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Abstract: The emergence of geospatial big data has opened up new avenues for identifying urban
environments. Although both geographic information systems (GIS) and expert systems (ES) have
been useful in resolving geographical decision issues, they are not without their own shortcomings.
The combination of GIS and ES has gained popularity due to the necessity of boosting the effectiveness
of these tools in resolving very difficult spatial decision-making problems. The clustering method
generates the functional effects necessary to apply spatial analysis techniques. In a symmetric
clustering system, two or more nodes run applications and monitor each other simultaneously. This
system is more efficient than an asymmetric system since it utilizes all available hardware and does
not maintain a node in a hot standby state. However, it is still a major issue to figure out how to
expand and speed up clustering algorithms without sacrificing efficiency. The work presented in this
paper introduces an optimized hierarchical distributed k-medoid symmetric clustering algorithm
for big data spatial query processing. To increase the k-medoid method’s efficiency and create more
precise clusters, a hybrid approach combining the k-medoid and Chemical Reaction Optimization
(CRO) techniques is presented. CRO is used in this approach to broaden the scope of the optimal
medoid and improve clustering by obtaining more accurate data. The suggested paradigm solves
the current technique’s issue of predicting the accurate clusters’ number. The suggested approach
includes two phases: in the first phase, the local clusters are built using Apache Spark’s parallelism
paradigm based on their portion of the whole dataset. In the second phase, the local clusters are
merged to create condensed and reliable final clusters. The suggested approach condenses the data
provided during aggregation and creates the ideal clusters’ number automatically based on the
dataset’s structures. The suggested approach is robust and delivers high-quality results for spatial
query analysis, as shown by experimental results. The proposed model reduces average query latency
by 23%.

Keywords: evolutionary clustering; optimization; location-aware decision support; query processing;
geospatial data management

1. Introduction

Big data is a byproduct of the fast growth of information technology, which has
resulted in a flood of information from a wide variety of sources. Despite its ubiquitous
presence, big data from cellular phones and GPS trackers has yet to fulfil its immense
potential in environmental monitoring [1]. Location information is part of geospatial big
data. Since the vast majority of information produced in the era of big data is spatial and
gathered by location-aware sensors, position awareness is essential. Multiple efforts have
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tried to use geographic big data for human activity tracking and environmental/urban
studies. It is possible to examine the historical patterns of transportation services that
operate inside certain regions to better detect urban functions and create job-housing
functional dynamics than with conventional remote sensing images [2].

Because of its volume, velocity, diversity, veracity, and value, big data makes efficient
data collection a challenge. Modern storage, maintenance, and protection requirements are
required for vast amounts of data on a daily basis since traditional processing infrastructures
can’t manage such a huge volume of composite data in so many different formats. Cloud
computing systems, which fall under the umbrella of High-Performance Computing (HPC),
have advanced parallel processing capability, the capacity to scale to enormous sizes, and
flexibility in handling enormous data sets [3–5]. Recently, shared-nothing architecture
(SNA), a data storage paradigm used in high-performance computing, has become the
de facto standard for storing data, and an HPC cluster may simply add nodes to increase
both storage and processing capability. Its capacity for centralized processing also reduces
network data transmission, and its capacity for local storage does away with the possibility
of a single point of failure. One well-known use of SNA is the Hadoop Distributed File
System (HDFS) [6,7].

In big data, the analysis of geospatial queries is complex. Enquiring such huge volumes
of data is beyond the capabilities of conventional database management systems [8]. New
management challenges have emerged for avoiding query processing bottlenecks brought
on by an uneven distribution of work in the cloud [9]. Geospatial clustering combines
geographic points into “clusters. The clustering of geospatial big data has to grow and
speed up without losing effectiveness. You’ll need an economical processing model with a
low computing cost if you want to make use of this massive volume of data [10]. There
are three ways to increase big data clustering speed and scalability. (1) Using sampling-
based algorithms reduces iteration. Sampling-based algorithms cluster a portion of that
data, not the complete set. (2) Randomize data to reduce its dimension. Dimensionality
affects the complexity and speed of clustering techniques. (3) Use parallel and distributed
methods to speed processing and enhance scalability. Traditional parallel and data-intensive
applications use concurrent computing.

The field of computational symmetry studies the use of computers to model, evaluate,
create, and manipulate symmetries in digital form. Symmetry plays a crucial role in
the design and development of algorithms. Often, symmetry facilitates and simplifies
the probabilistic analysis of randomized algorithms. Incorporating clever techniques of
symmetry or tie-breaking into algorithms may sometimes improve their performance. The
suggested model relies on symmetric clustering, in which each node simultaneously runs
applications and monitors other nodes. The absence of a hot standby key makes this
clustering more efficient than asymmetric clustering.

