of smooth
and nonsmooth functions. Furthermore, we apply the proposed algorithm to the data
classification of breast cancer and heart disease datasets and then their performances are
assessed and compared with the other algorithms. We derive from the experiment that our
algorithm provides a higher value of accuracy of training and testing on various datasets.
We can conclude the advantages of our proposed algorithm from our experiments in that it
requires a lower number of iterations and less training time compared with the others. It
is worth mentioning that our proposed algorithm is intelligent machine learning for the
prediction and classification of big data. It is an efficient algorithm that can be developed to
software/applications for prediction and classifications in future works. Furthermore, we
aim to employ our proposed algorithm for real datasets of the patients at Sriphat Medical
Center, Faculty of Medicine, Chiang Mai University, Thailand.
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