If a symmetric clustering technique is going to make use of Spark, it has to be modified
so that it can make use of Spark’s distributed computing environment. The algorithm’s
strengths—including its fault-resilient distributed dataset (RDD), in-memory iterative pro-
cessing, minimal disc I/O load, direct acyclic graph execution technique, sophisticated local
data caching system, quicker distributed file system, and Spark fault-tolerant mechanism—
should serve it well [6,7]. Since most conventional clustering methods presume the data
to be located in a single repository, dealing with the dispersed nature of big data presents
a difficulty for big data clustering methods. Most of the time, the number of clusters
present, the shape of the clusters, and the presence or absence of outliers are unknown in a
clustering situation. This means that it is still important to do effective clustering regardless
of whether one is aware of any preexisting clusters in the data.

1.1. Problem Statement and Aim of the Work

The amount and complexity of geographic data are growing at an exponential rate,
beyond the capacity of traditional data processing methods and systems. Geospatial
big data requires efficient data gathering and analysis frameworks. Large volumes of
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geographic data increase query execution time since it’s hard to scan the complete set in
an acceptable amount of time. Clustering is beneficial. Contemporary researchers have
suggested several clustering algorithms. These algorithms suffer from dimensionality
or need several iterations to cluster. There have been few publications on concurrently
distributed Apache Spark clustering research. Noisy input makes clustering an item harder,
affecting clustering performance. Successful algorithms can handle outliers and noise. This
research provides a dynamic clustering strategy for processing spatial queries on geospatial
big data after examining recent clustering trends and advancements in response to the
difficulties presented by big data. By repositioning the cluster heads to the most important
nodes, this method creates robust clusters quickly and easily. The number of global clusters
might be left undetermined; instead, it may change over time. The medoid of the cluster is
optimized at this stage.

1.2. Contribution

The goal of this research is to improve the scalability and speed of geospatial big data
queries by using a distributed, optimized dynamic clustering approach implemented in
Apache Spark. Parallel processing, wherein each individual node generates its own set of
local clusters from the whole dataset, and aggregate processing, in which these clusters are
merged in order to form clusters that are both compact and stable, make up the two phases
of the recommended distributed dynamic clustering approach. Cluster representatives
reduce the overhead of these exchanges. Clustering in a distributed manner is an adaptive
method for geographic data as the number of valid clusters is not fixed beforehand (as an
input parameter). This solves one of the k-medoids’ problems. The proposed model is
novel in that it combines the CRO algorithm, which aids in obtaining the optimum solution
and best medoids for large geospatial datasets with a high number of outliers. The best
medoids are utilized as seeds for the two-phase dynamic clustering.

This article continues as follows: Section 2 reviews the related big data clustering
approaches. Section 3 provides an outline of the recommended strategy. Section 4 tests
the suggested approach and analyzes the results. Section 5 summarizes the findings of the
research and recommends next directions.

2. Related Work

Many studies have been conducted to enhance clustering in big data techniques. Each
researcher has a distinct method and idea. Each researcher has a distinct method and idea.
Studies [10–14] show that no one clustering method is adequate for solving all the problems
associated with huge data. Implementing the techniques can cluster vast volumes of data,
but the techniques are complex. MapReduce or Spark will help implement these parallel
algorithms. To analyze a lot of data with enough resources, we need to make clustering
methods take less time and use less memory. The authors in [15] adapted MapReduce to
medoids. During mapping, it places each object next to its closest medoid, and during
reduction, it moves the real medoid to the center of the group. To parallelize medoid
updating, it uses a local search instead of the traditional partitioning around medoids. This
method is quick but inaccurate. The GREEDY algorithm [16] finds k-medoids from each
data partition. Due to the partitioning requirement, GREEDY’s sample size and number
depend on the overall data size. Large data sets make this technique unworkable.

Using simultaneous analysis and a combination of resampling and the weighted k-
medoids technique, the authors in [17] provide a single optimal sample. As the number
of distances collected rises, its efficiency decreases. The work presented in [18] suggests a
MapReduce-based k-medoids++ spatial clustering algorithm for large geographical data.
Initialization and MapReduce decrease iterations. k-medoids++ has two advantages over
previous spatial clustering methods. To decrease iterations, k-medoids++ spatial clustering
implements an efficient initial medoids search method. Second, MapReduce parallelizes
k-medoids++ spatial clustering. Their approach outperforms ordinary k-medoids and is
scalable effectively on commodity hardware. Using Apache Spark, the same authors sped
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up k-medoids clustering [19]. As a constant distance separates any two patterns, k-medoids
iterations may avoid calculating pairwise distances between cluster components. (Dis)
similarity measures determine validity. Real-world route map datasets revealed distributed
implementations’ utilization of structured data.

M. Bendechache et al. [20] recommended combining local and global data. Each node
builds local clusters depending on its subset. During this phase, parallelism is completely
employed. MapReduce makes this framework easy to implement. Distributed clustering
produces a dynamic number of global clusters. In [21], the same author improved dynamic
distributed clustering by adding a phase to efficiently reduce data. This technique was
designed for geographic data sets, and it helps cut down on the transmission overhead.
If local clustering is NP, then the technique scales effectively and the results are robust to
changes in communication protocol.

To address the multiple-criteria decision analysis issue of optimal business site selec-
tion from a given collection of candidate sites, the authors in [22] provide a combination
of the Analytic Hierarchy Process and the Technique for Order of Preference strategies. A
step-by-step case study is provided to demonstrate the efficacy of the suggested method by
finding a prime spot in New York City for a gasoline station. With the goal of estimating
potential geographic references expressed by the users, the authors in [23] introduced
Paval (location-aware virtual personal assistant), a semantic assisting engine for suggesting
local points of interest (POIs) and services through the analysis of users’ natural language
queries. The system uses natural language processing (NLP) and semantic approaches to
provide suggestions for POIs and services within the user’s current geographic location
that best meet their needs, as determined by a search of the Km4City Knowledge Base.
By comparing the proposed system to the most popular virtual assistants, like Google
Assistant, Apple Siri, and Microsoft Cortana, with a focus on the request of geolocated POIs
and services, the authors show that it has promising capabilities in successfully estimating
the users’ information needs and multiple geographic references.

In [24], the authors introduced GEOSPARKVIZ, a fully functional system that facili-
tates the loading, processing, integration, and execution of GeoViz operations on massive
amounts of geographical data. The GEOSPARKVIZ project is an extension of a cutting-
edge distributed data management system that adds native functionality for geographic
map display. The system incorporates the fundamental phases of map visualization, such
as pixelizing spatial objects, pixel aggregation, and map tile rendering, into a collection
of massively parallelized map construction operators. Because of this, the system can
simultaneously improve both the spatial query operators and the map building operators.
Additionally, GEOSPARKVIZ has a spatial partitioning operator that is GeoViz-aware,
which distributes GeoViz workloads evenly among the cluster’s nodes.

In [25], the authors offered a collaborative filtering-based methodology for predicting
the quality of GI services in a given area. From the user’s and the GIService’s viewpoints,
the model employs a mixed collaborative filtering (CF) technique based on the time zone
characteristic. GIServices’ degree of resemblance to a target was quantified using a time
zone-adjusted Pearson correlation coefficient technique, which aided in the identification of
services with a high degree of similarity. In [26], the authors evaluated the performance of
numerous parallel and distributed Distance Join Queries (DJQ) algorithms, comparing two
of the most recent and prominent ones, Spatial Hadoop and Location Spark, in different
scenarios with huge real-world spatial datasets. When large spatial datasets are joined,
SpatialHadoop proves to be the superior system, but when medium spatial datasets are
combined, LocationSpark emerges as the clear winner in total execution time efficiency
(Spark’s in-memory processing). However, more memory needs to be set aside when big
spatial datasets are used in DJQs (especially Location Spark).

GeoSpark will be used in the present endeavor since it is a vital solution that has been
extensively applied to spatial data. Specifically, it operates on top of Apache Spark, the key
framework utilized by the scientific community and companies for big data transformation,
processing, and visualization. To this purpose, the authors in [27] concentrated on trajectory
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data format so as to be adaptable to the GeoSpark environment, and a GeoSpark-based
solution is devised for the efficient administration of actual spatio-temporal data. The
next stage is to acquire a better knowledge of the data through the implementation of
k-nearest neighbor (k-NN) searches. In [28], the authors developed and deployed a novel
Voronoi-Diagram-based data splitting approach in SpatialHadoop. SpatialHadoop also has
a revised version of the Nearest Neighbors Join Query and Closest Pairs Query MapReduce
algorithms that make use of the new partitioning mechanism.

In [29], the authors presented a PID-based kNN query processing method (PIDKNN)
for geographic large data using Spark, bringing proportional integral derivative (PID)
control technology into kNN query processing. This approach employs a grid partition
technique to split the whole data space into uniform grid cells, after which a grid-based
index is built. The PID parameters are modified once the geographic data is grouped using
a grid-based density peak clustering method. Predicting the radius expansion step size of
kNN searches using the PID algorithm improves their throughput. This makes it possible
to implement kNN query processing with a feedback-based, variable query radius growth
step. The PIDKNN algorithm outperforms other approaches currently in use for processing
parallel kNN queries in terms of both performance and scalability, as shown by a number
of experiments. For more recent research in this field, readers can refer to [30–35].

According to the study, earlier research focused on the fact that (1) no clustering
technique can handle all big data concerns. (2) Parallel categorization helps cluster big
data, but implementation is tough. (3) The MapReduce architecture is suitable for parallel
algorithms but not iterative ones. (4) No current k-medoids technique is accurate or
efficient for large amounts of geographic data. Existing methodologies for query processing
are insufficient to quickly offer correct answers in the context of massive data sets. Few
attempts have been made to build a unique dynamic distributed k-medoids clustering
approach for geospatial big data with many outliers. K-medoids are a kind of clustering
method that has been studied extensively in recent years, and its potential for parallelism
has been the subject of several academic articles, but applying it to spatially large data
presents significant challenges due to the presence of many outliers and disturbances. In the
next part, we’ll go over the proposed model in more depth; it uses a dynamic distributed
clustering approach to deal with spatially large data query processing and includes the
CRO algorithm to improve the selection of the initial medoids.

3. The Proposed Geospatial Big Data Query Model
3.1. Problem Formulation

K-medoids is a partitioned clustering algorithm for datasets composed of Np patterns,
that is, it partitions a dataset D =

{
x1, x2, . . . , xNP

}
into k non-overlapping groups (clus-

ters), i.e., C = {S1, . . . , SK} such that Si ∩ Sj = ∅ if i 6= j and ∪k
i=1Si = D. To locate such

clusters, k-medoids seeks to minimize the following objective function: the Within-Cluster
Sum-of-Distances (WCSoD) [36].

WCSoD = ∑k
i=1 ∑x∈Si

d(x, m(i))2, (1)

m(i) is the medoid for the ith cluster, and it is defined as the data point that minimizes
the sum of pairwise distances inside the cluster, where d(., .) is a (dis)similarity measure.
Large data sets present the greatest difficulty when attempting to employ clustering algo-
rithms, since doing so requires both scalable storage and a distributed querying strategy.
In order to find and eliminate correlations in massive datasets, clustering approaches are
much desired. However, there are a number of obstacles to bringing these methods to
bear on large-scale geographic datasets, such as the volume of data and the complexity of
certain algorithms. Thus, it is necessary to look into parallel clustering techniques that are
both efficient and accurate. Using distributed algorithms is essential for achieving better
scalability and accuracy when dealing with massive volumes of data. Given that huge data
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sets are often generated in dispersed places and might benefit from being processed on
their local hosts, distributed clustering is an attractive option.

3.2. Proposed Method

For the purpose of studying huge geospatial datasets, this section outlines an op-
timized distributed k-medoids clustering model. This approach comprises two phases:
sampling-based local clustering and aggregation-based global clustering. By expanding
the exploration for medoids and picking the ideal medoids, the local clustering technique
boosts the effectiveness of k-medoids using the Chemical Reaction Optimization (CRO)
algorithm. Hierarchical clustering describes this approach. The model uses Hadoop MapRe-
duce and runs on Apache Spark. It integrates Hadoop MapReduce’s features, but unlike
MapReduce, it stores intermediate and performance task outputs in memory (memory com-
puting). Memory computing boosts data processing. This model has a faster execution time
and more consistent clusters. Figure 1 shows the proposed model’s primary components.
The following subsections discuss each part.

Figure 1. The Proposed Dynamic Distributed Clustering –based Geospatial Query Model.

Step 1: Dataset
The dataset comprises taxi cab movements in San Francisco, CA, USA. It comprises

500 taxis’ 30-day GPS locations from the San Francisco Bay Area. Each file contains the
taxi’s identification (ID) and displays the taxi’s latitude, longitude, occupancy, and UNIX
epoch time.

Step 2: Distributed Computing with Apache Spark
Due to the inclusion of geographic data, the size and complexity of these massive

databases make their utilization impractical without access to appropriate computational
means. For example, Apache Spark paves the way for cutting-edge techniques to be devel-
oped that can convert enormous data volumes into useful knowledge. Hadoop Distributed
File System (HDFS) is where datasets are first kept. A resilient distributed dataset (RDD)
is the result of transforming this data [6,7,9,19]. RDD operations are parallelized on each
partition. Data-storing worker nodes perform tasks [19]. The primary Apache Spark steps
are shown in Figure 2.
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Figure 2. Apache Spark Architecture.

After partitioning and storing the dataset in nodes, preprocessing is conducted in
parallel. Integrating raw data from several sources may be difficult. Practical data is
contaminated by faults (errors) and missing values. Preprocessing assigns missing values,
treats noise, normalizes, transforms, integrates, mitigates inconsistencies, and reduces and
discretizes data [37]. Geospatial clustering datasets often include missing values. In certain
techniques, missing data is eliminated to solve the problem [38]. Data scientists have two
main options for dealing with missing data: imputation and data removal. The imputation
technique generates acceptable replacements for missing information. This method is
especially beneficial when there is a small amount of missing information. When there is
a large amount of information that is missing, it is impossible to build a reliable model.
The alternative is to delete the data. Deleted related data may help eliminate bias when
dealing with missing data that occurred by chance. If there are not enough observations to
provide a trustworthy analysis, then omitting data may not be the best decision. It may be
necessary to keep an eye out for certain things at certain times. In our case, the imputation
option based on the use of the attribute mean (the average value for that attribute) to fill
the missing value is employed.

Clustering has two main steps for noise reduction [38]. First, use data cleaning to
eliminate noise by restoring noisy instances rather than rejecting them. Then, the repaired
instances are reintroduced. It’s a tough task with low noise levels. Smoothing data is the
process of reducing or eliminating noise in the data. For the purposes of smoothing, you
may utilize the following methods: Binning is a method wherein the data is first sorted
and then divided into groups with similar frequency distributions. The bin mean, bin
median, or bin border may then be used in place of the noisy data. When there is extrane-
ous information present, regression is utilized to smooth it out. Regression is useful for
determining the most appropriate variable to use in an investigation. Noise filters are used
to identify and remove noisy training data without affecting clustering [39]. Eliminating
unnecessary data reduces noise and simplifies the investigation. Outlier detection and
treatment were incorporated to discard data or establish a high and low boundary. Some
techniques used to deal with outliers include: (1) Deleting observations; (2) Transforming
values; (3) Imputation; (4) Separate treatment; and (5) Deleting observations. Sometimes it
is best to completely remove those records from your dataset to stop them from skewing
your analysis. In our case, the imputation technique is employed.
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Step 3: Clustering, Initial Phase
Phase 1: The CRO Algorithm for Local Clustering
Local clusters rely heavily on the nodes’ clustering techniques. Local clustering uses k-

medoids. The method starts by finding starting medoids, which choose the (initial) medoids’
IDs. The k-medoid method is simple but has various problems. (1) The procedure depends
on the original random sample; various samples generate different results. (2) Finding the
optimal value for k, the number of clusters, may be challenging. (3) The method relies on the
input dataset’s natural order. To overcome these problems, the proposed solution integrates
the CRO algorithm to boost the k-medoid clustering algorithm by picking cluster medoids
using the CRO meta-heuristic algorithm rather than randomly. The CRO algorithm can
produce more optimal solutions by using objective functions, and the optimal solution
or medoid for the cluster will be chosen using the objective function with the highest
value. Herein, CRO is utilized as a blackbox with its default parameters. The algorithm’s
steps can be outlined as follows: (1) Begin with the initial population, which is composed
of a collection of individuals, each of whom possesses potential energy (PE). Such CRO
parameters, such as population size, number of iterations, and buffer, should be specified
initially. (2) Create new reaction mixtures through chemical reactions. (3) Maintain a
current state of potential energy. (4) Repeat steps before the termination state is reached.
Figure 3 shows the flowchart of chemical reaction optimization.

Figure 3. Flowchart of chemical reaction optimization.
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The CRO algorithm differs from other evolutionary methods primarily in that the
population size is subject to change at the end of each iteration, while in other methods the
population size is fixed from the beginning to the end of the run. In the CRO community,
the molecule is the basic building block since it is assumed to store the individual’s fitness
in the form of potential energy. Depending on the problem at hand, some aspects of
a molecule—its kinetic energy, its structure, and so on—may be more important than
others. Molecules may be altered by either intra- or intermolecular collisions (two or more
molecules collide with each other). The end goal is to transform it into a stable compound
with the lowest feasible potential energy. For additional details, see [40].

Combining the principles of natural chemical reactions with mathematical optimiza-
tion, CRO is distinguished by its ability to converge quickly and its need for fewer adjustable
parameters. See [41] for further information on CRO and its applications. CRO, unlike other
optimization approaches, does not need a large number of initial parameters; just the re-
quired number of initial reactants is required for implementation. In this study, we employ
binary coding for reactants and the uniform population approach to generate the starting
population. Initialize the starting reactants uniformly throughout the viable search space.
Thus, it is possible to acquire all vectors in a space by linearly combining components of the
base set. The absence of one member from the base set causes a decrease in the associated
dimension. Consequently, it is essential that the starting reactants comprise each member
of the base set. Moreover, the starting reactants must be uniform and maintain the base
set. The CRO demonstrates great performance in two crucial optimization metaheuristics
characteristics: intensification and diversification. It also gets the benefits of the genetic
algorithm (GA) since it employs the crossover operator and mutation that are often used
in GA.

Phase 2: Context-aware Reduction
Data reduction strategies may provide a smaller dataset with the same consistency [42,43].

Samples, data compression, and data discretization are discussed in the literature. The bulk
of these techniques are focused on database storage size rather than information (context-
aware). The most basic method of information reduction is sampling, in which we randomly
choose samples from the complete dataset. Random, deterministic, and density-biased
sampling strategies are explained. Naive sampling techniques are unsuitable for real-world
applications with noisy data because algorithm performance might vary substantially.
Random sampling ignores knowledge in samples not picked for the smaller subset. The
basic idea behind random projection is to use a matrix whose column lengths are all one to
transfer high-dimensional data to a lower-dimensional subspace. Controls are applied to
the size and distribution of random projection matrices to ensure that the distances between
any two dataset samples remain unchanged. Therefore, the distance-based approach may
benefit from random projection as an approximation strategy. To construct a reduction
set, the suggested model follows the same reduction technique as [44]. The employed
technique concerns the shape and density of the clusters that are formed. Its border points
indicate the shape of a cluster. Meanwhile, its density may be represented by a mean
density value or by a series of density values representing the density in distinct regions of
the cluster. The reduction set that may be seen as the local model at site Si in the system
will be constructed using cluster boundary and density information. The server receives
this local model and uses it to generate global models. Herein, only cluster members who
account for 1% to 2% of data are sent. Medoids and border points are cluster members.

Step 4: Global Clustering “Aggregation”
In the recommended model’s aggregation phase, global models are formed. Unlike

the first phase, this distributed operation incurs communications expenses. This procedure
has two parts that may be repeated forever to construct all global clusters. First, each
leader gathers its neighbors’ clusters. Leaders can combine small clusters with the overlay
method. Before reaching the root node, we’ll repeat cluster fusion. The root node holds
global clusters. Costs may be incurred in stage two due to local cluster communications to
top-level managers. For nodes to interact in local clustering, just the cluster boundaries
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need to be shared. Global clustering involves sharing each node’s reduced cluster (medoid
+ boundary points) with its neighbors. This identifies overlapping leaders. Each leader
unites overlapping group members to create new ones. These steps must be repeated
until the first node is reached. After aggregating data from smaller clusters, the big view
is placed at the tree’s highest node (the root node). A leader is selected based on their
capacity, computational power, and ease of access. Leaders combine and regenerate data
items based on cluster representations. This step improves global cluster consistency, since
local clusters lack essential information [21,45,46].

Step 5: User Querying Processing
The user specifies a query in accordance with the requirements. The query has

entered the users’ query processing unit, which is responsible for query decoding. This is
advantageous for mapping queried data and moving to the appropriate partition in order
to retrieve the desired data from the final clustered data contained in the RDD. Lexical
analysis is used to verify the syntax and derive significant tokens from the user question
included in the input. Tokens are produced using a lexical analyzer from a stream of input
string characters that have been broken down into small components to form meaningful
expressions [47].

The use of spatial querying inside a geospatial big data environment is used to demon-
strate the proposed distributed clustering model’s efficacy. A spatial query is subtype
of a database query that spatial databases provide. It enables the representation of basic
geometric structures such as points. The queries vary significantly from non-spatial SQL
queries in many respects [48]. The two most often used spatial queries, given the derived
tokens, are the k-nearest neighbor (kNN) queries and window queries [48]. The kNN
queries return the k-nearest objects to the querying user’s position, while window queries
return all objects within the requested window. A real-world example of a kNN question is
“tell me the three closest restaurants to my current location”; a window query is “display
all coffee shops inside the navigation frame based on my place.”

KNN is a non-parametric algorithm, which implies that some assumptions must be
fulfilled in order to execute it. Additionally, KNN does not create a standard explicitly;
it simply marks new data entries based on learning from historical data. The latest data
entry will be associated with the closest neighbor’s plurality class. KNN is a memory-based
technique due to its instance-based learning. The classifier automatically adapts when new
training data is collected. This lets the algorithm react quickly to changes in the input when
it is being used in real time [49]. In order to locate the K spatial objects that are closest to
the query location, KNN queries are employed. To do so, the KNN query (Spark object,
query point, K) API from Spark data frames is used [49].

4. Experimental Results

In this section, many experiments have been performed with real data sets to test how
well the model works. The method of prototype verification was made using MATLAB in a
modular way, and it has been tested on a DellTM InspironTM N5110 Laptop computer, Dell
Computer Corporation. For distributed parallel processing, the model that was suggested
was run on Hadoop 2.7.1 and Spark 2.2.0. For spatial query processing, studies use a 167
million-record, 30-GB benchmark taxi dataset [50]. Each record details a taxi ride at a
certain date and time. The query uses two 2D pickup coordinates. All tests use a 30 million-
record, 5 GB sample dataset. Clustering error, average latency, clustering accuracy, and
convergence time are assessed [37].

4.1. Experiment 1: KNN Search Analysis

This series of tests evaluates the efficiency of various queries in terms of average
latency against datasets of varying sizes. To evaluate the performance of the suggested
model, various datasets ranging in size from 5 million to 30 million records (800 MB to
5 GB) are created from the benchmark taxi dataset. The pickup position is regarded as
a two-dimensional spatial object. For assessment purposes, various test cases involving
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KNN search queries are developed. Ten test queries are executed to determine the nearest
K (K = 3 to 15) pickup locations to a specified query point. The sampling procedure is used
to pick different query points from densely populated regions. Table 1 shows KNN query
efficiency. The average delay grows with the number of kNN neighbors and dataset rows,
as expected. A 5-million-row dataset’s average latency grows 4% between K = 3 and K = 15.
The average rises 3.7% as the dataset expands from 5 million to 30 million rows.

Table 1. Performance of KNN Query Regarding Number of K and database size.

No. of K K = 3 K = 5 K = 15

Number of Rows
in million 5 15 30 5 15 30 5 15 30

Average Latency (Sec) 10 23 50 20 48 90 52 140 200

In general, utilizing distributed clustering (the Spark framework) is regarded as a
critical aspect of the proposed model since it reduces the run time required to achieve the
final clustered data. This contributes to the acceleration of spatial query analysis in a large
data environment. Additionally, the procedure for aggregating spatial local clusters into
global clusters requires just a small portion of the original datasets to be exchanged, which
is extremely effective. In general, the clustering construction stage (offline) requires more
time, while the query stage (online) requires significantly less.

4.2. Experiment 2: Comparative Study for KNN Search

The second set of experiments compares the suggested model’s query performance in
terms of average latency to a similar technique described in [51], which is developed on
top of the Spark architecture and a NoSQL database, Cassandra. The same dataset as in
the previous experiment is used. Ten test queries are executed to determine the nearest K
pickup locations (K = 5 to 25) to a specified query point. Table 2 illustrates the efficiency of
the KNN search query on both versions. The proposed model reduces average latency by
23%. The proposed model’s dominance stems from the fact that it is founded on two levels
of clustering: local and global clustering. The first step produces local models or trends,
while the second phase attempts to combine the effects of the first phase to produce global
models. In contrast to the comparative model, it is based on a single level of clustering. As
a result, the total number of clusters produced by the proposed model is significantly less
than the alternative approach. By and large, looking through a few clusters is faster.

Table 2. Comparative Study for KNN Query Performance (Average Latency in Seconds).

Database Size (Number of
Rows in Million) 5 10 15 20 25 30

Proposed Model 16 33 45 76 48 90
Related Technique [51] 22 42 57 88 95 113

4.3. Experiment 3: Clustering Error

This series of tests contrasts standard and suggested clustering methodologies to show
the superiority of the proposed model. Clustering errors were evaluated. This investigation
considers several clustering techniques briefly discussed in [37]. Table 3 displays the cluster
error of both conventional and novel clustering methods. The recommended hierarchical
clustering model was able to reduce the error rate to an average of 0.36%, which is much
lower than the other approaches. K-means clustering is not as effective as the global cluster,
and it is difficult to determine the k value. Furthermore, the approach performs poorly for
clusters of variable dimensions and densities, and different beginning partitions lead to
different end clusters. The k-prototype ensures the approach converges to a local average,
not a global minimum. Furthermore, the similarity computation procedures in the OCIL
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method are not very efficient. Each variable affects distance calculation independently
in similarity-based k-medoids clustering. Redundant values might dominate a relation-
ship between data points. These drawbacks are what make the proposed hierarchically
distributed clustering so effective.

Table 3. The Clustering Error Analysis.

Clustering Algorithm Clustering Error

C1 (k-means) 0.41
C2 (k-prototype) 0.39
C3 (Object Clustering Iterative Learning) 0.25
C4 (Similarity-based k-medoids clustering) 0.23
Proposed Model 0.19

Clustering errors are cut by 16%, 25%, 51.6%, and 51.7%, respectively, when the sug-
gested method is used instead of the C4, C2, C3, and C3 clustering algorithms. Clustering
errors are reduced more effectively using multiphase k-medoids, although they are more
complicated to implement than k-means. The usage of distributed computing helped
overcome this shortcoming. In the proposed model, compact clusters exhibit the same
fundamental properties as local clusters. The reliability of the overall model is significantly
affected by the accuracy of the local cluster.

4.4. Experiment 4: Convergence Time

In this experiment, we compare the convergence times of conventional clustering
models with those of the suggested improved two-level clustering technique (see Table 4).
Convergence times are reduced in the similarity-based k-medoids, k-prototype, and OCIL
methods. The research shows that more time is required for the suggested model to con-
verge. When compared to similarity-based k-medoids, k-prototype, and OCIL clustering
algorithms, the suggested model speeds up convergence by 51%, 65%, and 24%, respec-
tively. The suggested model incorporates local and global clustering, which may account
for these results. On the other hand, the local clustering infrastructure is based on the Spark
framework, which speeds up processing even when dealing with massive volumes of data.
Nevertheless, global clusters function iteratively, with the nodes of the leaders aggregating
smaller clusters; this lengthens the time needed for the clusters to converge.

Table 4. The Average Convergence Time Analysis (s).

Clustering Algorithm Average Time

C2 (K-prototype) 6
C3 (Object Clustering Iterative Learning) 12
C4 (Similarity-based k-medoids clustering) 8
Proposed Model 16

4.5. Experiment 5: Clustering Accuracy

Here, a clustering accuracy measure is used to assess the efficiency of the various
clustering methods. Table 5 displays the clustering accuracy of the recommended model, as
well as that of the parallel k-medoids clustering [52]. The primary concept of the paper [52]
is to individually apply clustering via two cost-free phases: parallel seeding and parallel
refining. While in the first stage a global search is conducted over a subset of the data, in the
second stage a local search is conducted over the full dataset. Improved clustering accuracy
of 3.5% is clear evidence of the study’s value. Our technique combines the k-medoid with
the chemical reaction optimization (CRO) algorithm, which may explain the result. CRO is
used to increase the quality of data utilized for clustering and to increase the search space
for the appropriate medoid.
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Table 5. The Clustering Accuracy Analysis.

Techniques Parallel K-medoids
clustering [52]

Proposed Model
(Parallel CRO-Based K-medoids Clustering)

Clustering
Accuracy 94.6 97.4

4.6. Limitation

- Many decision-making processes in our world include optimization issues that are
NP-hard. The large-scale, dynamism, and vagueness of these problems limit the use
of independent optimization techniques.

- Metaheuristics approaches (such as Chemical Reaction Optimization) typically assume
that problem inputs, underlying objective functions, and optimization constraints
are either deterministic or follow basic probabilistic rules. As a result of these high
assumptions, several deterministic models are oversimplified copies of real-world
systems.

- In the absence of uncertainty in the optimization formulation, the optimal solutions for
these systems may be unstable and sensitive to modest changes in input parameters.

- Numerous metaheuristics use some type of stochastic optimization, such that the
solution discovered is dependent on the provided random variables.

- Compared with conventional approaches, more computing resources are needed.

5. Conclusions

As most current data is spatial and collected by sensors, geospatial big data is essential
in the big data age. While big data has many potential benefits, it may be difficult to strike
a good balance between the data’s volume, diversity, velocity, validity, and usefulness.
Solving geographic issues with massive volumes of data requires high-performance com-
putation. Geospatial big data query analysis is difficult. Improving query success via data
management is tricky. The rising complexity of data queries requires a clustering technique.

In the context of geospatial big data, this paper examined the specifics of the suggested
dynamic distributed clustering paradigm for analyzing spatial queries. There are two
phases to the suggested paradigm. By employing Spark’s task parallelism model, local
clustering builds subset-focused clusters. The “aggregation” phase of global clustering is
responsible for mechanically producing the required quantity of compact final clusters.
These dense clusters are similar to their neighboring counterparts in most respects. The
k-medoid technique is suggested to be used with the Chemical Reaction Optimization
(CRO) algorithm to improve efficiency and provide more precise clusters. This technique
employs CRO to improve clustering and expand the search for the optimal medoid by
amassing more reliable results. Experiments demonstrated that the recommended model
balanced clustering error, execution time, clustering accuracy, and convergence speed. The
suggested model could be enhanced using soft computing, the ideal number of processing
nodes could be discovered, and the model could be scaled up to handle big data analytics
for streaming geographic data.
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